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Abstract

Nowadays many companies have available large amounts of raw, un-
structured data. Among Big Data enabling technologies, a central place
is held by the MapReduce framework and, in particular, by its open
source implementation, Apache Hadoop. For cost effectiveness considera-
tions, a common approach entails sharing server clusters among multiple
users. The underlying infrastructure should provide every user with a fair
share of computational resources, ensuring that Service Level Agreements
(SLAs) are met and avoiding wastes.

In this paper we consider two mathematical programming problems
that model the optimal allocation of computational resources in a Hadoop 2.x
cluster with the aim to develop new capacity allocation techniques that
guarantee better performance in shared data centers. Our goal is to get a
substantial reduction of power consumption while respecting the deadlines
stated in the SLAs and avoiding penalties associated with job rejections.
The core of this approach is a distributed algorithm for runtime capacity
allocation, based on Game Theory models and techniques, that mimics
the MapReduce dynamics by means of interacting players, namely the
central Resource Manager and Class Managers.
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1 Introduction
A large number of enterprises currently commits to the extraction of information
from huge data sets as part of their core business activities. Applications range
from fraud detection to one-to-one marketing, encompassing business analytics
and support to decision making in both private and public sectors. In order
to cope with the unprecedented amount of data and the need to process them
in a timely fashion, new technologies are increasingly adopted in industry, fol-
lowing the Big Data paradigm. Among such technologies, Apache Hadoop [1]
is already widespread and predictions suggest a further increase in its future
adoption. IDC estimates that, by 2020, nearly 40% of Big Data analyses will be
supported by public Clouds [2], while Hadoop touched half of the data worldwide
by 2015 [3].

Apache Hadoop is an open source software suite that enables the elaboration
of vast amounts of data on clusters of commodity hardware. Hadoop implements
the MapReduce paradigm, automatically ensuring parallelization, distribution,
fault-tolerance, reliability, and monitoring. In order to obtain a high level of
scalability, Hadoop 2.x overcomes the drawbacks present in the previous ver-
sions implementing a distributed resource management system, with a central
Resource Manager (RM) that provides resources for computation to Application
Masters (AMs) entitled to manage the submitted jobs.

Despite the convenience of this paradigm and the undeniably widespread
adoption of Hadoop within the IT industry, still there are no tools that support
developers and operators in achieving optimal capacity planning of MapReduce
applications. In this context the main drawback [4], [5] is that the execution
time of a MapReduce job is generally unknown in advance: for some systems,
capacity allocation can become a critical aspect. Moreover, resource allocation
policies need to decide job execution and rejection rates in a way that users’
workloads can meet their Service Level Agreements (SLAs) and the overall cost
is minimized.

This paper investigates the theoretical foundations for the optimal runtime
management of cluster resources in private Clouds. We envisage a scenario
where a novel resource allocation policy, based on our findings, is implemented
and adopted in order to optimally address the discussed issues. Precisely, we
focus on the joint admission control and capacity allocation problem, seeking to
fulfill SLAs while minimizing energy-related costs. Overall, ICT energy demand
sums up to 7% of the world consumption and was expected to rise up to 12%
by 2017 [6], with a further tendency towards a shift from devices to networks
and data centers consumption [7]. Indeed, worldwide ICT systems account for
2–4% of global CO2 emissions and it is expected that they can reach up to 10%
in 5–10 years [8].

We propose a theoretical approach in which the allocation problem is solved
periodically based on a prediction of the forthcoming system load. In particular,
we adopt Game Theory techniques, which found successful application in the
field of Cloud computing [9]–[12], and use them to provide a distributed, scalable
solution to the joint admission control and capacity allocation of multi-class
Hadoop clusters. We propose a distributed solution leading to a Generalized
Nash Equilibrium Problem (GNEP), a class of games that generalizes classical
Nash problems, yielding much more difficult instances.

This paper is organized as follows. Initially, we give a clear statement of
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Figure 1: Reference technology

the problem at hand alongside relevant design assumptions, in Section 2. After-
wards, we show how we developed models to solve the joint capacity allocation
and admission control problem. Section 3 presents a preliminary, centralized
mathematical programming formulation, whilst Section 4 builds on it to propose
a distributed game-theoretic model. Then we analyze our results in Section 5,
whilst Section 6 discusses other literature proposals. In the end, Section 7 wraps
up this work and draws conclusions on the outcomes.

2 Problem Statement and Design Assumptions
Figure 1 shows the reference technological system, featuring the Hadoop 2.x
framework running on a private Cloud. The private Cloud cluster supports
several user classes competing for resources, which are managed via the YARN
Capacity Scheduler. Each class collects similar jobs, i.e., applications that share
analogous values for parameters characterizing their performance: they have the
same job profile. Following the notation brought forth in [5], [13], job profiles
include the following contributes: nMi and nRi , the total number of Map and
Reduce tasks per job, respectively; Mmax

i , Rmaxi , Shmax1,i , and Shmaxtyp,i, the max-
imum durations of one single Map, Reduce, and Shuffle task (notice that the
first Shuffle wave of a given job is distinguished from all the subsequent ones);
Mavg
i , Ravgi , and Shavgtyp,i, i.e., the average duration of Map, Reduce, and Shuffle

tasks, respectively.
The modeled cluster supports the concurrent execution of a maximum of R

virtual machines (VMs), which we assume homogeneous for the sake of simplic-
ity. In order to allow for elasticity, the reference system does not store data on
the Hadoop Distributed File System (HDFS) as this would expose it to data
corruption or poor performance. On the contrary, according to the practice
suggested by major Cloud providers [14], [15], data reside on external storage
[16], [17].

According to our vision of a novel resource allocation policy, every applica-
tion class is managed by a Class Manager (CM), which negotiates the required
resources with a central RM, entitled to split the available capacity among sub-
mitted jobs. The set of application classes is denoted with A and N = |A|. For
all CMs i ∈ A, the RM assigns ri VMs. In other words, in this scenario the

3



proposed framework acts as the YARN Capacity Scheduler [18], assigning every
application class i to a separate queue and providing a portion φi of the total
resources, where:

φi ,
ri∑N
j=1 rj

, ∀i ∈ A.

Given ρ̄, the time unit cost to run a single VM, it is possible to obtain the total
cost of execution as

∑N
i=1 ρ̄ri.

For every application class i, an SLA establishes that a maximum ofHup
i jobs

can be executed concurrently. However, the system can autonomously decide to
reject a portion of such jobs upon payment of a penalty. Finally, the accepted
hi jobs cannot be fewer than H low

i and the system commits to complete them
within a deadline Di. We denote with Pi (hi) the penalty functions associated
to the possible rejection of some jobs. They are assumed to be decreasing and
convex: this is reasonable as it means that penalties increase at least linearly in
the number of rejected jobs.

According to the obtained number of resources ri, a CM may need to reject
some jobs, then it proceeds to activate a suitable number of AMs to coordinate
the admitted ones. In this scenario, the AMs have the only duty of managing
the resources obtained by the CMs so as to carry out the associated job tasks,
without directly taking part in the allocation process.

We propose to solve our problems hourly, based on a prediction of the load
Hup
i , to dynamically reallocate resources among application classes, while also

avoiding the overhead and costs of booting and shutting down VMs too fre-
quently.

In the Hadoop framework each computational node hosts several slots that
execute Map and Reduce tasks. In particular, according to the YARN config-
uration, VM resources are split in containers, so that every VM can be used
to concurrently run cMi Map or cRi Reduce tasks1. These parameters depend
only on the job classes owing to the assumption of homogeneity made on VMs.
The total number of Map and Reduce slots assigned to an application class is
represented by sMi and sRi , respectively. Again, these variables give a simple
representation of the workload required to complete jobs in each class due to the
homogeneity assumption on VMs. Precisely, with sMi and sRi we represent the
number of Map and Reduce tasks that run concurrently, hence the maximum
size of each wave.

As previously stated, according to [5], it is possible to derive from the Hadoop
logs a job profile, i.e., a set of parameters that characterize the execution of jobs
in each class. In this paper we use a more refined formulation, as in [13]. The
estimated minimum and maximum execution times are computed with formulae
similar to the following:

1Note that in Hadoop 1.x, each node resources can be partitioned between slots assigned
to Map tasks and slots assigned to Reduce tasks. In Hadoop 2.x, the resource capacity
configured for each container is available for both Map and Reduce tasks and cannot be
partitioned anymore [19]. The maximum number of concurrent mappers and reducers (the
slot count) is calculated by YARN based on administrator settings [20]. A node is eligible
to run a task when its available memory and CPU can satisfy the task resource requirement.
With our hypothesis above, we assume that the configuration settings are such that whatever
combination of Map and Reduce tasks can be executed within a container, no CPU remains
idle because of a wrong setting of these parameters.
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Ti = Ai
hi
sMi

+Bi
hi
sRi

+ Ci. (1)

The parameters Ai, Bi, and Ci aggregate the already mentioned nMi , nRi ,
Mmax
i , Rmaxi , Shmax1,i , Shmaxtyp,i, M

avg
i , Ravgi , and Shavgtyp,i parameters, which are

measured directly by Hadoop and easily obtainable from its execution logs.
These formulae are used to predict the jobs execution time, given the number
of allocated resources and the concurrency level.

Equations (1) can be used to derive deadline constraints; two main alter-
natives have to be considered, though. On one hand it is possible to express
constraints giving strong guarantees of meeting hard deadlines considering a
conservative upper bound estimate. When dealing with soft deadlines, instead,
the arithmetic mean of the upper and lower bounds has been shown to be
a better suited estimate (see [5], [13]), giving a quite accurate forecast of the
actual execution time with just an average 10% gap between predicted and mea-
sured times [13], and leading to the allocation of comparably fewer resources.
Notwithstanding, in both cases we can formulate the deadline constraints as:

Ti = Ai
hi
sMi

+Bi
hi
sRi

+ Ci ≤ Di, ∀i ∈ A. (2)

where Di are the deadlines. In the following, we adopt the parameter Ei =
Ci − Di. Notice that, by definition, it holds Ei < 0, as nonnegative values
would mean that jobs of class i cannot be completed on time. In this paper,
we adopt the average formulation, hence renouncing to guarantees that the
admitted jobs are completed on time, in favor of a less demanding allocation.

In light of the above, we can say that the ultimate goal of the proposed
approach is to determine the optimal values of hi, sMi , sRi , and ri so that the
sum of costs and rejection penalties is minimized, while the deadlines set by
SLAs are met. In Table 1 are reported all the parameters used in the models
discussed in the subsequent sections, while in Table 2 we summarize the decision
variables.

3 Mathematical Programming Formulation
Building upon the observations and assumptions previously discussed, we for-
mulate a preliminary mathematical programming model that formalizes the
problem. The model is the following:

min
r,h,sM ,sR

N∑

i=1

ρ̄ri +
N∑

i=1

Pi (hi) (P1a)

subject to:

N∑

i=1

ri ≤ R, (P1b)

H low
i ≤ hi ≤ Hup

i , ∀i ∈ A, (P1c)
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Table 1: Centralized Model Parameters

A Set of job classes
N Number of CMs, or |A|
ρ̄ Time unit cost for running a VM in the cluster

Hup
i Maximum concurrency required in the SLA contract for job class i

H low
i Minimum concurrency required in the SLA contract for job class i

ψlowi Reciprocal of Hup
i

ψupi Reciprocal of H low
i

R Total capacity of the cluster as number of VMs
Ai Coefficient associated to Map tasks in the job profile for job class i,

[13]
Bi Coefficient associated to Reduce tasks in the job profile for job class i,

[13]
Ei Parameter lumping the constant terms associated neither to Map,

nor to Reduce tasks in the job profile for job class i, as well as the
deadlines, [13]

cMi Map slots supported on one VM for job class i
cRi Reduce slots supported on one VM for job class i
αi Slope of the penalty contribution linear in ψi for job class i
βi Constant term of the penalty contribution linear in ψi for job class i

Table 2: Centralized Model Decision Variables

ri Number of VMs assigned for the execution of job class i
hi Number of jobs concurrently executed in job class i
ψi Reciprocal of the concurrency degree hi
sMi Number of Map slots assigned for the execution of job class i
sRi Number of Reduce slots assigned for the execution of job class i

6



Aihi
sMi

+
Bihi
sRi

+ Ei ≤ 0, ∀i ∈ A, (P1d)

sMi
cMi

+
sRi
cRi
≤ ri, ∀i ∈ A, (P1e)

ri ∈ N, ∀i ∈ A, (P1f)
hi ∈ N, ∀i ∈ A, (P1g)

sMi ∈ N, ∀i ∈ A, (P1h)

sRi ∈ N, ∀i ∈ A. (P1i)

In problem (P1) the objective function (P1a) has a term representing the cost
of executing all the assigned VMs and another for penalties. Constraint (P1b)
ensures that the cluster capacity bounds the total assigned resources. Further,
the set of constraints (P1c) imposes the minimum and maximum job concur-
rency levels, according to the SLAs. Similarly, constraints (P1d) exploit the
job profiles to ensure the deadlines are met. Constraints (P1e) guarantee that
every application class receives enough VMs to support the number of slots they
should run concurrently. The left hand side is a conservative estimate of the
resources needed to support at the same time sMi and sRi slots: this expression
greatly simplifies the analysis. Constraints (P1f)–(P1i) require all the variables
to be nonnegative integers, as expected for their interpretation. In particular,
notice that the other constraints impose that all the variables must be positive
integers.

Since the optimization problem is nonlinear due to the constraints fam-
ily (P1d) and the penalty terms Pi (hi), it is advisable to study its continuous
relaxation. Instances of practical interest may well have hundreds of application
classes, thus making the solution methods for nonlinear integer problems infeasi-
ble for supporting admission control and capacity allocation at runtime. Indeed,
the model includes 4N integer variables and 8N + 1 constraints. Nonetheless,
the solutions to the proposed models have to be integer, as it is only possible to
instantiate a discrete number of VMs, then we will discuss a heuristic approach
to the issue in Section 4.5.

Moreover, constraints (P1d) are not convex, thus ruling out many important
results for nonlinear optimization. We address this issue introducing a new set
of variables ψi , h−1

i , so that constraints (P1d) are now convex, as shown in
Proposition 3.1.

Proposition 3.1. The function

f
(
ψi, s

M
i , s

R
i

)
=

Ai
sMi ψi

+
Bi
sRi ψi

+ Ei

is convex.

Proof. We note that it is sufficient to prove that the function g (x, y) = 1
xy is

convex whenever x and y are positive. The Hessian matrix of g is:

∇2g (x, y) =

[
2
x3y

1
x2y2

1
x2y2

2
xy3

]
.

Since both the trace and the determinant are positive, the Hessian matrix
of g is positive definite for any positive x and y, hence g is convex.
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According to Proposition 3.1, with this change of variables it is possible to
write a convex nonlinear problem. Note that we explicitly impose ψi > 0 with
the rewriting of constraints (P1c) whilst the same does not hold for sMi and
sRi . Besides the trivial consideration that sMi = 0 and sRi = 0 are outside the
domain of f , we should notice that this mirrors the fact that not assigning slots
to a job class is not acceptable in the modeled system. Now, let us assume
that the penalties are linear in the new variables ψi, hence it is possible to
write them as αiψi − βi, ∀i ∈ A. The corresponding penalty term in the
objective function (P1a) is then Pi (hi) = αih

−1
i −βi, ∀i ∈ A. This expression is

consistent with the assumptions of convexity and monotonicity made on Pi (hi).
The formulation reads:

min
r,ψ,sM ,sR

N∑

i=1

ρ̄ri +
N∑

i=1

(αiψi − βi) (P2a)

subject to:

N∑

i=1

ri ≤ R, (P2b)

ψlowi ≤ ψi ≤ ψupi , ∀i ∈ A, (P2c)
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei ≤ 0, ∀i ∈ A, (P2d)

sMi
cMi

+
sRi
cRi
≤ ri, ∀i ∈ A, (P2e)

ri ≥ 0, ∀i ∈ A, (P2f)
ψi ≥ 0, ∀i ∈ A, (P2g)

sMi ≥ 0, ∀i ∈ A, (P2h)

sRi ≥ 0, ∀i ∈ A. (P2i)

Following the proposed change of variables, constraints (P1c) become con-
straints (P2c) where ψlowi = (Hup

i )
−1 and ψupi =

(
H low
i

)−1. Further, as can
be seen from constraints (P2f)–(P2i), we take the continuous relaxation of the
otherwise mixed integer problem. Thanks to the high values typically attained
by sMi , sRi , and ri, it is possible to round the real solution without affecting too
much the optimal value.

We now proceed with the analysis of this formulation. Problem (P2) is con-
vex and Slater constraint qualification holds: the Karush-Kuhn-Tucker (KKT)
conditions are, then, necessary and sufficient for optimality. The associated
Lagrangian is:

8



L(r,ψ, sM , sR) =
N∑

i=1

ρ̄ri +
N∑

i=1

(αiψi − βi) +

+a

(
N∑

i=1

ri −R
)

+
N∑

i=1

bi
(
ψlowi − ψi

)

+
N∑

i=1

ci (ψi − ψupi ) +

+
N∑

i=1

di

(
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei

)
+

+
N∑

i=1

ei

(
sMi
cMi

+
sRi
cRi
− ri

)
−

N∑

i=1

fis
M
i +

−
N∑

i=1

gis
R
i −

N∑

i=1

kiri −
N∑

i=1

liψi.

(3)

The associated KKT conditions are:

∂L
∂ri

=ρ̄+ a− ei − ki = 0, ∀i ∈ A, (4a)

∂L
∂ψi

=αi − bi + ci −
diAi
sMi ψ

2
i

− diBi
sRi ψ

2
i

= 0, ∀i ∈ A, (4b)

∂L
∂sMi

=− diAi

ψi
(
sMi
)2 +

ei
cMi

= 0, ∀i ∈ A, (4c)

∂L
∂sRi

=− diBi

ψi
(
sRi
)2 +

ei
cRi

= 0, ∀i ∈ A. (4d)

And the complementary slackness conditions:

a

(
N∑

i=1

ri −R
)

= 0, a ≥ 0, (5a)

bi
(
ψlowi − ψi

)
= 0, bi ≥ 0, ∀i ∈ A, (5b)

ci (ψi − ψupi ) = 0, ci ≥ 0, ∀i ∈ A, (5c)

di

(
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei

)
= 0, di ≥ 0, ∀i ∈ A, (5d)

ei

(
sMi
cMi

+
sRi
cRi
− ri

)
= 0, ei ≥ 0, ∀i ∈ A, (5e)

fis
M
i = 0, fi ≥ 0, ∀i ∈ A, (5f)

gis
R
i = 0, gi ≥ 0, ∀i ∈ A, (5g)

kiri = 0, ki ≥ 0, ∀i ∈ A, (5h)
liψi = 0, li ≥ 0, ∀i ∈ A. (5i)

Now, we can easily prove the following propositions.
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Proposition 3.2. Constraints (P2d) and (P2e) are active in every optimal
solution.

Proof. Building upon the previous consideration that all the variables must be
positive in feasible solutions and owing to (5h), we have ki = 0. From (4a),
then:

ei = ρ̄+ a ≥ ρ̄ > 0, ∀i ∈ A,

meaning that every constraint (P2e) is active in optimal solutions.
Now, conditions (4c) yield:

di =
eiψi

(
sMi
)2

AicMi
, ∀i ∈ A,

and, since all the parameters and variables are positive, it is proved that di >
0,∀i ∈ A, hence all the (P2d) are active in every optimal solution as well.

Proposition 3.3. The optimal values attained by sMi , sRi , and ψi in prob-
lem (P2) are:

sMi = ξMi ri, ∀i ∈ A, (6a)

sRi = ξRi ri, ∀i ∈ A, (6b)

ψi = Kir
−1
i , ∀i ∈ A, (6c)

where:

ξMi , cMi

1 +

√
Bi

Ai

cMi
cRi

, ∀i ∈ A, (7a)

ξRi , cRi

1 +

√
Ai

Bi

cRi
cMi

, ∀i ∈ A, (7b)

Ki , −

(√
Ai

cMi
+
√

Bi

cRi

)2

Ei
, ∀i ∈ A. (7c)

Proof. From (4c) and (4d) we obtain:

sMi = sRi

√
AicMi
BicRi

, ∀i ∈ A.

Substituting in (P2e) we get:

sRi =
cRi

1 +

√
AicRi
BicMi

ri, ∀i ∈ A,
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hence also:

sMi =
cMi

1 +

√
BicMi
AicRi

ri, ∀i ∈ A.

Now, these results can be substituted in (P2d) to obtain:

ψi = −

(√
Ai

cMi
+
√

Bi

cRi

)2

Ei
r−1
i , ∀i ∈ A.

The results of Proposition 3.3 allow to write a simplified version of prob-
lem (P2). Before showing it, we discuss the mentioned results.

Consider formulae (6a) and (6b): given a certain number of resources, for
each user class it is possible to directly compute the optimal number of Map and
Reduce slots to run at the maximum concurrency level allowed on the obtained
ri VMs.

Formula (6c) is better described writing ψi in terms of hi. In this way,
we have: ri = Kihi, ∀i ∈ A. Parameters Ki, therefore, are the minimum
number of VMs needed to carry out exactly one job of class i to meet the given
deadline. On the other hand, given ri available VMs, it is possible to evaluate
the maximum concurrency level that can be obtained. From this observation,
formula (6c) can be rewritten to compute the number of resources needed to
attain a specific concurrency level:

rupi =
Ki

ψlowi
= KiH

up
i , ∀i ∈ A, (8a)

rlowi =
Ki

ψupi
= KiH

low
i , ∀i ∈ A. (8b)

Formulae (8a) and (8b) define two new sets of parameters, rupi and rlowi ,
which are the optimal number of resources needed to complete jobs of class i
on time at maximum or minimum concurrency level, respectively. rupi and rlowi
appear in the reduced formulation of problem (P2) exploiting Proposition 3.3,
which is presented here:

min
r

N∑

i=1

ρ̄ri +
N∑

i=1

(
αi
Ki

ri
− βi

)
(P3a)

subject to:

N∑

i=1

ri ≤ R, (P3b)

rlowi ≤ ri ≤ rupi , ∀i ∈ A. (P3c)
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As can be seen, problem (P3) is smaller than (P2), with 2N + 1 constraints
and N variables. Moreover, due to the ri appearing at denominator in the
penalty term, the problem remains nonlinear and convex.

However, problems (P2) and (P3) force to centralize on a single node data
characterizing different application classes. This approach would have been
natural in the first release of Hadoop where a single Job Tracker was in charge
of both assigning resources to jobs and ensuring they were carried out. Instead,
Hadoop 2.x distributes these duties among the RM and the AMs, so a more
appealing approach would be to set them apart and solve distinct problems. In
order to address this issue, we propose a distributed formulation where each CM
and the RM solve smaller local problems. The decision variables are split among
all these entities and the bargaining for resources becomes a game involvingN+1
players.

4 Game Theoretic Formulation
Reformulating problem (P2) in a distributed way entails writing partial prob-
lems tailored to each entity taking part in resource allocation, i.e., the RM and
CMs. Furthermore, we need to introduce mechanisms to take into account the
penalties also in the RM partial problem, otherwise it would not consider the
concurrency level and penalty consequences.

Given the reference scenario presented in Section 2 and Figure 1, we propose
a game where, iteratively, the RM assigns VMs to the CMs, while they determine
the concurrency level and the optimal distribution of slots for Map and Reduce
tasks on the acquired resources. If the current assignment is not satisfactory,
each CM can offer to pay a higher price for extra resources, then the RM assigns
VMs to the best bidders.

This mechanism naturally leads to making ri as decision variables of the
RM problem, whilst sMi , sRi , and ψi are decision variables of the CM problems.
Conversely, sMi , sRi , and ψi are parameters for the RM problem, like ri for each
CM problem.

Remarkably, the formulation that is to be laid out in this section belongs
to the category of GNEPs. These are a generalization of classical Nash games
where each player’s strategy set is not fixed, but depends on the strategies
adopted by the opponents. Indeed, the RM affects CMs’ strategy sets by im-
posing an allowance of VMs and, in turn, CMs influence the RM with bids for
resources.

In this section we introduce some more parameters and decision variables,
summarized in Tables 3 and 4. Nonetheless, the parameters and variables al-
ready presented in Tables 1 and 2 are still of interest in the following models.

4.1 Class Managers
Class Managers are responsible for negotiating with the RM the assignment of
a suitable number of VMs to carry out the submitted jobs. This behavior is
modeled with a problem where ri, the number of assigned VMs, are parame-
ters, i.e., no CM can change their value. Therefore, the model features only
constraints (P2c), (P2d), and (P2e), while its objective function takes into ac-
count only the penalty term of (P2a). Conversely, the RM problem might end

12



Table 3: Distributed Model Parameters

ρupi Maximum bid CM i can place to obtain resources
ρ̂ Maximum price the RM can set, maxi ρ

up
i

rupi Optimal assignment of VMs for job class i executing at maximum
concurrency

rlowi Optimal assignment of VMs for job class i executing at minimum
concurrency

pi Penalty paid for each VM not assigned to AM i with respect to the
optimal requirement for the execution at maximum concurrency

ξMi Coefficient for evaluating the optimal number of Map slots to execute
in job class i, given the assigned resources ri

ξRi Coefficient for evaluating the optimal number of Reduce slots to exe-
cute in job class i, given the assigned resources ri

Ki Optimal number of VMs to carry out one job of class i within the
given deadline

Table 4: Distributed Model Decision Variables

ρai Bid placed by CM i to obtain resources
ρ Price set by the RM for one hour of computation on one VM
yi Logical variable, true when CM i offers more than the price set by the

RM for VMs

up not being aware of the penalties applied to job rejections, then we introduce
a new set of variables, ρai . These have the interpretation of bids placed by the
CMs to virtually “buy” resources from the RM, but this aspect will be clarified
in Sections 4.2 and 4.4. For the time being, it is sufficient to know that ρai
cannot be lower than the cost of execution ρ̄, nor greater than some given upper
bounds ρupi .

In this model the decision variables are ψi, ρai , sMi , and sRi ; for each appli-
cation class i ∈ A they represent scalar variables. This means that each CM
has to solve a small continuous convex problem, which can be solved quickly
adopting state-of-the-art solvers. Additionally, the problem becomes so simple
that the solution can be calculated in closed form.

The problem can be formulated as follows:

min
ψi,ρai ,s

M
i ,sRi

αiψi − βi (P4a)

subject to:

ρ̄ ≤ ρai ≤ ρupi , (P4b)

ψlowi ≤ ψi ≤ ψupi , (P4c)
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei ≤ 0, (P4d)

sMi
cMi

+
sRi
cRi
≤ ri, (P4e)

sMi ≥ 0, (P4f)
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sRi ≥ 0, (P4g)
ψi ≥ 0, (P4h)
ρai ≥ 0. (P4i)

Recall that, in this class of problems, ri play the role of parameters, since
they are not controlled by CMs. Thus, constraint (P4e) sets a bound on the
possible values attained by sMi and sRi , which in turn affect ψi. Due to this, the
set of strategies each CM can play depends on the strategy adopted by the RM
and is indirectly influenced by other CMs strategies.

4.2 Resource Manager
The Resource Manager receives from all the CMs requests for a certain number
of VMs. Its role is to allocate the available resources, trying to satisfy all the
requests to guarantee the timely completion of the jobs. Consequently, ri are the
only decision variables. On the other hand, the model requires new variables:
ρ and yi. Notice that, in this case, we have just one instance with variables
subscripted over the whole set A, contrasting to the formulation proposed in
Section 4.1, where the model appears in N instances separately solved by each
CM.

The virtual pricing mechanism introduced to distribute the original problem
is centered on the variables ρ and yi and is inspired by the pricing policy enforced
by Amazon for the allocation of on spot VMs. These are a class of VMs that
can be acquired without previous agreements, contrasting to reserved VMs, but
do not provide any availability guarantees to customers. Indeed, it is possible
to apply for a number of such VMs offering to pay a unit price. Based on the
received offers and the current availability of resources, Amazon sets a single on
spot price. Now, customers who offered enough get their share of on spot VMs
paying only the on spot price, which can be lower than their bids. However,
Amazon may at any moment terminate them raising the on spot price to a value
that is higher than the received bids.

In our setting, the on spot price is ρ and is set by the RM. Every time the
RM solves its problem, it determines the price based on the bids ρai placed by
the CMs. Every CM that offers more than ρ is allowed to receive VMs up to
the optimal upper bound rupi . On the other hand, CMs placing a bid lower than
ρ will receive exactly their minimum resource share, i.e., rlowi . The parameters
obtained in equations (8) provide sensible bounds to ri, avoiding job starvation
and waste of resources at once. Variables yi play their role in determining,
through proper constraints, whether CM i placed a bid greater than ρ or not.
In any case, the VMs unit price is ρ, for both overbidding and underbidding
CMs. In this sense, CMs are not competing for resources tout court, but placing
bids to obtain extra VMs over their minimum guaranteed allowance.

Clearly, to implement this behavior, it is necessary to use as objective func-
tion the total “revenue” and maximize it. However, in this way the model has
no information about penalties. As long as the cluster capacity is not saturated,
this is not much of an issue, since the tendency is to assign as many VMs as
possible up to a value that cannot exceed rupi , the optimal requirement to have
the maximum concurrency level. Two aspects are noteworthy. First, in this
situation rupi are obtained with an exact formula, exploiting the parameter that
define the job profile, and this is the reason why VMs are not wasted for job
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classes that do not need more resources. Otherwise, the property would be re-
covered only with a fine calibration of the parameters. Secondly, in the general
case where the cluster capacity is filled, thus making the CMs actually compete
for resources, a model just considering this simple pricing mechanism would
produce solutions with resources blindly spread among all the CMs, exposing
cluster owners to avoidable penalties.

A more appealing objective function should have a term related to the job
rejection penalties in addition to the one expressing the virtual revenue. Since
the ψi appear in this problem as parameters, such a term needs to depend on
the assigned number of VMs, ri, instead of the level of concurrency. Further,
a similar penalty term should discourage the assignment of less resources than
needed, but at the same time should not foster an uncontrolled growth of ri when
there is no need to add more VMs. With these issues in mind, we introduce a
new set of parameters, pi, which are an equivalent penalty coefficient normalized
on the lacking resources.

The complete model for the RM is the following:

max
r,y,ρ

N∑

i=1

(ρ− ρ̄) ri −
N∑

i=1

pi (rupi − ri) (P5a)

subject to:

N∑

i=1

ri ≤ R, (P5b)

ri ≥ rlowi , ∀i ∈ A, (P5c)

ri ≤
(
rupi − rlowi

)
yi + rlowi , ∀i ∈ A, (P5d)
ρ̄ ≤ ρ ≤ ρ̂, (P5e)

ρ− ρai ≤M (1− yi) , ∀i ∈ A, (P5f)
ρai − ρ ≤Myi, ∀i ∈ A, (P5g)

ri ≥ 0, ∀i ∈ A, (P5h)
yi ∈ {0, 1}, ∀i ∈ A, (P5i)

ρ ≥ 0. (P5j)

In the objective function (P5a), we can see the second term expressing the
penalty contribution. Instead, the first term quantifies the virtual gain obtained
by the RM for the resources it assigns to CMs.

Constraints (P5c) and (P5d) are the lower and upper bounds on the resources
assigned to each CM. In particular, the upper bound is rupi when CM i offers
more than the price set by the RM, otherwise it is rlowi , thus forcing ri =
rlowi . This behavior is obtained through constraints (P5f) and (P5g), which are
examples of the so called “big M” constraints; they make sure that yi has value 1
when CM i offers enough, 0 otherwise. Now, if ρai > ρ, then yi = 1 and the i-th
constraint (P5d) reads ri ≤ rupi . Otherwise yi = 0 and (P5d) becomes ri ≤ rlowi ,
which holds with equality due to (P5c). For constraints (P5f) and (P5g) to
achieve their intended goal, it must hold M ≥ ρupi , ∀i ∈ A. Constraints (P5e)
ensure that the price set by the RM is not less than the unit cost for running
a VM in the cluster. Further, they avoid unrealistic solutions where the RM
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sets a price several orders of magnitude greater than the bids without assigning
any extra resources, basically ignoring penalties. The parameter enforcing this
behavior is ρ̂, defined as ρ̂ , maxi ρ

up
i . We also notice that ρ̂ satisfies the

properties required of M , hence they can be set equal to each other.
As in problem (P5) variables ri are taken as real nonnegative. However, in

this case we are not solving the continuous relaxation of the problem, as variables
yi are binary and they are treated as such. This means that model (P5) is a
mixed integer nonlinear problem. In fact, even if constraint (P2d) is not part
of this problem, the objective function involves the product ρri.

4.3 Analysis
It is possible to further analyze problem (P4), as shown in the following. Since
problem (P4) is convex and Slater constraint qualification holds, the KKT con-
ditions are necessary and sufficient for optimality. The associated Lagrangian
is:

L(ψi, ρ
a
i , s

M
i , s

R
i ) = αiψi − βi + ai (ρ̄− ρai ) + bi (ρai − ρupi )

+ ci
(
ψlowi − ψi

)
+ di (ψi − ψupi )

+ ei

(
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei

)

+ fi

(
sMi
cMi

+
sRi
cRi
− ri

)

− gisMi − kisRi − liψi − oiρai .

(9)

Hence, the KKT conditions are:

∂L
∂ρai

= − ai + bi − oi = 0, (10a)

∂L
∂ψi

= αi − ci + di −
eiAi
sMi ψ

2
i

− eiBi
sRi ψ

2
i

− li = 0, (10b)

∂L
∂sMi

= − eiAi

ψi
(
sMi
)2 +

fi
cMi
− gi = 0, (10c)

∂L
∂sRi

= − eiBi

ψi
(
sRi
)2 +

fi
cRi
− ki = 0, (10d)

with the following complementary slackness conditions:

ai (ρ̄− ρai ) = 0, ai ≥ 0, (11a)
bi (ρai − ρupi ) = 0, bi ≥ 0, (11b)

ci
(
ψlowi − ψi

)
= 0, ci ≥ 0, (11c)

di (ψi − ψupi ) = 0, di ≥ 0, (11d)

ei

(
Ai
sMi ψi

+
Bi
sRi ψi

+ Ei

)
= 0, ei ≥ 0, (11e)
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fi

(
sMi
cMi

+
sRi
cRi
− ri

)
= 0, fi ≥ 0, (11f)

gis
M
i = 0, gi ≥ 0, (11g)

kis
R
i = 0, ki ≥ 0, (11h)

liψi = 0, li ≥ 0, (11i)
oiρ

a
i = 0, oi ≥ 0. (11j)

We proceed similarly to the analysis carried out in Section 3, obtaining
results analogous to those of Propositions 3.2 and 3.3.

Proposition 4.1. The optimal solution to problem (P4) can be computed with
the following formulae:

sMi =
cMi

1 +

√
Bi

Ai

cMi
cRi

ri, (12a)

sRi =
cRi

1 +

√
Ai

Bi

cRi
cMi

ri, (12b)

ψi = −

(√
Ai

cMi
+
√

Bi

cRi

)2

Ei
r−1
i . (12c)

Proof. To begin with, observe that gi = ki = li = oi = 0, since in every feasible
solution all the variables take positive values.

Further, it can be easily shown that ψi = ψlowi if and only if ri ≥ rupi . Indeed,
the sets represented by constraints (P4d) and (P4e) are disjoint if ψi = ψlowi
and ri < rupi , thus the feasible region is empty.

Now, we distinguish the cases ri = rupi and ri < rupi . In the first case, for-
mula (12c) yields ψi = ψlowi due to the definition of rupi , equation (8a). Moreover
formulae (12a) and (12b) give feasible values, hence we have an optimal solution.

In the second case, for our preliminary observation holds ψi > ψlowi , then
from (11c) descends ci = 0. We can then prove that ei > 0, according to (10b),
and fi > 0, due to (10c): this means that constraints (P4d) and (P4e) are active
in every optimal solution. Using equations (10c) and (10d) we get:

sMi = sRi

√
AicMi
BicRi

.

Substituting into (P4d) and (P4e) we obtain formulae (12).

The coefficients multiplying ri or their reciprocal are constants depending
on job profiles, so they can be computed once and for all, reducing the solving
procedure of problem (P4) to an algebraic update of just three closed formulae
per CM. Moreover, notice that the results of Proposition 4.1 are formally the
same obtained in Proposition 3.3.

Notice that Proposition 4.1 provides the only optimal solution in closed
form when ψi ∈

(
ψlowi , ψupi

]
. On the other hand, objective (P4a) does not
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Algorithm 4.1 Best Reply

1: ri ← rlowi , ∀i ∈ A
2: sMi ← sM, low

i , ∀i ∈ A
3: sRi ← sR, lowi , ∀i ∈ A
4: ψi ← ψupi , ∀i ∈ A
5: ρai ← ρ̄, ∀i ∈ A
6: repeat
7: roldi ← ri, ∀i ∈ A
8: RM solves problem (P5)
9: for all i ∈ A do

10: CM i solves problem (P4)
11: if ψi > ψlowi then
12: ρai ← max {ρai , ρ}+ λρupi
13: end if
14: end for
15: ε←∑N

i=1
|ri−roldi |
roldi

16: until ε < ε̄

consider any term pushing towards an efficient allocation of resources, hence
any configuration guaranteeing maximum level of concurrency is equivalently
optimal for problem (P4). Even losing the uniqueness property, we can adopt
the results of Proposition 4.1 also when ψi = ψlowi to determine the most efficient
among optimal solutions at the maximum level of concurrency, recovering the
efficiency property guaranteed by the preliminary, centralized problem (P2).

Problem (P5) does not lend itself to such exact results as the ones presented
in this section, hence we will face it with ordinary mathematical programming
techniques.

4.4 Iterative Approach
According to the considerations presented in Section 4.1, in this game all the
CMs have strategy sets that are functions of the strategy adopted by the RM.
Similarly, the strategy set of the RM depends on the bids, ρai , offered by the
CMs. As previously stated, this makes the game an example of GNEP. In order
to have the system converge to an equilibrium, problems (P4) and (P5) are
solved iteratively until a stopping criterion is fulfilled.

Algorithm 4.1 starts assigning the initial values to all the decision variables.
Then it starts a loop performing the actual iterative procedure to solve the game.
First of all, the current configuration is saved in a set of auxiliary variables, in
order to compare it with the updated solution at the end of each iteration and
check the stopping criterion. Here we propose to stop the computation when
the total relative increment is below a given tolerance. At line 8 the RM solves
its problem, setting new values for ri and making them available to every CM.
In the following nested loop, each CM solves its instance of problem (P4) and,
possibly, places a higher bid for extra resources. Condition ψi > ψlowi at line 11
checks whether CM i is rejecting any jobs: in this case, it places a higher bid
trying to obtain a greater share of resources, so as to reduce the penalty-related
expenditure. Parameter λ is a fraction of the maximum possible offer added to
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either the previous bid or the price set by the RM, hence λ ∈ (0, 1).
Notice that Algorithm 4.1 is meant to be solved in a distributed fashion,

with the loop at line 9 executed in parallel, one iteration per CM. The algorithm
execution requires that the RM sends ri to each CM and the latter sends back
the updated bids ρai . In this way, the RM does not need any sensitive knowledge
on the SLAs.

4.5 Integer Solution Heuristic
We have previously observed that, since the continuous relaxations of the pro-
posed models are considered for performance reasons, we need to enforce the
integrality of variables ri, sMi , and sRi to obtain a solution useful in practice. In
order to fulfill this necessity, we adopt a heuristic approach, which is presented
in this section. The algorithm consists of two main phases: initially, the input
data, i.e., the characterizing parameters for cluster performance and those re-
lated to Quality of Service (QoS) and SLAs, are fed to a continuous formulation;
afterwards, the continuous solution is transformed in an integer one with the
steps outlined in the following. We propose a heuristic that does not depend on
how the first phase is performed, hence this approach applies both to the cen-
tralized and the distributed formulations previously discussed. Algorithm 4.2
shows pseudo-code for the proposed rounding heuristic.

Constraints (P4d) are approximate formulae, hence can be relaxed when
looking for nearly optimal integer solutions. Moreover, the constraint formula-
tion proposed in Section 2 does not provide strong theoretical guarantees that
deadlines are met, even without the latest approximation. Building upon this
observation, in Algorithm 4.2 we propose a viable heuristic to obtain, given
the optimal real solution provided by either problem (P2) or Algorithm 4.1, an
integer solution that is feasible with respect to all constraints but (P4d). Note
that the RM must do so before starting VMs, since it is not possible to launch a
portion of a VM. In the following, we denote with

(
r̂, ψ̂, ŝM , ŝR

)
either the op-

timal solution of the continuous relaxation of our centralized resource allocation
problem (P2), or the game equilibrium obtained through Algorithm 4.1.

We can easily prove that the loop starting at line 3 is enough to find a set
of values of the ri variables satisfying the following constraint:

N∑

i=1

ri ≤ R. (13)

Proposition 4.2. Constraint (13) can be satisfied decrementing, at most, all
the ri once.

Proof. Let
(
r̂, ψ̂, ŝM , ŝR

)
be a continuous optimal solution. Then, suppose to

decrement all the ri once: it follows ri = br̂ic , ∀i ∈ A. Now, br̂ic ≤ r̂i, ∀i ∈ A,
hence:

N∑

i=1

ri ≤
N∑

i=1

r̂i ≤ R.
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Algorithm 4.2 Solution Rounding
1: sort A according to increasing αi
2: ri ← dr̂ie , ∀i ∈ A
3: for all j ∈ A do
4: if

∑N
i=1 ri > R then

5: rj ← rj − 1
6: end if
7: end for
8: sMi ←

⌈
ŝMi
⌉
, ∀i ∈ A

9: sRi ←
⌈
ŝRi
⌉
, ∀i ∈ A

10: for all j ∈ A do
11: while sMj /cMj + sRj /c

R
j > rj do

12: sRj ← sRj − 1

13: if sMj /cMj + sRj /c
R
j > rj then

14: sMj ← sMj − 1
15: end if
16: end while
17: end for

Moreover, the nested loop at line 11 has complexity O (1) in the worst case.
Indeed, we can prove that the number of operations it requires does not depend
on N .

Proposition 4.3. Each of the following constraints:

sMi
cMi

+
sRi
cRi
≤ ri, ∀i ∈ A, (14)

can be satisfied in no more than ωi + 1 iterations, where ωi = min{cMi , cRi }.

Proof. Let
(
r̂, ψ̂, ŝM , ŝR

)
be a continuous optimal solution. Consider i ∈ A.

Since
⌈
ŝMi
⌉
− 1 ≤ ŝMi and

⌈
ŝRi
⌉
− 1 ≤ ŝRi , it holds:

⌈
ŝMi
⌉
− 1

cMi
+

⌈
ŝRi
⌉
− 1

cRi
≤ r̂i.

Now, after ωi + 1 iterations, we obtain:
⌈
ŝMi
⌉
− (ωi + 1)

cMi
+

⌈
ŝRi
⌉
− (ωi + 1)

cRi
< r̂i − 1 ≤ br̂ic .

Hence, using the loop shown in Algorithm 4.2 at line 11, it is possible to
satisfy the i-th constraint (14) with at most ωi + 1 iterations even in the worst
case, when ri = br̂ic.

Given that both the main loops are linear in N , the complexity of Algo-
rithm 4.2 is dominated by the adopted sorting algorithm, i.e., it is O (N logN).
Furthermore, notice that Algorithm 4.2 can be easily parallelized. In the dis-
tributed scenario, from line 8 every CMs can separately round their variables at
the same time.
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5 Results
In this section we present and examine experimental results obtained by ap-
plying the solution methods proposed in Sections 3 and 4. We implemented
and evaluated two different models: problem (P2), named centralized in the
following, and Algorithm 4.1 where problem (P4) is solved using the results of
Proposition 4.1, from now on distributed. Both, after completing, provide their
results as input for Algorithm 4.2.

Since problem (P2) is the natural extension of the model studied and vali-
dated in [13] to a new setting with capacity constraints, the centralized algorithm
is used as base case. Further, building upon the results shown in [21], we assume
the validity of the underlying performance model.

The models have been implemented using the mathematical programming
language AMPL [22] and solved using Knitro 9.0.1 [23]. All the analyses have
been run on an Ubuntu 14.04 VM featuring 14 GB RAM hosted on an Intel
Xeon E5530 2.40 GHz CPU.

5.1 Design of Experiments
The analyses in this section intend to be representative of real Hadoop clusters.
In order to do so, the experiments have been performed considering realistic job
profiles extracted from MapReduce execution logs, as in [24], where the authors
report profiles obtained for batch jobs. The associated deadlines are extracted
from a uniform distribution in the range from 15 to 25 minutes.

After determining meaningful ranges for the parameters, the experiments
have been executed on random instances obtained using uniform distributions,
within the ranges reported in Table 5. Moreover, all the parameters computed
from others are summarized in Table 6. Unless differently specified, all the
problem instances of a given size are solved ten times with a fixed set of seeds for
the pseudo-random number generator. In this way we achieve both repeatability
of the experiments and meaningful, average results. Moreover, the different
models are executed against the same data, making the outcomes comparable.

Parameter ρ̄ takes into account three main contributions: the energy cost
related to the operation of the physical servers hosting the VMs, the overhead
related to server rooms cooling, and the price of physical servers. The unit
energy cost considers European energy prices [25], [26]. Further, the power
consumption is estimated taking into account reference benchmarks for servers
in production environment, precisely SPECpower [27]. With them, the cost of
one hour of computation of a single core, E , is estimated. The cooling overhead
is modeled applying a multiplier, the power usage effectiveness (PUE) [28], to
the unit cost of energy. This coefficient is a metric to quantify the relevance
of costs that are not directly imputable to the IT equipment in a data center,
like lighting, cooling, etc. The price of servers is associated to the modeled
computational units with a straight line depreciation method, dividing prices
of representative servers, as can be found on manufacturers web sites, by the
number of hours in the service life, assumed to be of four years, and the number
of physical cores, obtaining the unit cost S.

After estimating the three mentioned contributes, they are aggregated in ρ̄.
To map virtual CPUs on physical cores, a further reference benchmark, namely
SPECvirt [29], was studied to understand the typical density, d, in produc-
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Table 5: Parameters Uniform Distributions

Parameter Range Units of Measurement

ρupi [5, 20] [AC cents]
Hup
i [5, 20] [-]
cMi [1, 4] [-]
cRi [1, 4] [-]
mi [15000, 30000] [AC cents]
nMi [70, 1120] [-]
nRi [64, 64] [-]

Mmax
i [16, 120] [s]

Rmaxi [15, 75] [s]
Shmax1,i [10, 30] [s]
Shmaxtyp,i [30, 150] [s]
Di [900, 1500] [s]
v [2, 2] [-]
d [3, 5] [-]

PUE [1.2, 2.2] [-]
E [0.06009, 0.06690] [AC cents]
S [2.0615, 2.0615] [AC cents]

Table 6: Derived Parameters

Parameter Range Units of Measurement

H low
i [4, 16] [-]

ψlowi [0.05, 0.2] [-]
ψupi [0.0625, 0.25] [-]
Mavg
i [12.8, 96] [s]

Ravgi [12, 60] [s]
Shavgtyp,i [24, 120] [s]
Ai [656, 107488] [s]
Bi [1854, 11430] [s]
Ci [132, 720] [s]
Ei [−1368,−180] [s]
ρ̄ [0.85344, 1.47246] [AC cents]
αi [300000, 9600000] [AC cents]
βi [60000, 480000] [AC cents]
pi [14.284, 34812] [AC cents]
ξMi [0.19327, 3.53565] [-]
ξRi [0.11609, 3.22693] [-]
Ki [0.86178, 1050.1] [-]
rupi [4.3089, 21002] [-]
rlowi [3.4471, 16802] [-]
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tion clusters. Here we define the density as the virtual to physical core ratio.
Moreover, a reference VM class has been chosen, thus identifying the number of
virtual cores per instance, v. In this paper we considered Amazon EC2 m3.large
instances, general purpose VMs guaranteeing satisfying performance. With all
these data, the formula for ρ̄ reads:

ρ̄ = (PUE · E + S)
v

d
. (15)

Other relevant parameters are those governing the penalties for job rejection,
αi and βi. Running the centralized model (P2) with ψupi = ψlowi , so that
rejection is not possible, one can determine an average job cost. Penalties can
reasonably be a couple of orders of magnitude greater than the job cost, hence
we take mi, the penalty associated to the rejection of one job in class i, as
100 times the average job cost. Now it is possible to set the penalty terms
appearing in the objective functions (P2a) and (P4a) equal to zero at maximum
concurrency level, when no penalties are paid, and to the value computed with
the above mentioned parameters at minimum concurrency. For convenience we
write ψupi and ψlowi in terms of H low

i and Hup
i , thus getting the systems:

{
αi

Hup
i
− βi = 0

αi

Hlow
i

− βi = mi

(
Hup
i −H low

i

) , ∀i ∈ A, (16)

that yield:

αi = miH
up
i H low

i , ∀i ∈ A, (17a)

βi = miH
low
i , ∀i ∈ A. (17b)

Owing to the interpretation of parameters Ki, discussed in Proposition 3.3,
it is easy to obtain the penalty term normalized on lacking resources, pi. Indeed,
it is enough to divide the penalty value per job,mi, by the resources requirement
of each job, Ki. Hence, we get the formulae:

pi =
mi

Ki
, ∀i ∈ A. (18)

In the end, we experimentally set the tolerance on the relative increment
of ri, appearing as stopping criterion in Algorithm 4.1, ε̄ = 3%. Furthermore,
Section 5.4 reports a sensitivity analysis to ε̄. Differently, we set in all the
experiments λ = 0.05 as fraction of the maximum possible offer to add when
raising the bid.

5.2 Scenario-Based Analysis
In this section we discuss some preliminary analyses performed to verify whether
our formulations exhibit behaviors we intuitively expect from the modeled ap-
plications. Analyses have been run with both the previously mentioned solution
approaches, considering 100 and 1,000 CMs.

In order to compare the outcomes of the solution methods, in this section
we do not present results averaged on a number of random instances. Instead,
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Figure 2: Decreasing capacity, 100 CMs

we randomly generated a dataset of size 1,000, then we shrank it as needed for
smaller instances, adapting capacity to the different scale.

In the MapReduce paradigm we have two main dimensions governing perfor-
mance: namely, resource capacity and deadlines. Isolating each of them allows
to understand how the system will react to changes in one single aspect.

5.2.1 Decreasing Capacity

To begin with, we fix the deadlines Di and we vary the cluster capacity R. Now,
starting with excess capacity, we expect to see constant running costs until the
aggregate resources requirement for execution at the maximum concurrency
level and the cluster capacity are comparable. If capacity keeps decreasing, at
first some jobs are rejected, leading to penalties, then it falls below the minimum
aggregate requirement and the problem becomes infeasible.

Notice that in this experiment we initially compute the optimal cluster size
summing up all the rupi and we set Ro =

∑N
i=1 r

up
i . Then we apply our models

to instances with decreasing capacity, starting from R = 1.1Ro. Figures 2 and 3
show slight shifts away from the optimal solution of the centralized problem,
concentrated in proximity of the lowest feasible capacity levels.

5.2.2 Decreasing Deadlines

Alternatively, it is possible to fix the cluster capacity, R, decreasing deadlines
and making them tighter. In this case, parameters Di act in nonlinear con-
straints, so we can predict an overall behavior, but the precise relation governing
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Figure 3: Decreasing capacity, 1000 CMs

costs is less obvious. In the beginning, the reduction of the deadlines leads to
an increase of the running costs, due to the allocation of more VMs to reduce
execution times and meet tighter constraints. Then we expect a phase where
the increment of costs accelerates, as jobs start to be rejected and penalties to
be paid. In the end, the deadlines become so strict in relation to the available
resources to not allow even minimal operation, hence the problem turns out to
be infeasible.

In this experiment, we initially set the starting values for parameters Di

and compute the corresponding optimal capacity, Ro =
∑N
i=1 r

up
i . Then we

set R = 1.1Ro to start with excess capacity and gradually reduce Di by a
percentage. Figures 4 and 5 highlight a great accordance with the expected
behavior.

5.3 Scalability Analysis
After verifying that our models satisfy some basic properties we intuitively ex-
pect, and in line with the results published in [13], we proceed with a scalability
analysis. Our goal is to verify that the proposed approach allows for solving the
joint admission control and capacity allocation problem at runtime, to support
cluster management. Moreover, we want to check that this is feasible even in
realistic configurations with hundreds of different job classes.

We progressively increase the number of CMs from 20 to 500 with step 20,
performing at every step ten runs with different extractions of the randomly gen-
erated parameters, then we compute the average results. Concerning total costs
and penalties, we compare objective function (P2a), obtained with the central-
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Figure 4: Decreasing deadlines, 100 CMs
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Figure 6: Costs, scalability analysis

ized, baseline approach and defined Cc, with the sum of all the objectives (P4a)
and the aggregate cost of energy,

∑N
i=1 ρ̄ri, of the solutions determined with

Algorithm 4.1, dubbed Cd. In this way we obtain from both the alternative so-
lution methods the same information summarizing running costs and penalties.
In Figure 6, we see that both the alternative solution methods, despite a quite
high tolerance, ε̄ = 3%, yield almost equivalent solutions in terms of aggregate
execution costs and penalties.

Concerning solving times, instead, we instrumented our code to measure the
timings associated to the solution algorithms. Further, whilst in the centralized
approach this is enough to obtain relevant execution times, we should consider
that in our testing environment Algorithm 4.1 runs on a single machine as serial
code. In order to have a first approximate estimate of the actual execution times
in a distributed environment, we divided the serially obtained timing by the
number of CMs included in the instance at hand. This is justified as, in every
iteration of Algorithm 4.1, the loop at line 9 would be executed concurrently by
all the CMs at once in a distributed system. Moreover, we take into account
the network-related delays by adding a term proportional to the number of
iterations needed to reach convergence. Network time has been obtained by
writing a micro-benchmark that sends through sockets two floats, in our system
the parameters ρ and ri coming from the RM, or ρai coming from the CMs. The
benchmark was run 100 times in a 100 Mb/s network. The aggregate results
are reported in Figure 7, where it is evident that the distributed approach we
propose scales better than the centralized one.
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Figure 7: Solving time, scalability analysis

5.4 Stopping Criterion Tolerance Analysis
In this subsection we discuss how much the proposed solution method is sensitive
to changes of the stopping criterion tolerance, ε̄, in Algorithm 4.1. In order to
do so, we repeated the experimental campaign described in Section 5.3 four
times: first of all we consider ε̄ = 3% as for the already seen results, then we
run the distributed algorithm with ε̄ = 1%, ε̄ = 5%, and ε̄ = 10%.

Figure 8 reports the relative error on average total costs and penalties com-
pared to the centralized solution, i.e., the following quantity:

χ =
Cd − Cc
Cc , (19)

where Cd is the average total cost obtained with the distributed approach, while
Cc is the average total cost yielded by the centralized method. We clearly see
that all the different tolerance values overlap and relative errors do not exceed
2%. Hence, the proposed distributed approach has a very low sensitivity to the
chosen stopping criterion tolerance.

6 Related Work
Nowadays, Hadoop is widely adopted in the ICT industry, often supporting
core business activities. Hence, it is of paramount importance for users running
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MapReduce applications to know in advance the job completion time. Tech-
nical literature focuses on two main points of interest: on one hand, there are
various works addressing methods for the estimation of job completion times
and other performance metrics; on the other hand, several publications present
novel approaches to resource allocation and scheduling.

By evaluating a model of the Hadoop environment, it is possible to obtain
an estimation of the time required for job completion. Two main approaches
have been explored: simulation-based models implement the single constituents
of Hadoop and of the job, replaying in a simulated environment the steps and
delays of the real system; analytical models, on the other hand, define a mathe-
matical representation of those constituents, avoiding the costs of running multi-
ple simulations. Both approaches make use of information such as input dataset
size, cluster resources, and Hadoop specific parameters. The computational ef-
fort and the time spent in running simulation-based models make them hardly
fit for the purposes of runtime cluster management: thus, we hereby consider
only analytical models, according to the focus of our paper.

The authors of [5] propose the Automatic Resource Inference and Allocation
(ARIA) framework for estimating the makespan of jobs in MapReduce clusters.
This approach relies on information extracted from the logs of previous execu-
tions of similar jobs. Adopting scheduling techniques, the authors prove lower
and upper bounds on makespans. From these results, they derive formulae for
performance prediction. They obtain both a conservative estimate, suitable
for hard deadlines, and an alternative that does not offer guarantees of meet-
ing deadlines, but boasts a relative error below 10% in the validation against
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measured timings.
The same research group went on in defining a performance model for

Hadoop clusters [30]. At first they classify the job data processing phases
into two categories, dividing common procedures carried out by the Hadoop
framework from user-supplied code in Map and Reduce functions. Both are
profiled, respectively with micro-benchmarks and extracting information from
past executions logs, thus allowing for the estimation of job execution time when
dealing with input of different sizes. In comparison to the measured values on
a 66-node Hadoop cluster, the relative error on the predicted completion times
ranges between 10% and 17%.

A more detailed model was developed in [31]. The CPU, network, and I/O
cost is computed for each MapReduce phase as a function of different parameters
specific of both the phase and the input data. In this technical report, neither
validation analyses nor tests are reported. Moreover, none of the costs takes
into account resource contention.

The model presented in [32] considers the execution time of each step in
the Hadoop framework, modeling both computation and resource contention.
Although this analytical model does not perform very well in reporting the real
job execution time, the trend obtained when increasing the number of Map and
Reduce tasks is quite reliable and can help in adjusting the number of tasks
towards an optimal value.

Another performance model estimating the execution time by considering the
single costs of the various phases of a MapReduce job is described in [33]. In
this work, the authors go down to the very low level elements that determine the
cost of single job phases, writing a 37-parameter model that provides execution
times within 10% of those measured in a real cluster. Even with such an accurate
model, the validation considers just single job executions.

In [34], the authors apply linear regression to several executions in real clus-
ters, both physical and Cloud-based. In this study, the execution time of a job
is a function of the input size and number of worker nodes. The experimental
results on the physical cluster report a maximum error of 14%, while on the
Cloud-based one the maximum error is 35%.

Vianna et al. [35] combine a precedence tree, which captures the precedence
constraints among the different tasks of the same job, and a closed queueing
network (QN), to reflect resource contention within the system. Solving this
model, they obtain the final average job response time together with other per-
formance metrics. The proposed method is validated through QN simulations
and runs on an actual cluster, obtaining a deviation from real setup of less than
15%, but without considering multiple concurrent jobs.

Another approach is provided in [36], where the authors propose a perfor-
mance evaluation method for Mean Value Analysis to solve a closed QN model,
describing resource contention among tasks. The experimental results show
that the increase in the number of slots in a MapReduce environment brings
benefit until the resource contention becomes relevant and the tasks execution
times start to increase as well. However, the model does not seem to adequately
capture this behavior as the number of slots increases.

The models presented before may possibly be adopted for resource alloca-
tion and admission control purposes, for instance exploiting game-theoretic or
optimization techniques. However, to the best of our knowledge, in literature
there exist only a few examples of papers focusing on resource allocation, even
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less if we consider distributed approaches. In the following, we show some works
that inquiry resource management and scheduling issues.

In [37], the authors propose an optimized approach to sharing clusters among
MapReduce and Cloud applications. Relying on a Nash bargaining game, the
authors develop modules for fair resource allocation and automatic VM migra-
tion, thus increasing resource utility and guaranteeing performance. They con-
duct validation on an 8-node server cluster, comparing the traditional method
and the proposed hybrid environment, which outperforms the former in all the
presented experiments.

Song et al. [38] put their attention on the scheduling of MapReduce jobs. In
order to solve some issues of the standard schedulers supplied with Hadoop, the
proposal is a novel approach that splits job scheduling and task scheduling. Both
tasks are addressed with game-theoretic techniques. The proposed approach is
validated through simulations, showing an improvement in both phases with
respect to the FIFO scheduler.

Sandhom and Lai [39] address MapReduce optimization relying on a strong
theoretical and statistical background. The authors highlight how allocating re-
sources fairly can lead to decay in performance and efficiency: according to their
proposal, users receive a budget and the system allocates resources according to
the relevance of each users’ current spending rate with respect to total demand,
updating the shares in real time. The approach is validated with experiments
on a real cluster, showing improvements upon a basic, fair share strategy.

Contrasting to the presented literature, our paper couples performance pre-
diction and resource allocation, thus building a theoretical framework capable
of managing cluster resources cost-effectively, while also guaranteeing, with a
certain confidence, that SLAs are met.

7 Conclusions
In this paper we investigated the problem of resource allocation of MapReduce
applications running on Hadoop clusters. In particular, we provided a scalable
distributed approach for solving the joint admission control and capacity allo-
cation problem based on a performance model available in technical literature.

Building upon the outcomes of this work, it is possible to investigate further
open issues and relevant research questions. A project that is attracting increas-
ing attention in the industry is Apache Tez [40]. It can be seen as the natural
evolution of Hadoop, where workflows are not fixed anymore: the framework
abstracts the dependency relationships among input, output, and intermediate
data with Directed Acyclic Graphs (DAGs). An interesting development of this
work is the extension of the model to consider the mechanisms governing Apache
Tez, hence adapting our joint admission control and capacity allocation problem
to the execution of complex DAGs.

In the end, we should be aware that the approximate formulae we use to es-
timate performance might incur in large errors due to the inherent difficulty and
unpredictability of application performance. A system for reliable performance
prediction can greatly benefit from the coupling with a local search method
based on Petri Nets simulations. This technique allows to obtain very accu-
rate predictions by simulating the whole Hadoop system, clearly at the price
of longer execution times, hence making this approach more suitable for design
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time considerations. In this vision, our models would provide a relevant initial
guess for an iterative procedure relying on this more precise technique, in order
to find out the optimal configuration or, conversely, certify that an application
design will respect the constraints imposed on its execution due to business
considerations.
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