
DSA: Scalable Distributed Sequence Alignment System Using SIMD Instructions

Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, Jinhong Zhou, Xuehai Zhou

School of Computer Science and Technology

University of Science and Technology of China

Hefei, China

{xubo245, liclong, zhuangh, ustcwjl, qfwangyy, zjh}@mail.ustc.edu.cn, xhzhou@ustc.edu.cn

Abstract—Sequence alignment algorithms are a basic and

critical component of many bioinformatics fields. With rapid
development of sequencing technology, the fast growing
reference database volumes and longer length of query
sequence become new challenges for sequence alignment.
However, the algorithm is prohibitively high in terms of time
and space complexity. In this paper, we present DSA, a
scalable distributed sequence alignment system that employs
Spark to process sequences data in a horizontally scalable
distributed environment, and leverages data parallel strategy
based on Single Instruction Multiple Data (SIMD) instruction
to parallelize the algorithm in each core of worker node. The
experimental results demonstrate that 1) DSA has outstanding
performance and achieves up to 201x speedup over SparkSW.
2) DSA has excellent scalability and achieves near linear
speedup when increasing the number of nodes in cluster.

Keywords-distributed sequence alignment; Spark; SIMD

instruction; Alluxio; Scalability;

I. INTRODUCTION

Sequence alignment algorithms are a basic and critical
component of many bioinformatics fields for identifying
regions of high similarity between pairwise sequences, such
as read mapping, protein database searching and variation
detection. With the development of next-generation
sequencing (NGS) technology, the cost of sequencing drop
faster than Moore’s law, and the number of newly
sequenced genomes has exhibited an exponential increase
in recent years[1]. The fast growing reference database
volumes and longer length of query sequence become new
challenges for sequence alignment, so faster
implementations of the sequence alignment algorithms are
needed to keep pace.

The Smith-Waterman (SW) algorithm[2], which
produces the optimal local alignment between query and
reference sequences, is the most influential sequence
alignment algorithm. However, it is also one of the slowest
sequence alignment algorithms due to its computing and
memory requirements grow quadratically in terms of the
length of sequences. Heuristic approaches like BLAST[3]
are considerably faster, but are not guaranteed to discover
the optimal alignment.

Due to the critical role of SW, many efforts have been
made to accelerate it, taking the advantages of special
hardware such as single instruction multiple data
(SIMD)[4-6], graphics processing unit (GPU)[7] and field
programmable gate arrays (FPGA)[8]. Among these
techniques, SIMD-based algorithms are most frequently
used because they are compatible with most modern x86
CPUs[5]. Farrar[6] presented a new SW implementation

where the SIMD registers are parallel to the query sequence,
but are accessed in a striped pattern. Farrar’s algorithm has
been embedded in several popular genomic sequence
mapping tools, such as BWA-MEM[9] and Bowtie2[10].
Zhao[5] extended Farrar’s algorithm to return alignment
information in addition to the optimal SW score. Daily[4]
presented Parasail, a C-based library containing
implementations of different pairwise sequence alignment
algorithms by different instruction sets: SSE2, SSE4.1,
AVX2 and KNC. These implementations take advantage of
parallelization strategies. However, they show limited
scalability.

To process bigger sequence data, it requires scalable
storage and analysis frameworks. Adam[11] is genomic
data processing system using Spark[12]. SparkSW[13]
implements the SW algorithm on Spark for the first time
and thus is load-balancing and scalable. However it only
supports SW algorithm without the mapping location and
traceback of the optimal alignment, which is quite important
for read mapping and variation analysis. As a result,
SparkSW is slow.

In order to accelerate sequence alignment in bigger
sequence data and facilitate easy integration of scalable
distributed sequence alignment algorithm into third-party
software, this paper presents a scalable distributed sequence
alignment system that uses SIMD instructions on Spark,
which is called DSA. DSA not only has excellent scalability,
but also achieves outstanding performance. The major
contributions of this paper are as follows:

 We design and implement a scalable distributed
sequence alignment system that employs Spark to
process sequences data in a horizontally scalable
distributed environment, and leverages data parallel
strategy based on SIMD instruction to parallelize the
algorithm in each core of worker node.

 We employ memory-based distributed file system as
primary storage, which speeds up I/O performance by
serving data from memory in local node rather than
disks, and reduces network traffic between nodes by
caching hot files in memory.

 We provide application programming interfaces for
third-party software, including distributed local,
global, and semi-global sequence alignment
algorithms.

The rest of this paper is organized as follows. Section

Ⅱ describes the design of DSA. In section Ⅲ, we describe

our experiments and performance evaluation. Section Ⅳ

presents conclusion and future work.

II. DESIGN OVERVIEW

This section overviews the design of DSA, and
describes its architecture, workflow and API respectively.

A. System Architecture

DSA employs a standard master-slave architecture (see
Figure 1). Master is primarily responsible for managing
metadata and cluster. Each worker consists of two layers:
The first layer is storage layer. In order to speed up read and
write, we employ a memory-based distributed file system as
primary storage component instead of the conventional
disk-based distributed file system. In DSA, HDFS is only
used as persistence in storage layer. The second layer is
compute layer. It is based on Spark, a memory-based
distributed computing framework. Due to SIMD instruction
can be used to operate registers in parallel and perform the
same operation on multiple data points simultaneously,
DSA leverages data parallel strategy based on SIMD
instruction to parallelize the algorithm in each core of
worker node.

However, Spark cannot directly invoke SIMD-based
sequence alignment algorithms which are written in C
language. In order to integrate SIMD-based sequence
alignment algorithms into Spark, we design a mediator. To
be specific, firstly we implement multiple java classes to
invoke SIMD-based sequence alignment algorithms
separately by using Java Native Interface (JNI). Secondly,
we implement scala class to invoke java class and transform
java object to scala object. Hence, Spark applications can
indirect invoke SIMD-based sequence alignment
algorithms by the mediator in DSA.

Spark’s scheduler applies delay scheduling[14] to
schedule tasks, which has poor data locality and high
network overhead when spark read file from HDFS and the
execution time of tasks is long. So in DSA, we employ
Alluxio[15], a memory-based distributed file system, as
primary storage component, which speeds up I/O
performance by serving data from memory in local node
rather than disks, and reduces network traffic between
nodes by caching hot files in memory.

Figure 1. System architecture

B. System Workflow

In process of sequence alignment, it is frequent to get
the most K similar pairs of the alignments, such as protein

database searching and seed extension of read mapping.
Hence, DSA workflow consists of two main stages: map
and top K phases (see Figure 2). Details of each phases are
described as follows.

1) Map
The map phase reads data directly from Alluxio in

memory and creates RDD[12]. The input data of DSA
include different datasets: query sequences, reference
sequences and score matrix. The formats of query and
reference sequences need to be suitable for distributed
processing. DSA provides a converter for different formats.

After the data is ready, DSA uses SIMD technology to
speed up sequence alignment in each map task. For local
sequence alignment, DSA selects Striped Smith–
Waterman(SSW)[5, 6] which was written for Intel
processors supporting SSE2 instructions. For global and
semi-global sequence alignment, DSA calls the Parasail
library[4].

As shown in Figure 2, DSA will return a new RDD in
map phase. There are many alignment results in each
partition of the RDD and alignment results are alignment
object including max score, the name of reference sequence,
location, cigar and other properties.

2) Top K
Once one map task has completed, DSA will execute

top k algorithm. To be specific, DSA gets top k disordered
alignment objects by using traditional quickselect algorithm
separately in each partition of RDD. The select order is
based on maxScore in alignment objects and implemented
by an implicit method. Then DSA runs a reduce task. The
reduce function aggregates global top k disordered
alignment objects from all partitions. Finally, DSA sorts top
k disordered alignment objects and returns results.

The time complexity of top k algorithm is O(𝑚 + 𝑘 ∗
log 𝑘 + 𝑛 ∗ 𝑘), where m is the number of alignment objects
in a partition of RDD, n is the number of partitions in RDD
for simplicity of expression.

Figure 2. System workflow

 orker ode

Storage layer

Compute layer

Master Node

Spark Master

Alluxio Master

…

Client

HDFS NameNode

S M

Me ory

 sk

 llu o orker

 FS ata ode

Spark orker

Med ator

 orker ode

Storage layer

Compute layer

S M

Me ory

 sk

 llu o orker

 FS ata ode

Spark orker

Med ator

 orker ode

Storage layer

Compute layer

S M

Me ory

 sk

 llu o orker

 FS ata ode

Spark orker

Med ator

Alluxio

In-Memory

 orker

 orker

 orker

…

 lock

 lock

 lock

Spark Map

 art t on

ref

ref

…

ref

al n ent

al n ent

…

al n ent

Spark TopK

Map

task

 art t on

ref

ref

…

ref

al n ent

al n ent

…

al n ent

Map

task

 art t on

ref

ref

…

ref

al n ent

al n ent

…

al n ent

Map

task

… …

Map

task

al n ent

al n ent

…

al n ent

al n ent

al n ent

…

al n ent

al n ent

al n ent

…

al n ent

…

al n ent

al n ent

…

al n ent

…

Driver

SIMD

SIMD

SIMD

SIMD

 art t on

 art t on

 art t on

C. System API

In order to facilitate the users to use DSA directly and
easy the integration of distributed sequence alignment
algorithm for third-party software, we provide application
programming interfaces (APIs) from two aspects as follows.

1) Different data formats
DSA provides a data preprocessing API implementation

for different data formats, including FASTA, FASTQ and
ADAM.

2) Different algorithms
DSA provides a distributed sequence alignment API

implementation for different algorithms, including
distributed Smith-Waterman (DSW), distributed
Needleman-Wunsch (DNW) and distributed Semi-global
(DSG) algorithms. DSA also allows user to define their own
sequence alignment algorithm by extending a template class
and override the implementation. It is important for third-
party software to use their own algorithms in DSA.

III. PERFORMANCE EVALUATION

In this section, we describe and evaluate DSA in two
aspects: performance comparison with SparkSW, which is
also distributed sequence alignment system on Spark, and
the scalability of DSA is evaluated by a various number of
computing nodes. The evaluation metric is speedup.

All our experiments were performed on a local cluster
with 8 nodes. The operation system of each node is Ubuntu-
14.04.1. Each node has a dual core Intel Xeon W3505 CPU
with 22GB of RAM, and it is connected via Gigabit
Ethernet. The Spark version is 1.5.2 and each node has 8GB
executor memory for all Spark applications. The Alluxio
version is 1.3.0 and each node has 12GB memory storage
for Alluxio worker.

In order to achieve a better performance comparison
with SparkSW, we use the same data as SparkSW[13]. The
details of the experimental datasets are l sted n Table Ι.

TABLE I. THE LIST OF REFERENCE AND QUERY SEQUENCES

R SR NR Q NQ LQ
R1 32 78295 Q1 P18691 8

R2 64 156590 Q2 P83140 16

R3 128 313180 Q3 P20738 32

R4 256 626360 Q4 O55746 64

R5 512 1252720 Q5 Q6GZW8 128

R6 1024 2505440 Q6 Q6GZX4 256

R7 2048 5019006 Q7 Q19LI2 512

R8 4096 10038012 Q8 Q7TQI7 1024

R9 8192 20076024 Q9 Q8IYD8 2048

R10 16384 40152048 Q10 R0INU3 4096

R: order of reference; SR: size of reference (MB); NR: number of reference;
Q: order of query; NQ: name of query; LQ: length of query (chars);

A. Performance Comparison

The fast growing reference database volumes and longer
length of query sequence are new challenges for sequence
alignment. In this part, we design two different experiments
to validate the ability of DSA as follows.

1) Different size of reference databases

The first experiment uses a query sequence with fixed
length and different size of reference databases. The fixed
length of query sequence is 512 chars (Q7), and the
reference databases are R1 to R10 (see Table Ι). DSA and
SparkSW both run distributed SW algorithm on a local
cluster with 8 nodes and each node has 8GB executor
memory for all Spark applications.

Figure 3 shows S ’s speedup over SparkS n
different size of reference databases. The experimental
result shows that DSA has a significant performance
improvement over SparkSW in different reference datasets.
The maximum speedup is up to 122-fold.

Figure 3. The comparison with SparkSW for fixed length of query and

different size of reference database

2) Different length of query sequences
The second experiment uses a reference database with

fixed size and different length of query sequences. The
fixed size of reference database is 4G (D8) and the query
sequences are Q1 to Q10 (see Table Ι). Other experimental
environments are the same as previous experiment.

Figure 4 shows S ’s speedup over SparkS n
different length of query sequences. The experimental result
shows that DSA has a significant performance
improvement over SparkSW in different query datasets.
The maximum speedup is up to 201-fold.

Figure 4. The comparison with SparkSW for fixed size of reference

database and different length of query

We analyzed qualitatively why DSA is much faster than
SparkSW. The reasons are shown as follows:

0

20

40

60

80

100

120

140

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Sp
ee

d
u

p

Reference Datasets

0

50

100

150

200

250

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Sp
ee

d
u

p

Query Datasets

 The major reason is that DSA uses SIMD instructions,
where the SIMD registers are parallel to the query
sequence, but are accessed in a striped pattern.

 DSA leverages Alluxio instead of HDFS as primary
storage, which speeds up I/O performance and reduces
network traffic between nodes.

 DSA employs a more effective top k algorithm, which
not only reduces the time complexity from O(𝑚 ∗ 𝑚 +
𝑛 ∗ 𝑛) in SparkSW to O(𝑚 + 𝑘 ∗ log 𝑘 + 𝑛 ∗ 𝑘), and k
is usually relatively small, but also avoids shuffle like
SparkSW.

Besides achieving higher performance, the accuracy of
DSA is also improved on top of SparkSW because of the
filtering strategy can filter some true results in open source
SparkSW. Due to limited pages of poster, there is no
detailed analysis in this paper.

B. Evaluation of Scalability

In order to evaluate the scalability of DSA, we run DSW,
DNW and DSG algorithms of DSA with a various number
of computing nodes. In this experiment, we select Q7 as
query sequence and R8 as reference database (see Table Ι).

Figure 5 shows that different algorithms’ speedup over
themselves running on single node. The experimental result
shows that the three algorithms of DSA achieve near linear
speedup when increasing the number of nodes from 1 to 8
in cluster.

Figure 5. The speedup improvement by increasing the number of nodes

IV. CONCLUSION AND FUTURE WORK

In this paper, we present and design DSA, a scalable
distributed sequence alignment system that employs Spark
to process sequences data in a horizontally scalable
distributed environment, leverages data parallel strategy
based on SIMD instruction to parallelize the algorithm in
each core of worker node, and employs memory-based
distributed file system Alluxio as primary storage to speeds
up I/O performance and reduces network traffic. DSA not
only provides a data preprocessing API implementation for
different data formats, including FASTA, FASTQ and
ADAM, but also provides a distributed sequence alignment
API implementation for different algorithms, including
distributed Smith-Waterman, Needleman-Wunsch and
Semi-global alignment algorithms.

The experimental results demonstrate that DSA has
outstanding performance and excellent scalability. DSA

achieves up to 201x speedup over SparkSW and near linear
speedup when increasing the number of nodes in cluster.

In the future, we plan to explore different Instruction
sets to improve performance, and provide more API for
different data formats and functions.

ACKNOWLEDGMENT

We would like to thank Bin Fan, who is PMC member
of Alluxio. This work was supported by the National
Science Foundation of China under grants No.61379040,
No. 61272131 and No. 61202053.

AVAILABILITY

An open source DSA (GNU GPL v.2) are freely
available at: https://github.com/xubo245/DSA.

REFERENCES

[1] P. Muir, S. Li, S. Lou, D. Wang, D. J. Spakowicz, L. Salichos, et al.,

"The real cost of sequencing: scaling computation to keep pace with
data generation," Genome biology, vol. 17, p. 1, 2016.

[2] T. F. Smith and M. S. Waterman, "Identification of common
molecular subsequences," Journal of molecular biology, vol. 147, pp.

195-197, 1981.

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W.
Miller, et al., "Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs," Nucleic acids research, vol.

25, pp. 3389-3402, 1997.
[4] J. Daily, "Parasail: SIMD C library for global, semi-global, and local

pairwise sequence alignments," BMC bioinformatics, vol. 17, p. 1,

2016.
[5] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth, "SSW Library:

an SIMD Smith-Waterman C/C++ library for use in genomic

applications," PloS one, vol. 8, p. e82138, 2013.
[6] M. Farrar, "Striped Smith–Waterman speeds database searches six

times over other SIMD implementations," Bioinformatics, vol. 23,

pp. 156-161, 2007.
[7] Y. Liu, A. Wirawan, and B. Schmidt, "CUDASW++ 3.0:

accelerating Smith-Waterman protein database search by coupling

CPU and GPU SIMD instructions," BMC Bioinformatics, vol. 14, p.:
117., 2013.

[8] I. T. Li, W. Shum, and K. Truong, "160-fold acceleration of the

Smith-Waterman algorithm using a field programmable gate array
(FPGA)," BMC bioinformatics, vol. 8, p. 1, 2007.

[9] H. Li, "Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM," arXiv preprint arXiv:1303.3997, 2013.
[10] B. Langmead and S. L. Salzberg, "Fast gapped-read alignment with

Bowtie 2," Nature methods, vol. 9, pp. 357-359, 2012.

[11] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D.
Joseph, et al., "Adam: Genomics formats and processing patterns for

cloud scale computing," EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2013-207, 2013.
[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

"Spark: cluster computing with working sets," HotCloud, vol. 10, pp.

10-10, 2010.
[13] G. Zhao, C. Ling, and D. Sun, "SparkSW: scalable distributed

computing system for large-scale biological sequence alignment," in

Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, 2015, pp. 845-852.

[14] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,

and I. Stoica, "Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling," in Proceedings of the 5th

European conference on Computer systems, 2010, pp. 265-278.

[15] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, "Tachyon:
Reliable, memory speed storage for cluster computing frameworks,"

in Proceedings of the ACM Symposium on Cloud Computing, 2014,

pp. 1-15.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
e

ed
u

p

Numbers of nodes

Theoreical

DSW

DNW

DSG

