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Abstract—Sequence alignment algorithms are a basic and 

critical component of many bioinformatics fields. With rapid 
development of sequencing technology, the fast growing 
reference database volumes and longer length of query 
sequence become new challenges for sequence alignment. 
However, the algorithm is prohibitively high in terms of time 
and space complexity. In this paper, we present DSA, a 
scalable distributed sequence alignment system that employs 
Spark to process sequences data in a horizontally scalable 
distributed environment, and leverages data parallel strategy 
based on Single Instruction Multiple Data (SIMD) instruction 
to parallelize the algorithm in each core of worker node. The 
experimental results demonstrate that 1) DSA has outstanding 
performance and achieves up to 201x speedup over SparkSW. 
2) DSA has excellent scalability and achieves near linear 
speedup when increasing the number of nodes in cluster. 
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I.  INTRODUCTION 

Sequence alignment algorithms are a basic and critical 
component of many bioinformatics fields for identifying 
regions of high similarity between pairwise sequences, such 
as read mapping, protein database searching and variation 
detection. With the development of next-generation 
sequencing (NGS) technology, the cost of sequencing drop 
faster than Moore’s law, and the number of newly 
sequenced genomes has exhibited an exponential increase 
in recent years[1]. The fast growing reference database 
volumes and longer length of query sequence become new 
challenges for sequence alignment, so faster 
implementations of the sequence alignment algorithms are 
needed to keep pace. 

The Smith-Waterman (SW) algorithm[2], which 
produces the optimal local alignment between query and 
reference sequences, is the most influential sequence 
alignment algorithm. However, it is also one of the slowest 
sequence alignment algorithms due to its computing and 
memory requirements grow quadratically in terms of the 
length of sequences. Heuristic approaches like BLAST[3] 
are considerably faster, but are not guaranteed to discover 
the optimal alignment.  

Due to the critical role of SW, many efforts have been 
made to accelerate it, taking the advantages of special 
hardware such as single instruction multiple data 
(SIMD)[4-6], graphics processing unit (GPU)[7] and field 
programmable gate arrays (FPGA)[8]. Among these 
techniques,  SIMD-based  algorithms  are  most  frequently  
used because  they  are  compatible  with  most  modern  x86  
CPUs[5]. Farrar[6] presented a new SW implementation 

where the SIMD registers are parallel to the query sequence, 
but are accessed in a striped pattern. Farrar’s algorithm has 
been embedded in several popular genomic sequence 
mapping tools, such as BWA-MEM[9] and Bowtie2[10]. 
Zhao[5] extended Farrar’s algorithm to return alignment 
information in addition to the optimal SW score. Daily[4] 
presented Parasail, a C-based library containing 
implementations of different pairwise sequence alignment 
algorithms by different instruction sets: SSE2, SSE4.1, 
AVX2 and KNC. These implementations take advantage of 
parallelization strategies. However, they show limited 
scalability. 

To process bigger sequence data, it requires scalable 
storage and analysis frameworks. Adam[11] is genomic 
data processing system using Spark[12]. SparkSW[13] 
implements the SW algorithm on Spark for the first time 
and thus is load-balancing and scalable. However it only 
supports SW algorithm without the mapping location and 
traceback of the optimal alignment, which is quite important 
for read mapping and variation analysis. As a result, 
SparkSW is slow. 

In order to accelerate sequence alignment in bigger 
sequence data and facilitate easy integration of scalable 
distributed sequence alignment algorithm into third-party 
software, this paper presents a scalable distributed sequence 
alignment system that uses SIMD instructions on Spark, 
which is called DSA. DSA not only has excellent scalability, 
but also achieves outstanding performance. The major 
contributions of this paper are as follows: 

 We design and implement a scalable distributed 
sequence alignment system that employs Spark to 
process sequences data in a horizontally scalable 
distributed environment, and leverages data parallel 
strategy based on SIMD instruction to parallelize the 
algorithm in each core of worker node. 

 We employ memory-based distributed file system as 
primary storage, which speeds up I/O performance by 
serving data from memory in local node rather than 
disks, and reduces network traffic between nodes by 
caching hot files in memory. 

 We provide application programming interfaces for 
third-party software, including distributed local, 
global, and semi-global sequence alignment 
algorithms. 

The rest of this paper is organized as follows. Section 

Ⅱ describes the design of DSA. In section Ⅲ, we describe 

our experiments and performance evaluation. Section Ⅳ 

presents conclusion and future work. 



II. DESIGN OVERVIEW 

This section overviews the design of DSA, and 
describes its architecture, workflow and API respectively. 

A. System Architecture 

DSA employs a standard master-slave architecture (see 
Figure 1). Master is primarily responsible for managing 
metadata and cluster. Each worker consists of two layers: 
The first layer is storage layer. In order to speed up read and 
write, we employ a memory-based distributed file system as 
primary storage component instead of the conventional 
disk-based distributed file system. In DSA, HDFS is only 
used as persistence in storage layer. The second layer is 
compute layer. It is based on Spark, a memory-based 
distributed computing framework. Due to SIMD instruction 
can be used to operate registers in parallel and perform the 
same operation on multiple data points simultaneously, 
DSA leverages data parallel strategy based on SIMD 
instruction to parallelize the algorithm in each core of 
worker node.  

However, Spark cannot directly invoke SIMD-based 
sequence alignment algorithms which are written in C 
language. In order to integrate SIMD-based sequence 
alignment algorithms into Spark, we design a mediator. To 
be specific, firstly we implement multiple java classes to 
invoke SIMD-based sequence alignment algorithms 
separately by using Java Native Interface (JNI). Secondly, 
we implement scala class to invoke java class and transform 
java object to scala object. Hence, Spark applications can 
indirect invoke SIMD-based sequence alignment 
algorithms by the mediator in DSA. 

Spark’s scheduler applies delay scheduling[14] to 
schedule tasks, which has poor data locality and high 
network overhead when spark read file from HDFS and the 
execution time of tasks is long. So in DSA, we employ 
Alluxio[15], a memory-based distributed file system, as 
primary storage component, which speeds up I/O 
performance by serving data from memory in local node 
rather than disks, and reduces network traffic between 
nodes by caching hot files in memory. 

 

Figure 1.  System architecture 

B. System Workflow 

In process of sequence alignment, it is frequent to get 
the most K similar pairs of the alignments, such as protein 

database searching and seed extension of read mapping. 
Hence, DSA workflow consists of two main stages: map 
and top K phases (see Figure 2). Details of each phases are 
described as follows. 

1) Map 
The map phase reads data directly from Alluxio in 

memory and creates RDD[12]. The input data of DSA 
include different datasets: query sequences, reference 
sequences and score matrix. The formats of query and 
reference sequences need to be suitable for distributed 
processing. DSA provides a converter for different formats. 

After the data is ready, DSA uses SIMD technology to 
speed up sequence alignment in each map task. For local 
sequence alignment, DSA selects Striped Smith–
Waterman(SSW)[5, 6] which was written for Intel 
processors supporting SSE2 instructions. For global and 
semi-global sequence alignment, DSA calls the Parasail 
library[4]. 

As shown in Figure 2, DSA will return a new RDD in 
map phase. There are many alignment results in each 
partition of the RDD and alignment results are alignment 
object including max score, the name of reference sequence, 
location, cigar and other properties. 

2) Top K  
Once one map task has completed, DSA will execute 

top k algorithm. To be specific, DSA gets top k disordered 
alignment objects by using traditional quickselect algorithm 
separately in each partition of RDD. The select order is 
based on maxScore in alignment objects and implemented 
by an implicit method. Then DSA runs a reduce task. The 
reduce function aggregates global top k disordered 
alignment objects from all partitions. Finally, DSA sorts top 
k disordered alignment objects and returns results. 

The time complexity of top k algorithm is O(𝑚 + 𝑘 ∗
log 𝑘 + 𝑛 ∗ 𝑘), where m is the number of alignment objects 
in a partition of RDD, n is the number of partitions in RDD 
for simplicity of expression. 

 
Figure 2.  System workflow 
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C. System API 

In order to facilitate the users to use DSA directly and 
easy the integration of distributed sequence alignment 
algorithm for third-party software, we provide application 
programming interfaces (APIs) from two aspects as follows. 

1) Different data formats 
DSA provides a data preprocessing API implementation 

for different data formats, including FASTA, FASTQ and 
ADAM. 

2) Different algorithms  
DSA provides a distributed sequence alignment API 

implementation for different algorithms, including 
distributed Smith-Waterman (DSW), distributed 
Needleman-Wunsch (DNW) and distributed Semi-global 
(DSG) algorithms. DSA also allows user to define their own 
sequence alignment algorithm by extending a template class 
and override the implementation. It is important for third-
party software to use their own algorithms in DSA. 

III. PERFORMANCE EVALUATION  

In this section, we describe and evaluate DSA in two 
aspects: performance comparison with SparkSW, which is 
also distributed sequence alignment system on Spark, and 
the scalability of DSA is evaluated by a various number of 
computing nodes. The evaluation metric is speedup.  

All our experiments were performed on a local cluster 
with 8 nodes. The operation system of each node is Ubuntu-
14.04.1. Each node has a dual core Intel Xeon W3505 CPU 
with 22GB of RAM, and it is connected via Gigabit 
Ethernet. The Spark version is 1.5.2 and each node has 8GB 
executor memory for all Spark applications. The Alluxio 
version is 1.3.0 and each node has 12GB memory storage 
for Alluxio worker. 

In order to achieve a better performance comparison 
with SparkSW, we use the same data as SparkSW[13]. The 
details of the experimental datasets are l sted  n Table Ι. 

TABLE I.  THE LIST OF REFERENCE AND QUERY SEQUENCES 

R SR NR Q NQ LQ 
R1 32 78295 Q1 P18691 8 

R2 64 156590 Q2 P83140 16 

R3 128 313180 Q3 P20738 32 

R4 256 626360 Q4 O55746 64 

R5 512 1252720 Q5 Q6GZW8 128 

R6 1024 2505440 Q6 Q6GZX4 256 

R7 2048 5019006 Q7 Q19LI2 512 

R8 4096 10038012 Q8 Q7TQI7 1024 

R9 8192 20076024 Q9 Q8IYD8 2048 

R10 16384 40152048 Q10 R0INU3 4096 

R: order of reference; SR: size of reference (MB); NR: number of reference; 
Q: order of query; NQ: name of query; LQ: length of query (chars); 

A. Performance Comparison 

The fast growing reference database volumes and longer 
length of query sequence are new challenges for sequence 
alignment. In this part, we design two different experiments 
to validate the ability of DSA as follows.  

1) Different size of reference databases 

The first experiment uses a query sequence with fixed 
length and different size of reference databases. The fixed 
length of query sequence is 512 chars (Q7), and the 
reference databases are R1 to R10 (see Table Ι). DSA and 
SparkSW both run distributed SW algorithm on a local 
cluster with 8 nodes and each node has 8GB executor 
memory for all Spark applications. 

Figure 3 shows  S ’s speedup over SparkS   n 
different size of reference databases. The experimental 
result shows that DSA has a significant performance 
improvement over SparkSW in different reference datasets. 
The maximum speedup is up to 122-fold. 

 
Figure 3.  The comparison with SparkSW for fixed length of query and 

different size of reference database 

2) Different length of query sequences 
The second experiment uses a reference database with 

fixed size and different length of query sequences. The 
fixed size of reference database is 4G (D8) and the query 
sequences are Q1 to Q10 (see Table Ι). Other experimental 
environments are the same as previous experiment. 

Figure 4 shows  S ’s speedup over SparkS   n 
different length of query sequences. The experimental result 
shows that DSA has a significant performance 
improvement over SparkSW in different query datasets. 
The maximum speedup is up to 201-fold. 

 
Figure 4.  The comparison with SparkSW for fixed size of reference 

database and different length of query 

We analyzed qualitatively why DSA is much faster than 
SparkSW. The reasons are shown as follows: 
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 The major reason is that DSA uses SIMD instructions, 
where the SIMD registers are parallel to the query 
sequence, but are accessed in a striped pattern. 

 DSA leverages Alluxio instead of HDFS as primary 
storage, which speeds up I/O performance and reduces 
network traffic between nodes. 

 DSA employs a more effective top k algorithm, which 
not only reduces the time complexity from O(𝑚 ∗ 𝑚 +
𝑛 ∗ 𝑛) in SparkSW to O(𝑚 + 𝑘 ∗ log 𝑘 + 𝑛 ∗ 𝑘), and k 
is usually relatively small, but also avoids shuffle like 
SparkSW.  

Besides achieving higher performance, the accuracy of 
DSA is also improved on top of SparkSW because of the 
filtering strategy can filter some true results in open source 
SparkSW. Due to limited pages of poster, there is no 
detailed analysis in this paper. 

B. Evaluation of Scalability 

In order to evaluate the scalability of DSA, we run DSW, 
DNW and DSG algorithms of DSA with a various number 
of computing nodes. In this experiment, we select Q7 as 
query sequence and R8 as reference database (see Table Ι).  

Figure 5 shows that different algorithms’ speedup over 
themselves running on single node. The experimental result 
shows that the three algorithms of DSA achieve near linear 
speedup when increasing the number of nodes from 1 to 8 
in cluster.  

 

Figure 5.  The speedup improvement by increasing the number of nodes 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we present and design DSA, a scalable 
distributed sequence alignment system that employs Spark 
to process sequences data in a horizontally scalable 
distributed environment, leverages data parallel strategy 
based on SIMD instruction to parallelize the algorithm in 
each core of worker node, and employs memory-based 
distributed file system Alluxio as primary storage to speeds 
up I/O performance and reduces network traffic. DSA not 
only provides a data preprocessing API implementation for 
different data formats, including FASTA, FASTQ and 
ADAM, but also provides a distributed sequence alignment 
API implementation for different algorithms, including 
distributed Smith-Waterman, Needleman-Wunsch and 
Semi-global alignment algorithms.  

The experimental results demonstrate that DSA has 
outstanding performance and excellent scalability. DSA 

achieves up to 201x speedup over SparkSW and near linear 
speedup when increasing the number of nodes in cluster. 

In the future, we plan to explore different Instruction 
sets to improve performance, and provide more API for 
different data formats and functions. 
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AVAILABILITY 

An open source DSA (GNU GPL v.2) are freely 
available at: https://github.com/xubo245/DSA. 
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