
Extending Message Passing Interface Windows to Storage

Sergio Rivas-Gomez, Stefano Markidis, Ivy Bo Peng,
Erwin Laure

Department of Computational Science and Technology
KTH Royal Institute of Technology

Stockholm, Sweden
{sergiorg, markidis, bopeng, erwinl}@kth.se

Gokcen Kestor, Roberto Gioiosa

Computational Science and Mathematics Division
Pacific Northwest National Laboratory

Washington, USA
{gokcen.kestor, roberto.gioiosa}@pnnl.gov

I. INTRODUCTION

As high-performance computing systems grow in
size and complexity, the amount of data consumed
and generated dramatically increases as well. With
the first wave of systems breaking the ExaFLOP
barrier expected to appear during the 2020-decade
timeframe, it is likely that the next Exascale
milestone will be Exabyte (i.e., billions of Gigabytes
per second produced by a large magnitude of
calculations). Even assuming a constant amount of
data produced per thread, the number of concurrent
threads conducting I/O operations at Exascale will
be much larger than today.

In this regard, the trend for large-scale computer
design is diverging from the traditional compute-
only node approach, that uses a separate parallel
storage system, to hybrid solutions where data is
moved next to the computation. For instance,
Summit, the next Supercomputer from Oak Ridge
National Laboratory, will combine DRAM with
800GB of non-volatile RAM (NVRAM) per node [1].

Despite the opportunity that these changes may
bring, handling data efficiently and transparently
while maintaining the current programming models
is difficult to accomplish. Nonetheless, these
programming models need to evolve to incorporate
the upcoming changes in the memory / storage
hierarchy [2]. While traditional I/O methods like MPI
IO can be used to address storage, we believe that a
tighter integration in the memory management of

the application will likely provide more flexibility
and performance advantages.

In this work, we extend the MPI one-sided
communication model to support window
allocations in storage and together with traditional
memory-based allocations. Our objective is to define
a seamless extension to MPI that could provide
benefits for current and future storage technologies
without altering the MPI standard, allowing to target
either files (i.e., for local and remote storage through
a parallel file system) or alternatively address block
devices directly (i.e., as in DRAM).

From a programmer standpoint, applications
benefit from this feature transparently without
major modifications. Hence, our approach can be
applied to novel use-cases, for instance:

• Transparent persistence - Exposing part of
the storage for one-sided communications
imply that changes are transparently
synchronized in storage, allowing for tight
coupling scenarios.

• Fault tolerance - Having the exposed
windows synchronized to storage enables
implicit resilience. If a process / node fails, it
is theoretically as simple as mapping once
again the part of the storage missing.

• Big Data applications - Data analytics require
large input data sets that produce large
amounts of output data. Exposing part of the
storage in a one-sided model can be beneficial
and simplify cooperation between processes.

Abstract: This work presents an extension to MPI supporting the one-sided communication model and window

allocations in storage. Our design transparently integrates with the current MPI implementations, enabling applications

to target MPI windows in storage, memory or both simultaneously, without major modifications. Initial performance

results demonstrate that the presented MPI window extension could potentially be helpful for a wide-range of use-cases

and with low-overhead.

Keywords: MPI; one-sided communication; storage; parallel computing

Initial performance experiments reveal that the
potential of having storage exposed as part of the
global address space is beneficial. With
optimizations, only a 10% performance degradation
is ideally observed when running the STREAM
benchmark using 1000 million elements in local
storage mode compared to the traditional memory-
based approach.

This paper is organized as follows. Section II
describes the one-sided communication model of
MPI, together with how the MPI window extension
has been designed and integrated following features
of the MPI standard. Section III presents
performance results mostly based on a modified
version of the STREAM library. Section IV provides
information on related work. Lastly, Section V
summarizes our conclusions.

II. METHODOLOGY

MPI is the de-facto standard for programming
large-scale distributed-memory systems. Since its
inception, MPI has provided high performance,
efficiency and portability on massively parallel
systems. Together with the traditional message
passing model of MPI, MPI-2 additionally included
remote memory operations [3]. These operations are
meant to provide access to the local memory of other
processes, a feature known as the one-sided
communication model and that differs from the
traditional two-sided counterpart (i.e., of send plus
receive operations) by not requiring cooperation
between each side of the communication.

Following the one-sided communication model,
each process exposes part of its local memory
through the concept of an MPI “window”. The size of
each window can differ considerably among
processes, and, as a matter of fact, some may not
even share memory if desired. Traditionally, the
purpose of MPI windows is to allocate or share part
of the processes memory space. However, as high-
performance computing systems grow in size and
scientific problems become larger, the amount of
data handled per application might constrain the
possibilities of this model. Furthermore, some of this
data may be necessary to be later saved to storage for
different purposes, requiring an additional step.

In this section, we present an extension to storage
for the MPI one-sided communication model.
Processes can, through their window, expose part of
their memory, local / remote storage, or both
simultaneously. The extension does not require any
alteration to the MPI standard and transparently

integrates with the current interface specification,
enabling existing applications to take advantage of
this feature without major modifications.

Compared to POSIX or efficient parallel I/O
alternatives such as MPI IO, the approach represents
a tighter integration in the memory management of
the application and seamlessly supports addressing
files and block devices indistinctively (e.g., NVRAM).
Moreover, its versatility provides automatic caching
advantages and allows for implicit synchronous and
asynchronous storage, instead of the traditional
explicit I/O model through read / write operations.

A. Extending the MPI window concept to storage

Our design integrates with MPI without requiring
an additional set of operations to support it. This is
possible thanks to the versatility of the interface,
taking into special consideration the following three
aspects:

• Window allocation - Allocating a window in
MPI can be manually or through the MPI
implementation. The former has the benefit of
exposing an already existing memory
allocation to other processes; while the latter
creates a new allocation that is handled by the
MPI implementation. We concentrate on this
alternative.

• Performance hints - This concept of MPI
represents a key-value container that allows
to alter an MPI implementation (e.g., file
stripping size, in MPI IO). The hints are
ignored if not supported.

6 - Window

object with

attribute

4 - Create

window

2 - Create
window with

MPI_Info

5 - Window

object

1 - Define

MPI_Info

3 - Map

storage

MPI

Implementation

MPI Extension

Application

OS

Figure 1. Flow diagram of the allocation of an MPI
window in storage.

• Attribute caching - MPI provides this feature
for library writers. Its purpose is to allow
caching of special key-value attributes within
certain objects, such as communicators or, in
our case, windows.

Combining these three concepts, the proposed
MPI window extension has enough flexibility to
transparently integrate with any MPI
implementation. Our MPI window extension resides
between the application and the underlying MPI
implementation, intercepting the window allocation
calls for further consideration while still allowing us
to maintain the original application logic unchanged.

The hints provided during the allocation
determine the type of allocation request. From a
programmer standpoint, the application still
receives a pointer to a recently allocated memory,
regardless the type. However, in the storage-based,
the difference is that now the memory space is
mapped to storage through the page cache of the
operating system and further changes will be
transparently synchronized.

Figure 1 depicts an example flow diagram
representing a window allocation in storage by a
certain application process. The call from this
process is intercepted and analyzed by our MPI
extension to understand if the requested allocation is
based on memory or storage. In the former case, the
extension will directly rely on the underlying MPI

implementation. In the latter case, as shown in
Figure 1, a mapping in storage is created through the
OS and attached to the window. Regardless of the
allocation type, an extra attribute is always cached
inside the window object. This is an important aspect
of window allocation: the cached attribute is
necessary to understand how to deallocate the space
conveniently.

The described approach only requires minor
changes in the application source code. All the MPI
one-sided operations work as expected with either
memory, storage or hybrid allocations, and the
modified applications will remain correct against
MPI implementations that do not support the feature
(i.e., the allocation is performed in memory).

III. EXPERIMENTAL RESULTS

In order to understand the potential performance
constraints that the storage allocations introduce
into the MPI one-sided communication model, we
have conducted our experiments using a modified
version of the STREAM benchmark [4]. This
benchmark is well- known for measuring memory
bandwidth (in MB/s) through the execution of four
simple vector kernels: copy, scale, add and triad.

In our case, our plan is to analyze the bandwidth
produced through a modified MPI version of the
STREAM benchmark that uses one-sided allocations,
both in memory and in local storage (with files). Our

Figure 2. Bandwidth for the MPI one-sided allocations in RAM (dark gray bars), Storage (ligth blue bars) and
Storage optimized (orange bars), against a modified version of the STREAM benchmark running on “Blackdog”.

The x-axis represents the problem size in million of elements per array, while the y-axis represents the bandwidth.

10 50 100 200 300 400 500 600 700 800 900 1000

RAM 9275.1 9233.7 9257.3 9261.8 9195.1 9202.1 9206.6 9283.4 9191.2 9095.1 9125.8 9239.0

Storage 9106.4 9105.2 9128.8 9110.6 9041.9 8416.5 7441.0 2758.7 1447.1 890.8 748.7 679.8

Storage (opt.) 9126.9 9103.5 9108.8 9087.4 9058.8 8366.9 8357.7 8277.7 8353.2 8300.3 8104.4 8356.4

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

B
an

d
w

id
th

 (
M

B
/s

)

Problem Size (million elements)

aim is to evaluate the performance in terms of local
storage bandwidth against traditional DRAM
allocations. Additionally, we compare execution
times with explicit I/O through POSIX-like
functionality of MPI IO.

All the performance tests have been conducted
with the swap partition disabled in a local machine
available at the Department of Computational
Science and Technology at KTH Royal Institute of
Technology (Table I). The window mapping in
storage has also been defined making sure that none
of the pages are copied to / from the swap partition,
if any. Finally, the STREAM benchmark has been
executed multiple times during different days and
timeframes, and on each time several runs have been
performed.

TABLE I. SPECIFICATIONS OF LOCAL MACHINE “BLACKDOG”

Component Description

Processor
2  4 core Xeon E5-2609v2 @ 2.5GHz (10MB
L3)

Memory 8  8GB DDR3 + 4  4GB DDR3 (Total: 72GB)

Storage
2  WDC WD4000F9YZ-09N20L0 4TB (non-
RAID)

Software
Ubuntu Server 16.04 / gcc v5.4.0 / MPICH
v3.2

A. Evaluating the performance of local storage

The first series of performance tests have the
purpose of comparing the modified STREAM
benchmark using local storage with the bandwidth of
the original source code using memory allocations.
All the operations are performed through local files
and do not involve network, which will give us an
idea of how storage allocations could affect a given
node.

Figure 2 depicts the average of the performance
results obtained, including the standard deviation.
As expected, the bandwidth of the modified STREAM
benchmark using one-sided allocation in DRAM
(label “RAM”) is equivalent to the original STREAM
implementation. The version based on storage (label
“Storage”) is also promising, but the results show
that it begins to perform worse after around 500
million elements per array. We noted that part of the
reason for this effect is the flushing policy of the OS,
which blocks further IO requests when the amount
of data that must be written to the storage layer is
large. Thereafter, when a certain threshold is met,
the application is allowed to proceed.

In the Linux Kernel, this behaviour can be
configured through the virtual memory vm settings.
By default, our installation allowed up to a 20% of

the memory with dirty pages, and a 10% of memory
threshold to begin flushing to disk (i.e., by the
pdflush process, originally set to wake up every 15
seconds). If at some point the 20% limit is reached,
the application is blocked and no IO operation is
further allowed, decreasing the performance.
Therefore and as can be observed in Figure 2 with
label “Storage (opt.)”, fine-tuning these settings
dramatically increases the performance and
provides bandwidth values close to DRAM-based
allocations.

Nevertheless, it is important to note that the
application is still bounded by the storage bandwidth
at some point. Finding a good balance of the flushing
policy settings and overlapping as much
computations as possible will help the OS to continue
flushing the modified pages asynchronously.
However, if we often require synchronization points
with the storage layer, the performance will
considerably decrease.

B. Evaluating the performance of explicit IO
operations

The second series of performance tests have the
purpose of comparing execution times with explicit
I/O through POSIX-like operations of MPI IO. The ST
REAM benchmark has been adapted to compute each
kernel in blocks of 1 million of elements instead,
meaning that the code will read a block from storage,
operate with it and store back the result, in steps of
1 million elements per kernel. Non-blocking
operations have been used in some of the read
requests of the MPI IO version, while in the MPI
extension-based, a synchronization point has been
defined after each block. This will inform the OS to
asynchronously flush the changes to storage (as in
MPI IO, for fair comparison). The tests have been
conducted with the optimal vm settings of the
previous subsection, and the execution time
measured also includes the time to flush the last dirty
pages to storage, useful to determine how caching
affects the obtained results. This is relevant to
consider, as the performance will always be limited
at some point by the bandwidth of the storage layer,
for instance during window deallocation, when
exceeding the amount of DRAM available or when no
more computations can be overlapped.

Figure 3 reflects the speedup of the average
execution time obtained with the block-based
STREAM benchmark. Despite some of the write
operations being also cached by the OS in the MPI IO
version, the results show that our solution provides
performance benefits compared to using explicit I/O.

The execution time is also more reasonable and
stable with respect to MPI IO, hence the disruptive
speedup variations observed.

The figure additionally depicts the speedup
forcing the data to be synchronously flushed to
storage after each block, with the purpose of
understanding the cache effects to / from storage on
both versions. Even though the performance in this
case is mainly bounded by the bandwidth of the
underlying storage layer, the proposed MPI
extension shows performance benefits when
compared with the MPI IO version, thanks to
avoiding I/O requests (e.g., the output of each kernel
is transparently hold within the memory mapping,
even if the data is forced to be synchronized with
storage).

C. Additional performance considerations

Despite the bandwidth and access latency
differences of the I/O subsystem, we have
demonstrated that overlapping computations with
storage operations substantially hides the existing
constraints of this subsystem. This fact is mainly
possible thanks to the page cache of the OS, which
allows to temporary hold dirty pages mapped to
storage. Hence, the memory acts as another level in
the cache hierarchy: in the same way that
programmers do not handle data movement
between the CPU cache and memory, our approach
releases handling data movement to disk.

The importance of fine-tuning the virtual memory
settings of the OS is consequently critical in order to
achieve high-performance, as already discussed.
These settings determine the interval and retention
period of the dirty pages stored within the page
cache of the OS, which means that increasing the
amount of active dirty pages in memory allows to
compensate for differences in performance.

We also note that going beyond the RAM limit
introduces performance constraints, depending on
the application. Targeting more memory than
physically available might bound the application
performance to the bandwidth of the I/O subsystem.
This means that, while smaller tests fit into memory
and the performance remains high, increasing the
problem size to limits close to the dirty ratio (i.e., the
limit to flush dirty pages to storage) begins to
produce performance degradations. This is
something we already observed on STREAM due to
the inherently sequential writes of the benchmark,
that do not allow to reuse previously stored data
inside the page cache of the OS and continuously
accumulates write requests.

IV. RELATED WORK

Despite being a relatively simple approach, to the
best of our knowledge there has not been any
published work that directly aims to target
transparent one-sided communications over storage
without involving changes in the MPI standard.

Bo Peng et al. [5], for instance, defined an effective
way to tackle data-intensive applications through a
streaming model that uses MPI IO collective
operations on dedicated IO nodes. We expect our
MPI window extension to provide benefits for
similar work, like asynchronous remote storage
operations (instead of explicit IO operations).

Other authors have also considered storage as a
solution for fault tolerance. The work by Abeyratne
et al. [6] is a good example, where a Checkpoint
Location Controller (CLC) is defined to offer reliable
checkpointing by deciding whether to target
memory or per-node storage. Our approach could
extend this work by allowing implicit neighbor
checkpointing.

Lastly, Dorożyński et al. [7] share some of the
concepts presented in this paper. While their aim
was mainly to provide checkpointing of parallel
applications using non-volatile RAM (NVRAM), our
purpose is to demonstrate the possibilities of
providing storage support within one-sided
communications in MPI, regardless of the use-case.

V. CONCLUSION

In this paper, we have presented a seamless
extension to the MPI one-sided communication
model that enables the allocation of MPI windows on

Figure 3. Speedup of the MPI one-sided allocation in
Storage versus the equivalent MPI IO implementation

of the STREAM benchmark running on “Blackdog”. The
x-axis shows problem size in million of elements per

array, while the y-axis represents the speedup.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

S
p

ee
d

u
p

Problem Size (million elements)

Storage vs MPI IO (async) Storage vs MPI IO (sync)

storage. The described design provides considerable
benefits to applications and without requiring major
modifications to the existing logic.

Performance results conducted in a local machine
through a modified version of the STREAM
benchmark has proved the MPI window extension to
be clearly beneficial, even when compared with MPI
IO. A fine-tune of the flushing policy settings of the
operating system allows low-overhead while still
committing changes to storage transparently. From
these results, we concluded necessary a
comprehensive overlap of the computations in order
to achieve high performance.

Lastly, our plan is to analyze the consequences of
using remote parallel file systems and direct device
mapping in window allocations, as well as to
understand the implications of the proposed MPI
window extension on real-world HPC applications.
The outcome of this work is expected to provide
further insights about the overall benefits of the
approach.

ACKNOWLEDGMENT

This work was funded by the European
Commission through the SAGE project (Grant
agreement no. 671500 / More information at
http://www.sagestorage.eu).

REFERENCES
[1] "Summit: The Next Peak in HPC," Oak Ridge

National Laboratory. [Online]. Available:
https://www.olcf.ornl.gov/summit/.

[2] J. Dongarra, “The international exascale
software project roadmap,” International
Journal of High Performance Computing
Applications, pp. 1094342010391989, 2011.

[3] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk,
Using advanced MPI: Modern features of the
message-passing interface. MIT Press, 2014.

[4] J. D McCalpin, "Sustainable memory bandwidth
in current high performance computers," Silicon
Graphics Inc, 1995.

[5] I. Bo Peng, S. Markidis, E. Laure, D. Holmes, and
M. Bull, “A data streaming model in MPI,”
Proceedings of the 3rd Workshop on Exascale
MPI, p. 2, ACM, November 2015.

[6] N. Abeyratne, H. M. Chen, B. Oh, R. Dreslinski, C.
Chakrabarti, and T. Mudge, “Checkpointing
Exascale Memory Systems with Existing
Memory Technologies,” Proceedings of the
Second International Symposium on Memory
Systems, pp. 18-29, ACM, October 2016.

[7] P. Dorożyński, P. Czarnul, A. Malinowski, K. Czuryło,
Ł. Dorau, M. Maciejewski, and P. Skowron,
“Checkpointing of Parallel MPI Applications using
MPI One-sided API with Support for Byte-
addressable Non-volatile RAM,” Procedia Computer
Science, vol. 80, pp. 30–40, 2016

