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I. INTRODUCTION 

As high-performance computing systems grow in 
size and complexity, the amount of data consumed 
and generated dramatically increases as well. With 
the first wave of systems breaking the ExaFLOP 
barrier expected to appear during the 2020-decade 
timeframe, it is likely that the next Exascale 
milestone will be Exabyte (i.e., billions of Gigabytes 
per second produced by a large magnitude of 
calculations). Even assuming a constant amount of 
data produced per thread, the number of concurrent 
threads conducting I/O operations at Exascale will 
be much larger than today. 

In this regard, the trend for large-scale computer 
design is diverging from the traditional compute-
only node approach, that uses a separate parallel 
storage system, to hybrid solutions where data is 
moved next to the computation. For instance, 
Summit, the next Supercomputer from Oak Ridge 
National Laboratory, will combine DRAM with 
800GB of non-volatile RAM (NVRAM) per node [1]. 

Despite the opportunity that these changes may 
bring, handling data efficiently and transparently 
while maintaining the current programming models 
is difficult to accomplish. Nonetheless, these 
programming models need to evolve to incorporate 
the upcoming changes in the memory / storage 
hierarchy [2]. While traditional I/O methods like MPI 
IO can be used to address storage, we believe that a 
tighter integration in the memory management of 

the application will likely provide more flexibility 
and performance advantages. 

In this work, we extend the MPI one-sided 
communication model to support window 
allocations in storage and together with traditional 
memory-based allocations. Our objective is to define 
a seamless extension to MPI that could provide 
benefits for current and future storage technologies 
without altering the MPI standard, allowing to target 
either files (i.e., for local and remote storage through 
a parallel file system) or alternatively address block 
devices directly (i.e., as in DRAM). 

From a programmer standpoint, applications 
benefit from this feature transparently without 
major modifications. Hence, our approach can be 
applied to novel use-cases, for instance: 

• Transparent persistence - Exposing part of 
the storage for one-sided communications 
imply that changes are transparently 
synchronized in storage, allowing for tight 
coupling scenarios. 

• Fault tolerance - Having the exposed 
windows synchronized to storage enables 
implicit resilience. If a process / node fails, it 
is theoretically as simple as mapping once 
again the part of the storage missing. 

• Big Data applications - Data analytics require 
large input data sets that produce large 
amounts of output data. Exposing part of the 
storage in a one-sided model can be beneficial 
and simplify cooperation between processes. 
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Initial performance experiments reveal that the 
potential of having storage exposed as part of the 
global address space is beneficial. With 
optimizations, only a 10% performance degradation 
is ideally observed when running the STREAM 
benchmark using 1000 million elements in local 
storage mode compared to the traditional memory-
based approach. 

This paper is organized as follows. Section II 
describes the one-sided communication model of 
MPI, together with how the MPI window extension 
has been designed and integrated following features 
of the MPI standard. Section III presents 
performance results mostly based on a modified 
version of the STREAM library. Section IV provides 
information on related work. Lastly, Section V 
summarizes our conclusions. 

II. METHODOLOGY 

MPI is the de-facto standard for programming 
large-scale distributed-memory systems. Since its 
inception, MPI has provided high performance, 
efficiency and portability on massively parallel 
systems. Together with the traditional message 
passing model of MPI, MPI-2 additionally included 
remote memory operations [3]. These operations are 
meant to provide access to the local memory of other 
processes, a feature known as the one-sided 
communication model and that differs from the 
traditional two-sided counterpart (i.e., of send plus 
receive operations) by not requiring cooperation 
between each side of the communication. 

Following the one-sided communication model, 
each process exposes part of its local memory 
through the concept of an MPI “window”. The size of 
each window can differ considerably among 
processes, and, as a matter of fact, some may not 
even share memory if desired. Traditionally, the 
purpose of MPI windows is to allocate or share part 
of the processes memory space. However, as high-
performance computing systems grow in size and 
scientific problems become larger, the amount of 
data handled per application might constrain the 
possibilities of this model. Furthermore, some of this 
data may be necessary to be later saved to storage for 
different purposes, requiring an additional step. 

In this section, we present an extension to storage 
for the MPI one-sided communication model. 
Processes can, through their window, expose part of 
their memory, local / remote storage, or both 
simultaneously. The extension does not require any 
alteration to the MPI standard and transparently 

integrates with the current interface specification, 
enabling existing applications to take advantage of 
this feature without major modifications. 

Compared to POSIX or efficient parallel I/O 
alternatives such as MPI IO, the approach represents 
a tighter integration in the memory management of 
the application and seamlessly supports addressing 
files and block devices indistinctively (e.g., NVRAM). 
Moreover, its versatility provides automatic caching 
advantages and allows for implicit synchronous and 
asynchronous storage, instead of the traditional 
explicit I/O model through read / write operations. 

A. Extending the MPI window concept to storage 

Our design integrates with MPI without requiring 
an additional set of operations to support it. This is 
possible thanks to the versatility of the interface, 
taking into special consideration the following three 
aspects: 

• Window allocation - Allocating a window in 
MPI can be manually or through the MPI 
implementation. The former has the benefit of 
exposing an already existing memory 
allocation to other processes; while the latter 
creates a new allocation that is handled by the 
MPI implementation. We concentrate on this 
alternative. 

• Performance hints - This concept of MPI 
represents a key-value container that allows 
to alter an MPI implementation (e.g., file 
stripping size, in MPI IO). The hints are 
ignored if not supported. 
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Figure 1. Flow diagram of the allocation of an MPI 
window in storage. 



• Attribute caching - MPI provides this feature 
for library writers. Its purpose is to allow 
caching of special key-value attributes within 
certain objects, such as communicators or, in 
our case, windows. 

Combining these three concepts, the proposed 
MPI window extension has enough flexibility to 
transparently integrate with any MPI 
implementation. Our MPI window extension resides 
between the application and the underlying MPI 
implementation, intercepting the window allocation 
calls for further consideration while still allowing us 
to maintain the original application logic unchanged. 

The hints provided during the allocation 
determine the type of allocation request. From a 
programmer standpoint, the application still 
receives a pointer to a recently allocated memory, 
regardless the type. However, in the storage-based, 
the difference is that now the memory space is 
mapped to storage through the page cache of the 
operating system and further changes will be 
transparently synchronized. 

Figure 1 depicts an example flow diagram 
representing a window allocation in storage by a 
certain application process. The call from this 
process is intercepted and analyzed by our MPI 
extension to understand if the requested allocation is 
based on memory or storage. In the former case, the 
extension will directly rely on the underlying MPI 

implementation. In the latter case, as shown in 
Figure 1, a mapping in storage is created through the 
OS and attached to the window. Regardless of the 
allocation type, an extra attribute is always cached 
inside the window object. This is an important aspect 
of window allocation: the cached attribute is 
necessary to understand how to deallocate the space 
conveniently. 

The described approach only requires minor 
changes in the application source code. All the MPI 
one-sided operations work as expected with either 
memory, storage or hybrid allocations, and the 
modified applications will remain correct against 
MPI implementations that do not support the feature 
(i.e., the allocation is performed in memory). 

III. EXPERIMENTAL RESULTS 

In order to understand the potential performance 
constraints that the storage allocations introduce 
into the MPI one-sided communication model, we 
have conducted our experiments using a modified 
version of the STREAM benchmark [4]. This 
benchmark is well- known for measuring memory 
bandwidth (in MB/s) through the execution of four 
simple vector kernels: copy, scale, add and triad. 

In our case, our plan is to analyze the bandwidth 
produced through a modified MPI version of the 
STREAM benchmark that uses one-sided allocations, 
both in memory and in local storage (with files). Our 

Figure 2. Bandwidth for the MPI one-sided allocations in RAM (dark gray bars), Storage (ligth blue bars) and 
Storage optimized (orange bars), against a modified version of the STREAM benchmark running on “Blackdog”. 

The x-axis represents the problem size in million of elements per array, while the y-axis represents the bandwidth.  
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aim is to evaluate the performance in terms of local 
storage bandwidth against traditional DRAM 
allocations. Additionally, we compare execution 
times with explicit I/O through POSIX-like 
functionality of MPI IO. 

All the performance tests have been conducted 
with the swap partition disabled in a local machine 
available at the Department of Computational 
Science and Technology at KTH Royal Institute of 
Technology (Table I). The window mapping in 
storage has also been defined making sure that none 
of the pages are copied to / from the swap partition, 
if any. Finally, the STREAM benchmark has been 
executed multiple times during different days and 
timeframes, and on each time several runs have been 
performed. 

TABLE I.  SPECIFICATIONS OF LOCAL MACHINE “BLACKDOG” 

Component Description 

Processor 
2  4 core Xeon E5-2609v2 @ 2.5GHz (10MB 
L3) 

Memory 8  8GB DDR3  +  4  4GB DDR3 (Total: 72GB) 

Storage 
2  WDC WD4000F9YZ-09N20L0 4TB (non-
RAID) 

Software 
Ubuntu Server 16.04 / gcc v5.4.0 / MPICH 
v3.2 

A. Evaluating the performance of local storage 

The first series of performance tests have the 
purpose of comparing the modified STREAM 
benchmark using local storage with the bandwidth of 
the original source code using memory allocations. 
All the operations are performed through local files 
and do not involve network, which will give us an 
idea of how storage allocations could affect a given 
node. 

Figure 2 depicts the average of the performance 
results obtained, including the standard deviation. 
As expected, the bandwidth of the modified STREAM 
benchmark using one-sided allocation in DRAM 
(label “RAM”) is equivalent to the original STREAM 
implementation. The version based on storage (label 
“Storage”) is also promising, but the results show 
that it begins to perform worse after around 500 
million elements per array. We noted that part of the 
reason for this effect is the flushing policy of the OS, 
which blocks further IO requests when the amount 
of data that must be written to the storage layer is 
large. Thereafter, when a certain threshold is met, 
the application is allowed to proceed. 

In the Linux Kernel, this behaviour can be 
configured through the virtual memory vm settings. 
By default, our installation allowed up to a 20% of 

the memory with dirty pages, and a 10% of memory 
threshold to begin flushing to disk (i.e., by the 
pdflush process, originally set to wake up every 15 
seconds). If at some point the 20% limit is reached, 
the application is blocked and no IO operation is 
further allowed, decreasing the performance. 
Therefore and as can be observed in Figure 2 with 
label “Storage (opt.)”, fine-tuning these settings 
dramatically increases the performance and 
provides bandwidth values close to DRAM-based 
allocations. 

Nevertheless, it is important to note that the 
application is still bounded by the storage bandwidth 
at some point. Finding a good balance of the flushing 
policy settings and overlapping as much 
computations as possible will help the OS to continue 
flushing the modified pages asynchronously. 
However, if we often require synchronization points 
with the storage layer, the performance will 
considerably decrease. 

B. Evaluating the performance of explicit IO 
operations 

The second series of performance tests have the 
purpose of comparing execution times with explicit 
I/O through POSIX-like operations of MPI IO. The ST 
REAM benchmark has been adapted to compute each 
kernel in blocks of 1 million of elements instead, 
meaning that the code will read a block from storage, 
operate with it and store back the result, in steps of 
1 million elements per kernel. Non-blocking 
operations have been used in some of the read 
requests of the MPI IO version, while in the MPI 
extension-based, a synchronization point has been 
defined after each block. This will inform the OS to 
asynchronously flush the changes to storage (as in 
MPI IO, for fair comparison). The tests have been 
conducted with the optimal vm settings of the 
previous subsection, and the execution time 
measured also includes the time to flush the last dirty 
pages to storage, useful to determine how caching 
affects the obtained results. This is relevant to 
consider, as the performance will always be limited 
at some point by the bandwidth of the storage layer, 
for instance during window deallocation, when 
exceeding the amount of DRAM available or when no 
more computations can be overlapped. 

Figure 3 reflects the speedup of the average 
execution time obtained with the block-based 
STREAM benchmark. Despite some of the write 
operations being also cached by the OS in the MPI IO 
version, the results show that our solution provides 
performance benefits compared to using explicit I/O. 



The execution time is also more reasonable and 
stable with respect to MPI IO, hence the disruptive 
speedup variations observed. 

The figure additionally depicts the speedup 
forcing the data to be synchronously flushed to 
storage after each block, with the purpose of 
understanding the cache effects to / from storage on 
both versions. Even though the performance in this 
case is mainly bounded by the bandwidth of the 
underlying storage layer, the proposed MPI 
extension shows performance benefits when 
compared with the MPI IO version, thanks to 
avoiding I/O requests (e.g., the output of each kernel 
is transparently hold within the memory mapping, 
even if the data is forced to be synchronized with 
storage).  

C. Additional performance considerations 

Despite the bandwidth and access latency 
differences of the I/O subsystem, we have 
demonstrated that overlapping computations with 
storage operations substantially hides the existing 
constraints of this subsystem. This fact is mainly 
possible thanks to the page cache of the OS, which 
allows to temporary hold dirty pages mapped to 
storage. Hence, the memory acts as another level in 
the cache hierarchy: in the same way that 
programmers do not handle data movement 
between the CPU cache and memory, our approach 
releases handling data movement to disk. 

The importance of fine-tuning the virtual memory 
settings of the OS is consequently critical in order to 
achieve high-performance, as already discussed. 
These settings determine the interval and retention 
period of the dirty pages stored within the page 
cache of the OS, which means that increasing the 
amount of active dirty pages in memory allows to 
compensate for differences in performance. 

We also note that going beyond the RAM limit 
introduces performance constraints, depending on 
the application. Targeting more memory than 
physically available might bound the application 
performance to the bandwidth of the I/O subsystem. 
This means that, while smaller tests fit into memory 
and the performance remains high, increasing the 
problem size to limits close to the dirty ratio (i.e., the 
limit to flush dirty pages to storage) begins to 
produce performance degradations. This is 
something we already observed on STREAM due to 
the inherently sequential writes of the benchmark, 
that do not allow to reuse previously stored data 
inside the page cache of the OS and continuously 
accumulates write requests. 

IV. RELATED WORK 

Despite being a relatively simple approach, to the 
best of our knowledge there has not been any 
published work that directly aims to target 
transparent one-sided communications over storage 
without involving changes in the MPI standard. 

Bo Peng et al. [5], for instance, defined an effective 
way to tackle data-intensive applications through a 
streaming model that uses MPI IO collective 
operations on dedicated IO nodes. We expect our 
MPI window extension to provide benefits for 
similar work, like asynchronous remote storage 
operations (instead of explicit IO operations). 

Other authors have also considered storage as a 
solution for fault tolerance. The work by Abeyratne 
et al. [6] is a good example, where a Checkpoint 
Location Controller (CLC) is defined to offer reliable 
checkpointing by deciding whether to target 
memory or per-node storage. Our approach could 
extend this work by allowing implicit neighbor 
checkpointing.  

Lastly, Dorożyński et al. [7] share some of the 
concepts presented in this paper. While their aim 
was mainly to provide checkpointing of parallel 
applications using non-volatile RAM (NVRAM), our 
purpose is to demonstrate the possibilities of 
providing storage support within one-sided 
communications in MPI, regardless of the use-case. 

V. CONCLUSION 

In this paper, we have presented a seamless 
extension to the MPI one-sided communication 
model that enables the allocation of MPI windows on 

 

Figure 3. Speedup of the MPI one-sided allocation in 
Storage versus the equivalent MPI IO implementation 

of the STREAM benchmark running on “Blackdog”. The 
x-axis shows problem size in million of elements per 

array, while the y-axis represents the speedup.  
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storage. The described design provides considerable 
benefits to applications and without requiring major 
modifications to the existing logic. 

Performance results conducted in a local machine 
through a modified version of the STREAM 
benchmark has proved the MPI window extension to 
be clearly beneficial, even when compared with MPI 
IO. A fine-tune of the flushing policy settings of the 
operating system allows low-overhead while still 
committing changes to storage transparently. From 
these results, we concluded necessary a 
comprehensive overlap of the computations in order 
to achieve high performance. 

Lastly, our plan is to analyze the consequences of 
using remote parallel file systems and direct device 
mapping in window allocations, as well as to 
understand the implications of the proposed MPI 
window extension on real-world HPC applications. 
The outcome of this work is expected to provide 
further insights about the overall benefits of the 
approach.  
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