
Detection of Silent Data Corruptions in
Smoothed Particle Hydrodynamics Simulations

Aurélien Cavelan
University of Basel, Switzerland

aurelien.cavelan@unibas.ch

Rubén M. Cabezón
University of Basel, Switzerland

ruben.cabezon@unibas.ch

Florina M. Ciorba
University of Basel, Switzerland

florina.ciorba@unibas.ch

April 24, 2019

Abstract

Silent data corruptions (SDCs) hinder the correctness of long-running
scientific applications on large scale computing systems. Selective particle
replication (SPR) is proposed herein as the first particle-based replication
method for detecting SDCs in Smoothed particle hydrodynamics (SPH)
simulations. SPH is a mesh-free Lagrangian method commonly used to
perform hydrodynamical simulations in astrophysics and computational
fluid dynamics. SPH performs interpolation of physical properties over
neighboring discretization points (called SPH particles) that dynamically
adapt their distribution to the mass density field of the fluid. When a
fault (e.g., a bit-flip) strikes the computation or the data associated with
a particle, the resulting error is silently propagated to all nearest neigh-
bors through such interpolation steps. SPR replicates the computation
and data of a few carefully selected SPH particles. SDCs are detected
when the data of a particle differs, due to corruption, from its replicated
counterpart. SPR is able to detect many DRAM SDCs as they propagate
by ensuring that all particles have at least one neighbor that is repli-
cated. The detection capabilities of SPR were assessed through a set of
error-injection and detection experiments and the overhead of SPR was
evaluated via a set of strong-scaling experiments conducted on an HPC
system. The results show that SPR achieves detection rates of 91-99.9%,
no false-positives, at an overhead of 1-10%.

1 Introduction
The frequency of faults, errors and failures in large-scale systems increases pro-
portionally to the number of components. As such, reliability has been identified
as a major challenge for Exascale computing [14,15,43]. Trustworthy computing

1

ar
X

iv
:1

90
4.

10
22

1v
1 

 [
cs

.D
C

] 
 2

3 
A

pr
 2

01
9



aims at guaranteeing the correctness of the results of long-running computations
on large-scale supercomputers. In particular, silent errors, or silent data cor-
ruptions (SDCs), represent a major threat to the correctness of the results of
such calculations. SDCs typically manifest when one or more bits are flipped
in the memory of the system. There are several causes for these errors, such as
packaging pollution or cosmic rays, among others [4, 39,51].

The standard solution for protecting the memory subsystem against data
corruption is the use of error correcting codes (ECC). However, these mech-
anisms are not able to detect and correct all errors. Indeed, recent studies
suggest that such mechanisms may not prevent data corruptions from occurring
at extreme scales [4,33,37], and in particular in DRAM devices [45]. This work
expands on detecting DRAM errors.

Triple modular redundancy1 (TMR) [35] is the most general and non-intrusive
approach to detect and correct SDCs in scientific applications. SDCs detectors
are characterized by their precision and their recall. The precision is the ratio
of true errors detected (in contrast to false-positives) over all errors detected,
and the recall is simply the ratio of true errors detected over all true errors
that occurred during the execution. A high precision and a high recall indi-
cate both few false-positives and a good detection rate, respectively. In general,
detectors that either employ full replication of entire applications [27] or selec-
tive replication of parts of an application [10] offer the highest precision and
recall. However, they are often prohibitively expensive in terms of additional
required computing resources and time. Therefore, many application-specific
detectors have been proposed as alternatives to redundancy to lower the cost
of error detection. Specifically, data analytics-based techniques detect outliers
by relying on application-specific properties, such as spatial and/or temporal
data smoothness. Interpolation-based detectors employ techniques such as time
series prediction and spatial multivariate interpolation [2,5,6] to interpolate the
next value of a data-point, and offer broad error detection coverage at low cost,
but typically have a lower precision compared to full-replication approaches. A
further review of relevant error detection methods is presented in Section 4.

Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian method
commonly used for performing hydrodynamical simulations. Initially devised in
the late ’70s [31, 34], this technique underwent sustained development [13, 28,
41,44] and is, nowadays, commonly used in many fields including computational
fluid dynamics, plasma physics, solid mechanics, and astrophysics. Its inherent
good conservation properties and its adaptability to distorted geometries make
SPH a common choice to simulate highly-dynamic three-dimensional scenarios.
The SPH technique discretizes a fluid in a series of interpolation points (called
SPH particles) whose distribution follows the mass density of the fluid, and
their evolution relies then on a weighted interpolation over close neighboring
particles. The cost of such a highly-adaptive unstructured fluid discretization
is the non-uniformity of data, in terms of the number and distribution of neigh-
bors that a particle might have at a specific location and time. This renders
most data analytics-based error detectors less accurate than redundancy-based
detectors. Moreover, SPH simulations are inherently robust: it is likely that
SDCs will not crash the execution of an SPH application, thereby not alerting
the user.

1In this work, redundancy and replication are used interchangeably.

2



Selective particle replication (SPR) is proposed in this work. SPR replicates
the computation and data of a few carefully selected SPH particles, and SDCs
are detected when the data of a particle differs from the data of its replica or
viceversa.

It is necessary to understand how SDCs propagate in SPH simulations before
we clarify how to select which particles need to be replicated. We assume that an
SDC initially strikes the data of a single particle (e.g., a bit-flip in the position,
density, mass, temperature, or in any other data field associated with that
particle). The subsequent SPH interpolation steps will proceed with erroneous
data and propagate the error to all neighbors of that particle, i.e., typically
affecting ∼ 100 other particles. However, having just one redundant neighbor
would be enough to detect the difference (no matter how small) in the computed
result due to the original SDC. Therefore, by ensuring that all particles have at
least one redundant neighbor, SPR can detect most SDCs (as they propagate).
We detail the entire process and its limitations in Section 2.

We conduct a series of experiments by incorporating SPR in a production
SPH code and running two test simulations commonly used in astrophysics.
First, we perform a set of error-injection and detection experiments to assess the
detection capabilities of SPR. Next, we conduct a set of performance-evaluation
experiments, without injecting errors, to assess the overhead of SPR for the two
test simulations on the Piz Daint supercomputer2. The outcome shows that
SPR is particularly suited for detecting SDCs in SPH simulations, detecting
91− 99.9% of the injected errors, for a typical execution overhead between 1−
10%. In addition, SPR raises no false-positives, which is a significant advantage
over unprecise detectors.

This work makes the following contributions: (1) Presents a simple, yet ef-
fective method (SPR) for selecting particles to be replicated and detects errors
with bit-level precision; (2) Experimentally quantifies the recall and precision of
SPR through an error-injection and detection campaign in a production scien-
tific application; and (3) Assesses the scalability and overhead of the proposed
SPR approach through real experiments on an HPC system.

The remainder of this work is structured as follows. We describe in detail
and illustrate the proposed approach for silent error detection via selective par-
ticle replication in Section 2. We include the experimental setup and results
in Section 3 along with their evaluation and a discussion of the findings. Sec-
tion 4 surveys the relevant literature related to silent errors detection. Finally,
Section 5 outlines the conclusion of this work together with insights into future
work extensions.

2 Selective Particle Replication
Selective particle replication (SPR) consists of three steps, namely selection,
replication, and detection. Section 2.1 describes an algorithm to select the par-
ticles that will be replicated, Section 2.2 covers the different aspects and chal-
lenges of particle replication in SPH, and Section 2.3 presents the error-detection
algorithm as well as its limitations.

2https://www.cscs.ch/computers/piz-daint/

3

https://www.cscs.ch/computers/piz-daint/


2.1 Selection

Process q-1 Process q Process q+1

Particles
Selected particles (q-1) Selected particles (q) Selected particles (q+1)

Figure 1: SPR step 1: selection of particles to replicate. The figure shows the
distribution of 32 particles on three processes {q − 1, q, q + 1} computing on
particles from different sections of the SPH domain. Selected particles on each
process form a Maximal Independent Set (MIS) such that all particles have at
least one neighbor that is selected for replication in another process. Edges
show the connection between the selected particles and their neighbors.

In parallel SPH implementations [38], the particle domain is distributed
among the processes. Each process is given a list of particles and their associated
data. The first step in SPR is to select which particles to replicate to ensure
that all particles in a process have at least one neighbor that is replicated in
another process, as illustrated in Figure 1.

Given that the number of computations grows linearly with the number
of particles selected on each process, we want to replicate as few particles as
possible overall. The domain composed of the particles and their neighbors
can be compared to a graph where vertices and edges represent the particles
connected to their neighbors.

Particles must be selected such that any given particle in a process either
belongs to the set of particles selected for replication, or has a selected parti-
cle as neighbor, which translates to finding a Minimum Dominating Set (MDS).
However, this is a classical NP-Hard problem [29] and there is no known optimal
polynomial time algorithm for finding such a minimum set. One can alterna-
tively solve the simpler Maximal Independent Set (MIS) problem, where a MIS
is also a Dominating Set (albeit not minimum). As opposed to a dominating
set, a MIS ensures that no selected vertices (respectively particles) in the graph
are adjacent, which leads to fewer vertices being selected, and it is possible to
find many MISs in a graph.

The present work proposes the use of a greedy algorithm to find a MIS,
listed in Algorithm 1. Given the set Pq of particles assigned to process q for
computation, Algorithm 1 returns the set Sq of particles selected for replication
in another process. A possible solution to the problem is presented in Figure 1
for a small example with 32 particles distributed on three processes, highlighting
the selected particles in each process.
Complexity. Algorithm 1 requires, in the worst case, to iterate through the
nq particles of process q and for each particle to visit at most ngmax neighbors,

4



Algorithm 1 Particle Selection

procedure select-particle(Pq)
Initialize Sq to an empty set
while Pq is not empty do

Choose a particle p ∈ Pq

Add p to Sq

Remove from P the particle p and all its neighbors
end while
return Sq

end procedure

where ngmax denotes the maximum number of neighbors for any given particle
in the simulation. Therefore, the running time of this algorithm is O(nqngmax).
Overall asymptotic cost. The running time of SPH applications is domi-
nated by large interpolation kernels scaling as O(nqngmax). Comparatively, our
approach only requires O(nrngmax) additional computations, where nr is the
maximum number of replicated particles per node. A lower bound on nr is

1
ngmax

, when only 1 particle is selected to dominate all of its neighbors. Ex-
periments show nr to be in the range of 1 − 10% based on our MIS approach.
Consequently, the increment in memory cost and communication time is also
very small 1− 10% (see Section 3).

Note that the maximum number of neighbors, ngmax, is often a user-defined
parameter in the order of 102 particles for 3D simulations.3 As the simulated
scenarios grow in complexity and require increased resolution, the overall num-
ber of particles in SPH simulations increases, as well as the number of neigh-
bors. Nowadays, 3D SPH simulations require between 105−1012 particles, with
102 − 5 · 102 neighbors per particle.

2.2 Replication
The second SPR step is to copy the data and to replicate the execution of the
previously selected particles onto a target process. Each process must send a
copy of all its selected particles and their neighbors to its assigned target process.
As the selected particles are in fact a MIS, each process copies of the data of all
its particles on to its assigned target process, as shown in Figure 2. However,
only the selected particles are computed on the target process.

Figure 2 shows the distribution of 32 particles onto three processes {q −
1, q, q+1}. In this configuration, each process initially sends a copy of the data
associated with all its particles to the next process id. Note that both computa-
tion and data are replicated onto a target process for the selected particles, while
only data is replicated for all the neighbors of a selected particle. This data is
needed to update the selected particles during SPH neighbor interpolation steps.

To avoid the risk of using corrupted data, detection must be performed before
any inter-process communications occur. As long as no data is communicated
to another process, the error is guaranteed to be contained within the faulty
process. Since in SPH, processes must exchange data after every interpolation

3Given a target number of neighbors, the simulation will try to reach this number of
neighbors for each particle and this influences the resulting smoothing length.

5



Process q-1 Process q Process q+1

Replicated particles 

Copy

Particles
Selected particles (q-1) Selected particles (q) Selected particles (q+1)

Replicated particles Replicated particles Replicated particles 

Copy

Copy

Figure 2: SPR step 2: replication of selected particles onto the target process.
Each process sends a copy of the data associated with all its particles to the
next process id. Note that all particles are copied, but only selected particles
(orange, green, blue) are computed upon the target process, using the data from
their replicated neighbors (light gray).

step to exchange neighbors that are at the edge of their respective computational
domain, SPR detection must also be done right after each interpolation step. In
addition, each process must update the copy of the data of all its particles on
the target process, so that the selected replicated particles use the latest version
of their neighbors data.

The general workflow is described in Algorithm 2 and additional SPR steps
are shown in blue. Depending on the scenario they simulate or the research field
in which they are used, SPH codes can greatly vary in terms of implementation
and physical processes they include. Nevertheless, many SPH codes apply the
same general underlying workflow. This allows us to generalize the use of the
SPR method proposed here, not only to a single specific SPH code but to the
vast majority of SPH codes.

2.3 Detection
Error-detection is done by comparing the data of the selected particles against
their the data of their replica. Detection must be performed after every compu-
tational workflow step, before any data are communicated to other processes,
as illustrated in Algorithm 2 (in blue).

Given that an original particle and its replica represent the same particle,
their data are expected to remain identical at any point during the simulation.

6



Algorithm 2 SPH General Computational Workflow with SPR
Initialization
while Target simulated time is not reached do

1. Build tree
1.1 Detection
1.2 Update of neighboring particles

2. Find neighbors
2.1 Detection
2.2 Select particles for replication
2.3 Update of neighboring particles

3. Execute SPH neighboring interpolation kernels
3.1 Detection
3.2 Update of neighboring particles

4. Find new time-step
4.1 Detection
4.2 Update of neighboring particles

5. Update velocity and position
5.1 Detection
5.2 Update of neighboring particles

6. (Optional) Compute self-gravity
6.1 Detection
6.2 Update of neighboring particles

end while

Moreover, the data of the original particle can be compared against the data of
its replica with bit-level resolution. If an error propagates to either the original
particle or its replica, even by causing a change in single bit, it will be detected
via a simple comparison.

Figure 3 shows how one of the selected particle on process q becomes cor-
rupted after using data from a corrupted neighbor during an interpolation step.
Since the newly computed data on process q differs from the data of its replica
on process q + 1, the error is detected via a simple comparison.

The following algorithm is proposed to detect errors using replicated parti-
cles selected a priori in Step 1. We assume that replicated particles are always
computed upon the next process in a round robin fashion, i.e., the list of repli-
cated particles selected on process q with Algorithm 1 is sent to process q+1, so
that process q+1 computes the selected replicated particles from process q, and
so on. Therefore, for detection purposes, process q sends the data corresponding
to replicated particles from process q − 1 back to process q − 1, and in return,
it receives the data corresponding to its own replicated particles from process
q + 1. Let Sq−1 denote the set of particles selected for replication on process
q − 1 and let dataq(Sq−1) denote the data associated with replicated particles
selected on process q − 1 and used for computation on process q. Similarly,
let dataq+1(Sq) denote the data associated with replicated particles selected on
process q and used for computation on process q + 1. The detection algorithm
is listed in Algorithm 3.

For a given process q, Algorithm 3 iterates through the list of replicated
particles that have been selected on process q and computed on process q + 1.

7



Process q-1 Process q Process q+1

Selected particles (q-1) Selected particles (q) Selected particles (q+1)

Replicated particles Replicated particles Replicated particles 

Detection by comparison

Copy

Copy

Copy

Corrupted particle Error propagation
Replicated particlesParticles

Interpolation

Error

Figure 3: SPR step 3: error detection. An error (e.g. a bit flip) has corrupted
the data associated with a particle (in red). When the selected particle (in green)
that is a neighbor of the corrupted particle is updated via interpolation over its
neighbors, the error is propagated and the data of the selected particle becomes
corrupted. SPR detects the effects of this silent error from the corrupted particle
by comparing the data of the selected particles on q with their replica on the
target process q + 1.

For each selected particle, it compares the data obtained on process q + 1,
corresponding to the replica, with the data obtained on process q, corresponding
to the original particle. If the data differ, an error has been detected.

2.4 Limitations
The SPR detection capabilities are limited to errors that propagate. SPH codes
typically simulate several complex physical phenomena in the same application.
Some particle datasets, such as the positions of the particles, are used very
often during interpolation throughout the simulation. The data is read and
used multiple times in different interpolation steps. An error in such datasets is
more likely to propagate, and therefore to be detected, while errors in datasets
than are used less often, such as particle particle densities, are less likely to
propagate and may not always be detected.

Note that this approach is limited to deterministic calculations and that
round-off errors are expected and need to be accounted for. This is typically
achieved by allowing k lower order bits to differ. The SPH method is entirely

8



Algorithm 3 Error-detection algorithm for process q

procedure Error-Detection(Sq, Sq−1)
Set error to false
Send dataq(Sq−1) to process q − 1
Receive dataq+1(Sq) from process q + 1
for particle p in Sq do

if dataq+1(p) differs from dataq(p) then
Set error to true

end if
end for
return error

end procedure

deterministic, and in the experiments performed in this work, no round-off errors
or truncated values were encountered.

2.5 Error Correction
Even though the main focus of this work is on the detection of SDCs, it is
possible to combine the proposed detector with other error-detection and cor-
rection methods. Checkpointing with rollback recovery [17, 23] is the de-facto
general-purpose recovery technique in high-performance computing. Finding
the optimal checkpointing interval [7,19,21,49] or the optimal recovery method
for SPH codes is beyond the scope of this paper.

Because the SPR error detector is used in every simulation time-step, it is
possible to safely checkpoint the state of the simulation if no error was detected.
Then, whenever a new error is detected, the simulation can simply rollback to
the last correct checkpoint and re-execute from there. For completeness, this
work implements checkpointing using the Fault-Tolerance Interface (FTI) [3].

3 Experimental Evaluation
In this section, we describe the experiments conducted with two test simulations
commonly used in astrophysics. The goal of these experiments is two-fold:
(1) experimentally assess the detection capabilities of SPR through an error
injection campaign; and (2) assess the performance of the proposed approach
at scale.

3.1 Experimental Setup
SPR implementation into a production SPH code SPR has been incor-
porated in SPHYNX4 [12], an SPH code with focus on astrophysical simulations.
The incorporation of SPR into SPHYNX comprises the implementation of Al-
gorithms 1, 2, and 3 presented in Section 2. SPHYNX includes state-of-the-art
SPH methods that allow it to address subsonic hydrodynamical instabilities
and strong shocks, which are ubiquitous in astrophysical scenarios. SPHYNX is

4Freely available at https://astro.physik.unibas.ch/sphynx

9

https://astro.physik.unibas.ch/sphynx


implemented in Fortran and uses the message-passing interface (MPI) for inter-
process communication and the open multi-processing interface (OpenMP) for
intra-process/inter-threads data sharing. Note that compared to the original
SPHYNX code, which counts ∼ 30, 000 lines of code, less than 300 additional
lines of code were added by SPR as a module for SPHYNX. In the following, the
term SPHYNX denotes the original code, and SPHYNX+SPR denotes the ver-
sion of the code extended with SPR. SPHYNX was used to run two different test
simulations: (1) the Evrard collapse (EC) [25], which studies the gravitational
collapse of a gaseous cloud and is a common test to evaluate the correctness of
the coupling of hydrodynamics and self-gravity; and (2) the wind-bubble inter-
action test (WB) [1], which studies the interaction of a supersonic wind with a
high-density colder bubble in pressure equilibrium.

Choice of number of neighbors The number of neighbors per particle must
cover the area of influence of the interpolation kernel in a reasonably homoge-
neous way, and is, therefore, linked to the type of SPH kernel used in the
simulation. In general, 102 neighbors is a very common value found in the
bibliography, for frequently used SPH kernels in 3D simulations. Unlike the
kernel used in SPHYNX (Sinc kernel [13]), other SPH kernels, e.g., Wendland
kernel [20], have a much longer radius and, as a consequence, must use larger
amounts of neighbors (e.g., 5× 102). These choices are made after an empirical
iterative process in the SPH history and are proven to be adequate to balance
accuracy and computational cost, while suppressing numerical instabilities, like
particle pairing.

Experiments For each test simulation, different parameters were passed to
SPHYNX: a file containing the initial conditions, the corresponding number of
particles, and other parameters specific to each test. During the time this work
was performed, the initial conditions for only three tests cases were available:
an EC test simulation with 65, 536 particles that was used to experiment with
error-injection and detection, and two larger EC and WB test simulations with
1, 000, 000 and 3, 157, 385 particles, respectively, that were used to assess the
scalability of SPR. Generating initial conditions for different numbers of parti-
cles is a non-trivial process. Therefore, this work employs a set of strong-scaling
experiments to assess the performance at scale for the proposed SPR method.
Table 1 summarizes the different experiments and the corresponding parameters
used. Error-injection and error-detection experiments were conducted on a small
scale system with 20 nodes named miniHPC, while strong-scaling experiments
were done the Piz Daint supercomputer with up to 256 nodes.

3.2 Error-Injection and Error-Detection Experiments
In this section, an error-injection and detection campaign was performed us-
ing the ECsg test simulation described in Table 1. The goal was to experi-
mentally assess the detection capabilities of SPR. Specifically, the focus was
on measuring the recall and the precision of the detector, where the precision
is defined as 100 ×

(
1− #false-positives

#errors detected

)
, and the recall is defined as 100 ×

#errors detected
#errors detected+#errors undetected .

10



Experiment target Error-injection Strong-scaling
Test simulation ECsg EC WB
#Processes 16 4-256 4-256
#Threads/process 20 12 12
#Particles 65, 536 1, 000, 000 3, 157, 385
Self-gravity Yes Yes No
HPC system miniHPC Piz Daint
#Neighbors 100

Table 1: Design of target experiments

A golden set of results was first created by running two time-steps of the ap-
plication in an error-free environment. To inject errors, an additional thread was
created in each process to inject single bit-flips into the data of the application
during its execution. The timing of the error to be injected is critical : if it is in-
jected too early in a time-step, the error may be overwritten and masked, while
if it is injected too late (after propagation occurred), it may not be detected by
SPR.

The simulation repeatedly executed the same two time-steps as in the golden
set: a single bit-flip was injected at a random time and a random data location
within the first time-step, and results were collected at the end of the second
time-step. The injected error was masked if all datasets were identical to the
ones in the golden set, detected if SPR raised a flag, and undetected other-
wise. False-positive errors are also counted, which would have been observed
if SPR had raised a flag while there was no error. However, no false-positives
were observed in the experiments, which means that SPR has an experimentally
measured precision of 100%.

Position Mass Energy Velocity Density
0

20

40

60

80

100

Fr
ac

tio
n

of
to

ta
le

rr
or

s
(%

)

99.9 92.2 98.2 99.9 90.6
Recall (%)

Masked
Undetected
Detected

(a) Significant errors
Position Mass Energy Velocity Density

0

20

40

60

80

100

Fr
ac

tio
n

of
to

ta
le

rr
or

s
(%

)

99.9 89.9 85.1 87.5 64.6
Recall (%)

Masked
Undetected
Detected

(b) All errors

Figure 4: Fraction of errors detected, undetected, and masked for five particle
datasets, where (a) only accounts for significant errors (in the sign, exponent, or
first 5 digits), while (b) accounts for all errors (in any of the 16 decimal digits).
25, 000 errors were injected over the execution of 50, 000 simulation time-steps.

To quantify the recall, experiments were performed of the most five critical
particle datasets, namely position, mass, internal energy, velocity and density.
Each one of these datasets holds as many 64-bits double-precision numbers as

11



there are particles in the simulation, and up to three times more for multi-
dimensional datasets, such as positions and velocities. Following the IEEE
754 number representation, bit 64 encodes the sign, bits 63 to 53 (included)
encode the exponent, and bits 53 to 1 encode the fraction or mantissa, which
corresponds to approximately 16 decimal digits of precision. For each of these
datasets, 5, 000 bit-flips were injected in random processes, particles, and bit
positions, for a total of 25, 000 errors injected over the execution of 50, 000
simulation time-steps.

The results of the error-injection and detection campaign are presented in
Figure 4. Note that certain SDCs fall into the significant errors category. These
errors correspond to an absolute difference greater than 10−6 between the cor-
rupted and the golden data. Most detection techniques focus only on significant
errors and will fail to detect less significant errors (of which many of them may
be impactful). In fact, only a comparison with the actual correct data can reveal
them, which SPR is able to perform.

The differences in the number of detected, masked, and undetected errors
for different datasets are due to several factors. Certain particle datasets, such
as positions, are critical to the SPH method. They are used in almost every
computational step of the workflow, which greatly increases the probability that
an error is propagated, and therefore detected by SPR. Other particle datasets,
such as density, can be recomputed from other datasets, and are less frequently
used in the computational workflow. Therefore, the probability that an error is
masked is higher, and there are fewer opportunities for SPR to detect it.

4 8 16 32 64 128 256
MPI Ranks

0

2

4

6

8

10

A
vg

.
tim

e
pe

rt
im

e-
st

ep
(s

) SPHYNX+SPR
SPHYNX

(a) Average execution time per time-step (EC)

4 8 16 32 64 128 256
MPI Ranks

0

5

10

15

A
vg

.
tim

e
pe

rt
im

e-
st

ep
(s

) SPHYNX+SPR
SPHYNX

(b) Average execution time per time-step (WB)

Figure 5: Average time needed to complete one time-step for the EC test with
the resilient code (SPHYNX+SPR) and the original version (SPHYNX) for the
EC test (a) and the WB test (b).

3.3 Strong Scaling Experiments
Overall, the measured recall was always greater than 0.91, and as high as 0.999
for significant errors. The recall is only slightly lower when accounting for all
errors below the current precision limit.

12



4 8 16 32 64 128 256
MPI Ranks

0

2

4

6

8

10
A

vg
.

tim
e

pe
rt

im
e-

st
ep

(s
) Build Tree

Find Neighbors
Ghost Selection
SPH kernels

Self-Gravity
Update
Communications

(a) Execution break down for SPHYNX+SPR by
computational workflow step within a single time-
step (EC)

4 8 16 32 64 128 256
MPI Ranks

0

5

10

15

A
vg

.
tim

e
pe

rt
im

e-
st

ep
(s

) Build Tree
Find Neighbors
Ghost Selection
SPH kernels

Self-Gravity
Update
Communications

(b) Execution break down for SPHYNX+SPR by
computational workflow step within a single time-
step (WB)

Figure 6: Break down by workflow step of the time needed to complete one
time-step for the EC test (a) and WB test (b) with the resilient code (SPH-
YNX+SPR) and the original version (SPHYNX).

To assess the performance of SPR at scale, strong-scaling experiments were
conducted on the EC and WB test cases, as described in Table 1.

Each experiment was performed by running two versions of SPHYNX, the
original version (SPHYNX) and the resilient version (SPHYNX+SPR). As the
focus of this experiment is on assessing the performance of error-detection at
scale, given the long execution time requirements for such simulations, the num-
ber of time-steps of the simulation was set to 20, while a full SPH simulation
would typically require several thousands time-steps. For each execution, we
have excluded the first 10 time-steps that correspond to the SPH initialization
phase and are not representative of the general performance behavior of the
SPH code. Overall, the reported execution time of each test case is an average
of a total of 100 time-steps for 10 executions.

Figures 5a and 5b present the average execution time needed to complete a
single time-step for both SPHYNX and SPHYNX+SPR, for the EC and WB
test cases, respectively, when executed on 4 to 256 computing nodes, each with
12 computing cores. In both cases, it can be observed that SPHYNX+SPR
yields a low overhead, never exceeding 5% and 10% for the EC and WB test
cases, respectively. This corresponds to the case with the largest number of
particles per node.

Figures 6a and 6b illustrate a break down of the execution time of SPHYNX+SPR
by the main computational workflow steps, including the time to select parti-
cles and the total communication time. It can be seen that the algorithm to
select particles represents at most 2.6% of the time needed to complete a single
time-step. The total cost of detection never exceeds 0.1% of the total execution
time and is not shown in these figures.

Overall, both SPHYNX and SPHYNX+SPR scale very well with increas-
ing node count, the main performance limitations being: (1) the sequential
implementation of the Build tree step SPHYNX; and (2) the increasing com-
munication cost, which is negligible when executing on 4 computing nodes, but

13



a dominant factor when executing on more than 128 nodes.

4 8 16 32 64 128 256
MPI Ranks

0.0

0.1

0.2

0.3

0.4

0.5

A
vg

.
C

C
R

SPHYNX+SPR
SPHYNX

(a) Average CCR (EC)

4 8 16 32 64 128 256
MPI Ranks

0.0

0.1

0.2

0.3

0.4

0.5

A
vg

.
C

C
R

SPHYNX+SPR
SPHYNX

(b) Average CCR (WB)

Figure 7: Average communication to computation ratio (CCR) per time-step for
the EC test (a) and the WB test (b) with the resilient code (SPHYNX+SPR)
and the original version (SPHYNX).

Figures 7a and Figure 7b show the average communication to computation
ratio (CCR) for the EC and WB test simulations, respectively. For both versions
of the code, the CCR ratio steadily increases with the number of nodes. Yet, de-
spite requiring multiple additional inter-process communications, the difference
with between SPHYNX and SPHYNX+SPR remains very small. The signifi-
cant increase in overhead on 256 nodes (also shown in Figure 6a and Figure 6b)
is mainly due to having too few particles per node.

3.4 Summary and Discussion
The experimental results show that SPR can practically be incorporated into
commonly used astrophysical SPH test simulations with minimal changes to the
original code, and with low additional overhead, ranging from 1% to 10% for
the EC and WB test cases.

SPH simulations are expected to use more particles in production runs (i.e.
up to 1012), which results in greater particle counts per process and greater
neighbor count per process (i.e. several hundreds) in some scenarios. Conse-
quently, SPR is expected to deliver improved performance on large-scale SPH
simulations: an increase in both the number of particles and number of neigh-
bors per particles will lead to fewer selected particles, and, thus, less overhead
overall.

4 Related Work
Complete redundancy The use of redundant MPI processes for error detec-
tion has been widely analyzed in the last decade [16,18,24,26,27,40,50]. Unlike
these full-process or full-task replication efforts, the present work employs se-
lective sub-process or sub-task duplication (illustrated in Figure 2) of a selected

14



part of the work assigned to a process or a task that corresponds to the parti-
cle selected for replication. While dual modular redundancy or triple modular
redundancy incurs 100% and 200% additional computational overhead, respec-
tively, SPR only replicates 1 − 10% of the application with a 1 − 10% added
overhead.

Partial redundancy Partial redundancy has been studied to decrease the
overhead of complete redundancy [22,46–48]. Adaptive partial redundancy has
also been proposed wherein a subset of processes is dynamically selected for
replication [30]. Partial replication (using additional hardware) of selected MPI
processes has been combined with prediction-based detection to achieve SDC
protection levels comparable with those of full duplication [9, 10, 36]. The pro-
posed SPR approach differs from the existing partial redundancy approaches in
that it protects the data of the entire application (as opposed to a subset) by
selectively duplicating only a subset of the computations within processes. To
the best of our knowledge, this is the first time such methods are applied to
SPH.

Detection via Interpolation Silent error detectors based on data analyt-
ics use several interpolation techniques, such as time series prediction [8] and
multivariate interpolation [2, 5, 6], to interpolate the next value of a compu-
tational point based on spatial and temporal data smoothness. Multivariate
interpolation has been used to detect and correct SDCs in computational fluid
dynamics [5], where the approach achieves 99.8% precision and low recall. Ad-
ditional tests on synthetic benchmarks achieved a maximum of 90% recall at 1%
overhead [6]. To ensure that the false-positive rate remains well below the SDC
rate, a high detection precision supersedes a high recall. As shown in Section 3,
SPR yields 100% precision (i.e. no false-positives) and a high recall for selected
data-fields.

Algorithm-based fault tolerance (ABFT) is another error detection technique
which uses checksums to detect up to a certain number of errors and is currently
only suitable for linear algebra kernels [11,32,42].

5 Conclusion and Future Work
In this work, we proposed a novel silent data corruption (SDC) detection method,
namely selective particle replication (SPR), and we implemented it in SPHYNX,
a production smoothed particle hydrodynamics (SPH) simulation code.

SPR comprises of three simple, yet efficient, algorithms to select the parti-
cles for which to replicate the computations and data of selected particles onto
different processes, and to compare the values of the original particles against
the data of their replica, to detect SDCs during execution.

The error-detection capabilities of SPR were experimentally evaluated through
an error-injection and detection campaign. Not only is SPR able to detect
91 − 99.9% of the injected errors (i.e., DRAM bit-flips), it also does not raise
any false-positives. In addition, experiments conducted on an HPC system
demonstrate the scalability of SPR in production SPH codes, at an overhead of
1− 10%.

15



Because SPR is scalable, non-intrusive and precise, it can easily be combined
with other error-detection methods, to detect errors that could escape SPR’s
detection coverage. Furthermore, SPR can also be applied to other classes of
applications, e.g., N-body simulations, stencils, and computational fluid dynam-
ics. Whether SPR can accurately detect errors in such applications is a topic
that deserves further investigation.

Acknowledgement
This work has been supported by the Swiss Platform for Advanced Scientific
Computing (PASC) project SPH-EXA and by a grant from the Swiss National
Supercomputing Centre (CSCS) under project ID c16.

References
[1] O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, L. Mayer,

A. Gawryszczak, A. Kravtsov, Å. Nordlund, F. Pearce, V. Quilis, D. Rudd,
V. Springel, J. Stone, E. Tasker, R. Teyssier, J. Wadsley, and R. Walder.
Fundamental differences between SPH and grid methods. Monthly Notices
of the Royal Astronomical Society, 380:963–978, Sept. 2007.

[2] L. Bautista Gomez and F. Cappello. Detecting silent data corruption
through data dynamic monitoring for scientific applications. In Proceed-
ings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 381–382, New York, NY, USA,
2014. ACM.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,
and S. Matsuoka. FTI: High performance fault tolerance interface for hybrid
systems. In 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pages 1–12, Nov 2011.

[4] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. Un-
protected computing: A large-scale study of DRAM raw error rate on a
supercomputer. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
55:1–55:11, Piscataway, NJ, USA, 2016. IEEE Press.

[5] L. A. Bautista-Gomez and F. Cappello. Detecting and correcting data
corruption in stencil applications through multivariate interpolation. In
2015 IEEE International Conference on Cluster Computing, CLUSTER
2015, Chicago, IL, USA, September 8-11, 2015, pages 595–602, 2015.

[6] L. A. Bautista-Gomez and F. Cappello. Exploiting spatial smoothness in
HPC applications to detect silent data corruption. In 17th IEEE Interna-
tional Conference on High Performance Computing and Communications,
HPCC 2015, 7th IEEE International Symposium on Cyberspace Safety and
Security, CSS 2015, and 12th IEEE International Conference on Embedded
Software and Systems, ICESS 2015, New York, NY, USA, August 24-26,
2015, pages 128–133, 2015.

16



[7] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns
to cope with fail-stop and silent errors. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 202–211, May 2016.

[8] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello.
Lightweight silent data corruption detection based on runtime data anal-
ysis for HPC applications. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC
’15, pages 275–278, New York, NY, USA, 2015. ACM.

[9] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Exploring
partial replication to improve lightweight silent data corruption detection
for HPC applications. In Euro-Par 2016: Parallel Processing - 22nd In-
ternational Conference on Parallel and Distributed Computing, Grenoble,
France, August 24-26, 2016, Proceedings, pages 419–430, 2016.

[10] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Toward
general software level silent data corruption detection for parallel applica-
tions. IEEE Trans. Parallel Distrib. Syst., 28(12):3642–3655, 2017.

[11] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault
tolerance applied to high performance computing. Journal of Parallel and
Distributed Computing, 69(4):410–416, 2009.

[12] R. M. Cabezón, D. García-Senz, and J. Figueira. SPHYNX: an accurate
density-based SPH method for astrophysical applications. Astronomy &
Astrophysics, 606:A78, Oct. 2017.

[13] R. M. Cabezón, D. García-Senz, and A. Relaño. A one-parameter family of
interpolating kernels for smoothed particle hydrodynamics studies. Journal
of Computational Physics, 227:8523–8540, Oct. 2008.

[14] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward
exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388,
Nov. 2009.

[15] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward
exascale resilience: 2014 update. Supercomputing Frontiers and Innova-
tions, 1(1), 2014.

[16] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. On the impact of
process replication on executions of large-scale parallel applications with
coordinated checkpointing. Future Generation Comp. Syst., 51:7–19, 2015.

[17] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[18] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P.
Walters. Programming models and development software for a space-based
many-core processor. In 4th Int. Conf. on Space Mission Challenges for
Information Technology, pages 95–102. IEEE, 2011.

17



[19] J. T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[20] W. Dehnen and H. Aly. Improving convergence in smoothed particle hy-
drodynamics simulations without pairing instability. Monthly Notices of
the Royal Astronomical Society, 425:1068–1082, Sept. 2012.

[21] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online
checkpoint solution under a two-level HPC checkpoint model. IEEE Trans-
actions on Parallel and Distributed Systems, 28(1):244–259, Jan 2017.

[22] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engel-
mann. Combining partial redundancy and checkpointing for HPC. In 2012
IEEE 32nd International Conference on Distributed Computing Systems
(ICDCS), pages 615–626, June 2012.

[23] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing
Survey, 34:375–408, 2002.

[24] C. Engelmann and S. Boehm. Redundant execution of HPC applications
with MR-MPI. In Proceedings of the 10th IASTED International Confer-
ence on Parallel and Distributed Computing and Networks, PDCN 2011,
04 2011.

[25] A. E. Evrard. Beyond N-body - 3D cosmological gas dynamics. Monthly
Notices of the Royal Astronomical Society, 235:911–934, Dec. 1988.

[26] K. Ferreira, J. Stearley, J. H. Laros, R. Oldfield, K. Pedretti, R. Brightwell,
R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the viability of process
replication reliability for exascale systems. In Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 1–12,
Nov 2011.

[27] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. B. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for large-
scale high-performance computing. In Conference on High Performance
Computing Networking, Storage and Analysis (SC), page 78, 2012.

[28] D. García-Senz, R. M. Cabezón, and J. A. Escartín. Improving smoothed
particle hydrodynamics with an integral approach to calculating gradients.
Astronomy & Astrophysics, 538:A9, Feb. 2012.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

[30] C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault
tolerance on large scale systems using application malleability. Procedia
Computer Science, 9:166 – 175, 2012.

[31] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics
- Theory and application to non-spherical stars. Monthly Notices of the
Royal Astronomical Society, 181:375–389, Nov. 1977.

18



[32] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for ma-
trix operations. IEEE Trans. Comput., 33(6):518–528, 1984.

[33] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic Rays Don’t Strike
Twice: Understanding the Nature of DRAM Errors and the Implications
for System Design. In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 111–122, New York, NY, USA, 2012. ACM.

[34] L. B. Lucy. A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82:1013–1024, Dec. 1977.

[35] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to
improve computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[36] X. Ni and L. V. Kale. FlipBack: Automatic Targeted Protection against
Silent Data Corruption. In Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 335–346, Nov 2016.

[37] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. A large-scale
study of soft-errors on GPUs in the field. In 2016 IEEE International
Symposium on High Performance Computer Architecture, pages 519–530,
March 2016.

[38] G. Oger, D. L. Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Sou-
magne, and J.-G. Piccinali. On distributed memory MPI-based paralleliza-
tion of sph codes in massive HPC context. Computer Physics Communi-
cations, 200:1 – 14, 2016.

[39] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM
at ground level. IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[40] M. W. Rashid and M. C. Huang. Supporting highly-decoupled thread-level
redundancy for parallel programs. In Conf. on High-Performance Computer
Architecture (HPCA), pages 393–404. IEEE, 2008.

[41] S. Rosswog. Boosting the accuracy of SPH techniques: Newtonian and
special-relativistic tests. Monthly Notices of the Royal Astronomical Soci-
ety, 448:3628–3664, Apr. 2015.

[42] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant pre-
conditioned conjugate gradient for sparse linear system solution. In ICS.
ACM, 2012.

[43] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji,
J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A.
Debardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist,
R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra,
T. Munson, R. Schreiber, J. Stearley, and E. V. Hensbergen. Address-
ing failures in exascale computing. Int. J. High Perform. Comput. Appl.,
28(2):129–173, 2014.

[44] V. Springel. Smoothed Particle Hydrodynamics in Astrophysics. Annual
Reviews of Astronomy and Astrophysics, 48:391–430, Sept. 2010.

19



[45] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stear-
ley, J. Shalf, and S. Gurumurthi. Memory errors in modern systems: The
good, the bad, and the ugly. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’15, pages 297–310, New York, NY, USA, 2015.
ACM.

[46] J. Stearley, K. Ferreira, D. Robinson, J. Laros, K. Pedretti, D. Arnold,
P. Bridges, and R. Riesen. Does partial replication pay off? In IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops
(DSN 2012), pages 1–6, June 2012.

[47] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. Programmer-
directed partial redundancy for resilient hpc. In Proceedings of the 12th
ACM International Conference on Computing Frontiers (CF), pages 47:1–
47:2, New York, NY, USA, 2015. ACM.

[48] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. Designing
and Modelling Selective Replication for Fault-Tolerant HPC Applications.
In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 452–457, May 2017.

[49] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

[50] J. Yu, D. Jian, Z. Wu, and H. Liu. Thread-level redundancy fault tolerant
cmp based on relaxed input replication. In 2011 6th International Con-
ference on Computer Sciences and Convergence Information Technology
(ICCIT), pages 544–549, Nov 2011.

[51] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld,
and C. Montrose. Cosmic ray soft error rates of 16-Mb DRAM memory
chips. IEEE Journal of Solid-State Circuits, 33(2):246–252, 1998.

20


	1 Introduction
	2 Selective Particle Replication
	2.1 Selection
	2.2 Replication
	2.3 Detection
	2.4 Limitations
	2.5 Error Correction

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Error-Injection and Error-Detection Experiments
	3.3 Strong Scaling Experiments
	3.4 Summary and Discussion

	4 Related Work
	5 Conclusion and Future Work

