
HAL Id: hal-02103700
https://inria.hal.science/hal-02103700

Submitted on 18 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scalability of the NewMadeleine Communication Library
for Large Numbers of MPI Point-to-Point Requests

Alexandre Denis

To cite this version:
Alexandre Denis. Scalability of the NewMadeleine Communication Library for Large Numbers of
MPI Point-to-Point Requests. CCGrid 2019 - 19th Annual IEEE/ACM International Symposium in
Cluster, Cloud, and Grid Computing, May 2019, Larnaca, Cyprus. �hal-02103700�

https://inria.hal.science/hal-02103700
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Scalability of the NewMadeleine Communication
Library for Large Numbers of MPI Point-to-Point

Requests
Alexandre DENIS

Inria Bordeaux – Sud-Ouest, France
E-mail: Alexandre.Denis@inria.fr

Abstract—New kinds of applications with lots of threads or
irregular communication patterns which rely a lot on point-to-
point MPI communications have emerged. It stresses the MPI
library with potentially a lot of simultaneous MPI requests for
sending and receiving at the same time. To deal with large
numbers of simultaneous requests, the bottleneck lies in two
main mechanisms: the tag-matching (the algorithm that matches
an incoming packet with a posted receive request), and the
progression engine.

In this paper, we propose algorithms and implementations that
overcome these issues so as to scale up to thousands of requests
if needed. In particular our algorithms are able to perform
constant-time tag-matching even with any-source and any-tag
support. We have implemented these mechanisms in our New-
Madeleine communication library. Through micro-benchmarks
and computation kernel benchmarks, we demonstrate that our
MPI library exhibits better performance than state-of-the-art
MPI implementations in cases with many simultaneous requests.

I. INTRODUCTION

New kinds of HPC applications have emerged, that rely
on a communication scheme different from regular MPI
applications. For examples multi-threaded stencil applications
push MPI implementations beyond their limits [1]. Applica-
tions using a task-based runtime system [2], [3] are another
class of applications that stresses MPI communications in an
unusual way: the MPI communication schemes when driven
by a task-based runtime and when written explicitly in the
application are radically different. Most notably, for heavy
communication phases, regular MPI applications typically use
collective operations, that let the MPI library decide on the
communication graph and scheduling. By contrast, a task-
based runtime translates data dependencies as a set of point-to-
point communications. Since MPI collective operations must
be executed by all involved nodes, it does not fit the model of
task-based runtimes with unsynchronized nodes.

However, most existing MPI libraries are not designed with
such scheme in mind. They are not able to undergo a large
number of unrelated point-to-point communication requests
at the same time. Scalability issues arise at multiple levels:
contention for driver access, linear tag-matching algorithms,
and contention on progression mechanisms.

In this paper, we propose algorithms and implementations
that overcome this issues so as to scale up to as many simul-
taneous requests as wanted in the communication library. We

propose algorithms that are able to perform tag-matching in
constant time in any case, and we propose mechanisms so that
the progression engine can sustain thousands of simultaneous
requests without contention.

In short, this paper makes the following contributions:
• we propose an algorithm for tag-matching in constant

time even in the presence of MPI_ANY_SOURCE and
MPI_ANY_TAG requests.

• we propose original mechanisms to reduce contention
between requests submission and progression, involving
lock-free submission.

• we implemented these solutions in our NewMadeleine [4]
communication library.

• we performed a performance comparison of our solution
with a large panel of state-of-the art MPI libraries.

The rest of this paper is organized as follows. Section II
presents related works about scalability for large number of
point-to-point requests. Section III draws a state of play of
bottlenecks on our path to scalability. Section IV introduces
an algorithm for matching in constant time. Section V presents
solutions so that bursts of requests submissions do not hinder
communication progression. In Section VI, we evaluate our
solution and compare it against other MPI libraries, and
Section VII concludes.

II. RELATED WORKS

Scalability of MPI libraries for large number of point-to-
point requests has already been talked about in some related
works about performance of tag matching and message queues,
and performance of progression.

Some work has been published [5][6] about analysis of
message queues in some applications. Solutions [7][8] based
on context or node ranks have been proposed, but do not
address scalability when large number of tags are used.

A bin-based matching algorithm [9] has been proposed for
MPICH. The algorithm is not constant-time as soon as there
are wildcard requests (any source or any tag), and the bin based
hashing structures are quite different from ours. We include
MPICH and Intel MPI in our benchmark in Section VI and
observe that our algorithm behaves differently.

An adaptive algorithm for tag-matching has been pro-
posed [10] for MVAPICH2, its bin-based variant is using hash-
tables which is related to our proposed solution. However,

authors say little details about the algorithm itself, do not
evaluate their algorithm with regard to number of requests,
and do not compare with other MPI libraries, thus it is hard
to tell how close it is. Our own benchmark (see Figure 3 in
Section VI) leads us to believe that our solution and theirs is
quite different.

Mechanisms for fine-grain locking have been pro-
posed [11][7], which in some case should improve scalability
with the number of requests, but our solution pushes the
concept further.

Finally, the decoupling between the upper and lower layers
of the communication library results directly from the design
of NewMadeleine, which was described in previous work [4].

III. STUDY OF BOTTLENECKS

In this section, we study the bottlenecks that arise when
a user submits a large number of point-to-point requests to
an MPI library. We have identified three possible bottlenecks:
network, tag-matching, and progression.

A. Context of Study

Our work has been done in our NewMadeleine communica-
tion library [4]. NewMadeleine exhibits its own native interface
and in addition comes with a thin MPI layer called MadMPI.
The work described in this paper is located in the lower layers
of NewMadeleine and thus benefits to both MadMPI and users
utilizing NewMadeleine native interface.

The originality of NewMadeleine compared to other com-
munication libraries and MPI implementations is that it de-
couples the network activity from the calls to the API by the
user. In the interface presented to the end-user, primitives send
and receive messages. NewMadeleine applies an optimizing
strategy so as to form packets ready to be sent to the network.
A packet may contain multiple messages (aggregation), a
message may be split across multiple packets (multi-rail), and
messages may be actually sent on the wire out-of-order if the
packet scheduler decides so.

NewMadeleine core activity is triggered by the network.
When the network is busy, messages to be sent are simply
enqueued; when the network becomes ready, an optimization
strategy is called to form a new packet from the pending
messages. For receiving, large messages use a rendez-vous
protocol. For small messages, a receive is always posted to the
driver, and all the activity is made of up-calls (event notifiers)
triggered from the lowest layer when the receive is completed.

B. Driver and network

At the lowest level, when sending lots of messages simulta-
neously, the networking hardware or its driver (kernel or user-
space library, such as libibverbs) may cause a bottleneck.
The reasons may be various, such as competition to access
the physical medium, interleaved memory transfers that defeat
locality, non-scalable driver, driver with a big lock, etc.

This issue may be encountered by regular MPI implemen-
tations that directly map user-level messages to network-level
packets. In this case, a burst of MPI requests directly triggers

a burst of network submissions; conversely, lots of pending
MPI receive requests directly maps to lots of pending receive
requests in the driver, which may be able – or not – to manage
lots of pending requests.

This is not the case for NewMadeleine since, by design,
the requests submitted to the network are decided by New-
Madeleine core. In particular, there will always be at most
one send request per peer active at any time. On the receiving
side, NewMadeleine always keeps one receive request posted
globally (for drivers/networks that support any source), what-
ever the user posted for receive, for small packets. For large
packets, there will always be at most one active receive request
per peer.

As a summary, by design NewMadeleine is less prone to
overloading the network/driver than MPI libraries that directly
map user-level requests to network-level requests.

C. Tag-matching

On the path of incoming messages, tag-matching is the
next bottleneck. When a packet is received from the network
hardware, it goes through a step called tag-matching: the
MPI library looks up for a pending receive request previously
posted by the user with a combination of specified commu-
nicator, source and tag that matches the one of the received
packet. If there is no matching, the packet is stored in a list
of unexpected packets. When a user posts a receive requests,
the MPI library first check in the list of unexpected packets
whether it already arrived; this is another aspect of matching.

A naive implementation would use a list for both steps: to
store pending receive requests, and to store unexpected pack-
ets. However, a list-based implementation leads to sequential
search in lists, with a complexity linear with the number of
requests or the number of unexpected packets. It causes a
scalability issue [1] with the number of posted receive requests
and scalability with the number of unexpected packets.

D. Progression and multi-threading

In order to amortize the cost of communications, appli-
cations try to overlap communication with computation by
using non-blocking communication primitives. This assumes
that communication actually progresses in background. To
ensure background progression, MPI libraries usually rely on
a progression thread or equivalent. It requires some locking
to protect the internal state of the library from concurrent
accesses from the progression thread and from application
threads at the same time.

A large number of pending requests causes the progression
thread to take more time for polling, thus with a naive
approach it holds the lock for a longer time. Conversely, an
application that submits bursts of requests will acquire the lock
many times. When combined, these phenomena are very likely
to cause contention on the lock.

It means that bursts of requests submission will prevent the
progression thread to acquire the lock, so progression will be
slower. And longer progression caused by longer queues will
delay application threads waiting for the lock.

IV. CONSTANT-TIME REQUEST MATCHING ALGORITHM

In this section, we present our constant-time request match-
ing algorithm that scales to large number of point-to-point
receive requests of any kind.

In common MPI libraries, matching is about pairing packets
with requests based on source, tag, and communicator. How-
ever, NewMadeleine in its native programming interface uses
the concept of sessions, which are multiplexing channels that
can be used by multiple libraries using NewMadeleine. The
session ID is included in the 96 bits of NewMadeleine internal
tags. In MadMPI, the MPI interface atop NewMadeleine, MPI
communicators are mapped to sessions, thus matching both
MPI tags and MPI communicators is done at once when
matching NewMadeleine internal tags. As a consequence, in
the following we will talk about matching tags and source, but
not communicators except where it makes sense to distinguish
communicators from tags in the case of partially-specified
requests in Section IV-A3.

A. Data Structures for Matching

Since matching is essentially a lookup operation, the key
for a good scalability is the data structure used to store
the manipulated elements, namely communication requests
(MPI_Recv, MPI_Irecv, ...), and unexpected packets ar-
riving before their matching receive request has been posted.

We distinguish three categories of receive requests, depend-
ing on their properties for lookup:

• fully-specified requests, which are requests with a speci-
fied receive tag and source, i.e. both the sender and the
tag are known in advance;

• wildcard requests, which are requests with wildcard for
both source and tag at the same time, i.e. the user gave
MPI_ANY_SOURCE as the source in the receive request,
and MPI_ANY_TAG as tag. In this case, neither source
nor tag are known in advance and will be determined
only at runtime depending on the next incoming packets.

• partially-specified requests, which are requests with one
wildcard for source or tag, but not both at the same time.
In this case, either the source or the tag is not known in
advance and will be determined at runtime depending on
the incoming packet that matches the specified part of the
request.

1) Matching fully-specified requests: To match incoming
packets with fully-specified receive requests already posted by
the user, we need a data structure that will allow a fast lookup
of the request by tag and by source. This case is easy since all
the matching information is known in advance, so we can use
a container indexed by the matching information, implemented
as a BST (binary search tree), as a hash-table, or any structure
used to implement associative arrays with fast lookup.

In NewMadeleine, we already have a structure attached
to each pair (source, tag) to store sequence numbers used
to reorder packets that may arrive out-of-order because of
multi-rail [12] or by the packet scheduler. This structure is
stored using a hash-table, which has in the general case a

constant-time lookup when doing an amortized performance
analysis [13]. Actually, the variable-time cost that needs to be
amortized is the re-hashing operation that happens on some
occasions when storing a new entry in the hash-table. Since we
insert an entry in the hash-table when creating a (source, tag)
pair, i.e. the first time we use this precise combination, and
always reuse it once it has been created, we are in the favorable
case where an entry is created once and looked-up many times
thereafter, thus the hypothesis for the amortized analysis are
true.

Since the lookup in the hash-table is in the communication
critical path, we want to avoid collisions at all costs to avoid
pathological behavior. Among the different ways of imple-
menting hash-tables, we choose linked lists, a.k.a separate
chaining (actually, separate chaining with list head cells, to
reduce cache miss) which is known [14] to reduce collisions
compared to open addressing. The drawback of linked lists is
that it uses dynamic memory allocation in case of collision,
which causes a performance penalty. However, it happens only
upon entry insertion, which we only do once the first time a
given (source, tag) pair is used. To even more avoid collisions,
our hash-tables use Jenkins one-at-a-time [15] hashing and
a prime number of cells, with a pre-computed list of prime
numbers.

To manage the case of multiple pending receive requests
on the same source and same tag, we actually attach a list
of requests to the entry in the hash-table. Since the MPI
specification [16] states that the matching operation must
respect packet ordering, we store pending requests in the
order they were submitted. The next matching request for the
given source and tag is then always at list head (accessed in
constant time), and new requests are stored at list tail (stored
in constant-time).

Matching a newly posted fully-specified receive request
with stored unexpected packets is symmetrical with the case
of matching incoming packets with fully-specified receive
requests.

We need an associative array to attach a list of unexpected
packets to their (source, tag) matching information. It is done
exactly the same with a list of unexpected packets, in the same
hash-table entry as above. The list is maintained ordered to
comply with MPI semantics, with arriving packets inserted
at list tail (constant-time) and dequeued from head (constant-
time) when a matching receive is posted.

2) Matching wildcard requests: To match wildcard requests
in both places — match posted requests with unexpected
packets, and match incoming packets with pending requests —
it is not possible to use hash-tables or any associative array
structures, since the precise (source, tag) pair is not known in
advance and consequently cannot be used as hashing key.

We treat them as a special case. We store wildcard requests
in a dedicated list, enqueued in chronological order, one list
per communicator. This way, if an incoming packet matches a
wildcard request, it is always the request at the head of the list,
extracted in constant time, without needing any linear search.

Symmetrically, unexpected packets are enqueued in a spe-
cial list, in chronological order, one list per communicator.
We notice that, at this point, unexpected packets are enqueued
in two separate lists: the list in the hash-table, for fully-
specified requests; and the list, for wildcard requests. Since
we use linked-lists, insertion and deletion is done in constant-
time. In particular, when a fully-specified request matches an
unexpected packet, we do not have to iterate over the wildcard
list to remove it from there, since we have a direct pointer
to the cell in the list. We will see later that the packet will
actually be stored in 4 different lists, using the same constant-
time mechanisms.

A tricky aspect of matching wildcard requests resides in how
we interleave wildcard requests and fully-specified requests,
i.e. what happens if an incoming packet matches both a pend-
ing fully-specified request and a pending wildcard request. The
MPI specifications states that requests should be processed
in order, so among all the requests that match the packet,
it should be delivered to the oldest request. However, since
wildcard requests and fully-specified requests are not stored
in the same list nor the same data structure at all, we cannot
rely on the order of the data structure.

To comply with this ordering semantics, we introduce a
request sequence number. A sequence number is given in
chronological order to the receive requests that have globally
been posted by the process. We use a 64 bits counter which is
large enough so that we do not have to worry about counter
overflow. When multiple requests are candidate for matching
with a given packet, their sequence number is compared so
as to determine which one was posted first and should get
data. The incrementation of the global counter to get the
next sequence number is no point of contention thanks to
mechanisms described in Section V-B.

3) Matching partially-specified requests: The
matching of partially-specified requests, i.e. requests on
MPI_ANY_SOURCE but not any tag, or requests on
MPI_ANY_TAG but not any source, is more tricky to get at
the same time constant-time matching and maintain the right
semantics for packet ordering.

We propose to add hash-tables by source and hash-tables
by tag, in addition to the hash-table by (source, tag) pairs.
Partially-specified requests are enqueued in an ordered list
stored as an entry in the appropriate hash-table — hashed by
tag if only tag is given, hashed by source if only source is
given. Since “any communicator” does not make any sense in
MPI, and since NewMadeleine embed the communicator ID
as part of the internal tags, as explained in Section IV, the hash
key for table by source is actually (source, communicator).

Symmetrically, unexpected packets are stored in hash-table
by source and the hash-table by tag, in addition to the hash-
table by (source, tag) pair and the special list for wildcard
requests (any source and any tag at the same time).

Upon packet arrival, four places need to be checked for
a receive request: the list for fully-specified requests (hashed
by pairs), both lists for partially-specified requests (hashed by
source and hashed by tag), and finally the list for wildcard

requests. In each list, only the head needs to be checked.
If multiple requests are candidate, then the request with the
lowest sequence number is selected. This whole operation is
performed in constant time. Symmetrically, when a receive
request is posted, a single place needs to be checked for
unexpected packets.

4) Data structures summary: As a summary, the data
structures for our solution are as follows:

• a hash-table with entries hashed by (source, tag) pairs.
Each entry contains an ordered list of fully-specified
pending receive requests and an ordered list of unex-
pected packets from the given source and tag.

• an ordered list of wildcard requests, and an ordered list
of unexpected packets, per communicator. Cells of list
of unexpected packets are shared between the global list
and the list in the hash-table.

• a hash-table with entries hashed by (source, communi-
cator). Each entry contains an orders list of partially-
specified receive requests where only source is given, and
a list of unexpected packets from the given source.

• a hash-table with entries hashed by tag. Each entry con-
tains an ordered list of partially-specified receive requests
where only tag is given, and a list of unexpected packets
on the given tag.

• a global counter to assign a sequence number to receive
requests, used as a time-stamp to check requests ordering.

In this solution, unexpected packets are enqueued in four
different lists but the cell is shared between lists. Receive
requests are enqueued in a single list, which one depends on
the kind of the request.

B. Matching Algorithm

1) Algorithm implementation: Building upon the presented
data structures, we use the following algorithms for packet
matching. The hash-table for fully specified requests is specs;
the hash-tables for partially-specified requests are tags (hashed
by tags, for any source) and src (hashed by source, for any
tag). The data structure to hold wildcard requests is wildcards.
Each entry (in hash-tables and wildcards itself) is made of
∗.reqs the list to contain pending requests and ∗.unexpected
the list to contain unexpected packets.

When a packet is received from the network, it goes through
the Algorithm 1 to find whether a matching receive request has
been posted previously.

When the user posts a receive request, it goes through the
Algorithm 2 to find whether a matching unexpected packet
has arrived previously.

The version of the algorithms presented here is a little bit
simplified for the sake of brevity. In particular, we assume here
that the lookup operation in the hash-table will always return
an entry, while in reality entries are lazily created – if lookup
fails, an entry containing an empty list is created and inserted
into the hash-table. Moreover, the removal of req from the list
in Algorithm 1 and the removal of unexpected packets from
the lists in Algorithm 2 are elided for readability, but do not
present any kind of difficulty. Finally, the wildcards structure

Algorithm 1 Matching algorithm upon packet arrival
packet arrival from source on tag tag
spec_entry ← lookup(specs.reqs, (source, tag))
spec_req ← head(spec_entry.reqs)
req ← spec_req
w_req ← head(wildcards.reqs)
if req = ∅ ∨ (w_req 6= ∅ ∧ w_req.seq < req.seq) then

req ← wildcard_req
end if
tags_entry ← lookup(tags.reqs, tag)
tags_req ← head(tags_entry.reqs)
if req = ∅ ∨ (tags_req 6= ∅ ∧ tags_req.seq < req.seq) then

req ← tags_req
end if
src_entry ← lookup(src.reqs, (source, comm))
src_req ← head(src_entry.reqs)
if req = ∅ ∨ (src_req 6= ∅ ∧ src_req.seq < req.seq) then

req ← src_req
end if
{No matching request; enqueue packet as unexpected}
if req = ∅ then

pushback(packet, spec_entry.unexpected)
pushback(packet, wildcards.unexpected)
pushback(packet, tags_entry.unexpected)
pushback(packet, src_entry.unexpected)

end if
return req

Algorithm 2 Matching algorithm upon receive request posted
receive request posted for source and tag
if source 6= ∅ ∧ tag 6= ∅ then

spec_entry ← lookup(spec.unexpected, (source, tag))
if ¬ empty(spec_entry.unexpected then

return head(spec_entry.unexpected)
else

pushback(request, spec_entry.reqs)
end if

else if source = ∅ ∧ tag = ∅ then
if ¬ empty(wildcards.unexpected) then

return head(wildcards.unexpected)
else

pushback(request, wildcard_reqs)
end if

else if source = ∅ then
src_entry ← lookup(src.unexpected, (source, comm))
if ¬ empty(src_entry.unexpected then

return head(src_entry.unexpected)
else

pushback(request, src_entry.reqs)
end if

else if tag = ∅ then
tags_entry ← lookup(tags.unexpected, tag)
if ¬ empty(tags_entry.unexpected then

return head(tags_entry.unexpected)
else

pushback(request, tags_entry.reqs)
end if

end if

is presented as if it were global, while in reality it is stored
in the communicator.

2) Complexity: Algorithms contain no loop, only basic
operations and control structures using only if, which is
obviously bounded in time. Operations on lists are: find the
head, enqueue an element at list tail, and remove an element
from list knowing a pointer on it; these operations are all
realized in constant time given that we use doubly linked lists.

Operations on hash-tables are insertion and lookup. Lookup

is a constant-time operation when there are no collisions; it
should be the case given that we use a good-enough hash
function and a prime number as hash-table size. This assertion
has been checked in practice through code instrumentation.
Insertion is done in bounded-time thanks to the use of incre-
mental rehashing [17]: when a rehashing is needed, only a few
entries are transfered from the old table to the new table at a
time (16 in our implementation), and rehashing is continued
in the next call to hashtable primitive until all entries have
been transfered. Compared to regular full rehashing that has
bounded time in average only through amortized analysis [13]
but may from time to time have linear complexity when
rehashing is needed, with incremental rehashing every single
insertion is done in bounded time which greatly reduces the
jitter.

As a summary, all operations are constant-time or bounded
in time, so both algorithms have a time complexity of O(1).
The constant “hidden” in the big-O notation is essentially three
look-ups in hash-tables, which is not so heavy.

3) Memory consumption: Regarding memory consumption,
let R be the number of posted requests and U the number of
unexpected packets. All data structures are hash-tables and
linked lists. A cell is allocated for every request (actually,
the request object itself acts as a linked-list cell) and for
every unexpected packet, leading to a space complexity of
the cells of O(R + U). The index of hash-tables is linear in
size with the number of contained elements: since our hash-
tables trigger rehashing when load reaches over 75%, and
since the size roughly doubles at each rehash (size follows a
series of prime numbers roughly doubling at each step), the
load stays between 37.5% and 75%, making the size of the
index linear with number of entries. If we assume requests and
packets may be of different sources and different tags, in the
worst case the number of elements in hash-tables is linear with
R+U . However, as an optimization, we only grow the hash-
table index and never shrink it, therefore the space complexity
is O(max(R)+max(U)). The constant “hidden” in the big-O
is essentially four pointers in the cells used to store unexpected
packets.

V. SCALABLE MULTI-THREADED PROGRESSION ENGINE

In this section, we present mechanisms to mitigate con-
tention in the communication progression engine, so as to
reach good scalability with a large number of point-to-point
requests. As exposed in Section III, bottlenecks come from
contention to acquire locks, and burst of requests submission
that prevent progression threads to acquire locks. Therefore
we propose mechanisms to reduce the number of lock ac-
quire/release cycles on the critical path and to hold it for a
shorter time.

A. Lock-free request submission

It seems natural to push data to the network as soon as a
send request is posted, and to call algorithm 2 as soon as a
receive request is posted by the user to get the fastest possible
completion. However, NewMadeleine being a multi-threaded

library [18], locking is needed around these methods which
access global state. Locking done from application threads on
NewMadeleine structures disturbs the background progression
engine which eventually forms a bottleneck that eventually
reduces the message rate.

We propose an original solution where the lock is dropped
on the request submission path: instead of immediately ac-
cessing global state as soon as the user posts a request, we
simply enqueue the request in a lock-free submission list, and
we completely rely on the asynchronous progression engine to
make the communication progress. In the case of non-blocking
communication primitives (MPI_Irecv, MPI_Isend), they
will be processed entirely in background. In the case of block-
ing primitives (MPI_Wait, MPI_Send and MPI_Recv),
during the wait phase, the thread is temporarily integrated
in the thread pool of the communication engine [18], which
makes progress all requests, and implements mechanisms [19]
to mitigate contention (adaptive passive wait).

B. Defer critical sections
We can push the same principle further and defer tasks that

would need to acquire a lock (or tasks that would need to
release a lock) instead of immediately acquiring/releasing the
needed lock.

The lock-free request submission uses such a mechanism:
requests are enqueued in a lock-free list; when the communi-
cation engine acquires the lock to make progression, it takes
benefit of the already acquired lock to dequeue request from
the lock-free list and to integrate them at the right place (in a
hash-table or in the list for wildcard requests).

We apply this principle to all other places where lock
acquire/release would be needed. In particular, NewMadeleine
being event-based, the receive path is essentially made of up-
calls from driver to the packet scheduling layer. When a driver
completes a packet receipt, instead of locking immediately, it
enqueues the packet in a lock-free list of completed packets
that will be dispatched later by the progression engine. Higher
in the stack, the end-user can register callbacks on requests (us-
ing NewMadeleine native interface, not MPI). These callbacks
are specified as being called with all locks released. Instead
of immediately releasing the lock to call the callback, then re-
acquiring the lock, we enqueue the event, and dispatch their
notification in batch just after we released the lock.

The same goes for the request sequence number introduced
in Section IV-A2. Since it is a global counter, it would
need locking if it were assigned upon request submission.
We choose to assign it only at the time where the progres-
sion engine already holds the lock and we dequeue requests
from the lock-free submission list. In practice, the lock that
protects global structures is only acquired for matching, i.e.
algorithms 1 and 2, and all pending operations that needs
the lock are executed while the lock has been acquired for
matching.

C. Lock as little as possible
Finally, the lock that has the lower cost is the lock that

is never acquired. We carefully refactored the library so as

to take locks as little as possible. In particular, all the low-
level activity at driver level runs without lock. Pushing a
packet on the network or pulling data from the network
doesn’t access the global state, only our driver private data,
which we designed to be isolated and thus re-entrant. For the
NewMadeleine core, locking is mandatory but, as described in
Section V-B, the lock acquisition is done mostly from inside
progression engine, decorrelated as much as possible from
the driver layer and from the user calls to the API. As a
consequence, most non-blocking calls to the library involve
no lock. Blocking calls are integrated with the policy of the
progression engine. No blocking lock is done: since locking is
done from inside the progression engine, a busy lock means
another thread is already making progression, so we give hand
instead of waiting to do something that was already done by
someone else. Hence we rely on non-blocking locking (a.k.a.
pthread_spin_trylock). Eventually, on the critical path
to send or receive data, the lock is acquired only once in most
cases.

VI. EVALUATION

In this section, we evaluate the performance obtained
by the mechanisms proposed in this paper and compare it
against state-of-the-art MPI libraries. Implementation has been
performed in the NewMadeleine communication library. We
evaluate it through its MPI layer called MadMPI.

We have run latency benchmarks to measure overhead, a
micro-benchmark to measure scalability with messages in or-
der and out-of-order, and a Cholesky factorization to measure
the impact on real-world computation codes. Most relevant
benchmarks, i.e. where a gain is expected, are represented with
larger graphs for better readability.

We have run the benchmarks on two different clusters.
The first one is inti from CEA. Nodes are dual Xeon
E5-2680 at 2.7 GHz, with 16 cores and 64 GB RAM, and
equipped with Connect-IB InfiniBand QDR (MT27600). The
default MPI implementation on this cluster is OpenMPI 1.8.
Since this version is ancient, for the sake of fairness we have
compiled OpenMPI 3.0, MPICH 3.2 with libfabric, and
MVAPICH2 2.3b for a large panel of MPI libraries.

The second one is plafrim. Nodes are dual-Xeon E5-2680
with 24 cores and 128 GB RAM, equipped with Intel Omni-
Path 100 Gb/s (HFI Silicon 100 Series). The default MPI
implementation on this cluster is OpenMPI 1.10. Since this
version is ancient, for the sake of fairness we have compiled
OpenMPI 3.0. As an alternative, Intel MPI 2017 is available as
a module. Additionally, we compiled MVAPICH2 2.3b with
PSM2.

A. Overhead

Since the mechanisms presented in this paper introduce a
significant amount of additional instructions on the communi-
cation critical path, we first measure the latency to evaluate
whether the overhead is acceptable.

We used the sendrecv benchmark from our MPI bench-
mark suite [20], [21] and ran it on the choice of MPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.25 1 4 16 64 256 1024

la
te

n
cy

 (
u
se

c.
)

Packet size (bytes)

MPI latency - inti-sandy

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
MVAPICH2 2.3b

Fig. 1. Ping-pong latency on cluster inti (InfiniBand).

libraries available on cluster inti. The benchmark performs
a pingpong on a pair of MPI ranks on different nodes. The
results are depicted in Figure 1. We observe that the difference
of latency between the various MPI implementations is small.
The latency measured for NewMadeleine is a little bit higher
than average, but not the worst. As a total, the cost of the
presented mechanisms on latency is bearable.

Further micro-benchmarks of collective communications,
one-sided communications, and NAS benchmarks have shown
that the overhead caused by the mechanisms presented in
this paper has a negligible impact on overall communication
performance.

B. Micro-benchmarks

To evaluate the behavior of MPI libraries in the presence of
large numbers of point-to-point requests, we have developed
our own benchmarks which are distributed in the MadMPI
benchmark suite [20], [21].

1) Benchmarks: The first benchmark is burst. It is based on
ping-pong between two nodes. The sender performs a burst of
N send of 1 byte with MPI_Isend, with a variable N , then
calls MPI_Waitall; the receiver posts a burst of N receive
of 1 byte with MPI_Irecv, then calls MPI_Waitall. This
benchmark evaluates only the ability for the MPI library
to sustain N simultaneous requests. However, all messages
being sent in order, on the same tag, even naive tag-matching
algorithms are expected to get good performance.

The second benchmark is shuffle. It is the same as the burst
benchmark except that messages are all sent on different tags,
and the receiver shuffles its tags set so as to post the receive
request in a random order. This benchmark is expected to
exercise the tag-matching algorithm, and looks more like the
communication scheme of irregular applications with lots of
point-to-point communications.

For both benchmarks, we compute the time to transfer a
single message (total time divided by N), and draw the time
in function of N . Since a barrier is used to synchronize nodes
to detect the end of the benchmark, it is not surprising that

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

u
se

c.
/r

e
q

Number of requests

MPI reqs - burst

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
MVAPICH2 2.3b

Fig. 2. Burst of reqs, in order, same tag, on cluster inti (InfiniBand)

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

u
se

c.
/r

e
q

Number of requests

MPI reqs - shuffle

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
MVAPICH2 2.3b

Fig. 3. Burst of reqs, out-of-order, multiple tags, on cluster inti (InfiniBand)

measured time may be higher than single-message latency for
small values of N ; however, this cost is amortized for higher
values of N .

2) Results on InfiniBand: The results we obtained on
cluster inti on InfiniBand are depicted in Figure 2 for the
burst benchmark.

We observe that for this benchmark, NewMadeleine,
MPICH and MVAPICH2 get almost constant-time results,
while both versions of OpenMPI collapse past approximately
160 requests, with a jump to more than 500µs (graph cropped
for the sake of readability). However, even if MPICH and
MVAPICH2 get results that converge asymptotically to a
constant, this constant is higher than the result obtained by
NewMadeleine.

The results for the shuffle benchmark that really measure
the performance of the tag-matching facility are depicted in
Figure 3. We observe that NewMadeleine gets a bounded time,
while MPICH and MVAPICH2 get a latency linear with the
number of requests. Both versions of OpenMPI are linear for
small numbers of requests, but still explode past roughly 120
requests. This graph clearly demonstrate the strength of our

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800

u
se

c.
/r

e
q

Number of requests

MPI reqs - burst

MadMPI/NewMadeleine
OpenMPI 1.10

OpenMPI 3.0
Intel MPI 2017

MVAPICH2 2.3b

Fig. 4. Burst of reqs, in order, same tag, on cluster plafrim (OmniPath)

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800

u
se

c.
/r

e
q

Number of requests

MPI reqs - shuffle

MadMPI/NewMadeleine
OpenMPI 1.10

OpenMPI 3.0
Intel MPI 2017

MVAPICH2 2.3b

Fig. 5. Burst of reqs, out-of-order, multiple tags, on cluster plafrim
(OmniPath)

tag-matching algorithm.
We have tested up to millions of concurrent requests (graph

not shown here): NewMadeleine always gets constant time per
requests, while no other MPI library was able to complete the
test in a reasonable time.

3) Results on Omni-Path: The results we obtained on
cluster plafrim on Intel Omni-Path are depicted in Figure 4
for the burst benchmark. We observe that all MPI libraries
converge asymptotically towards a constant, this constant
being lower for NewMadeleine. This shows the strength of
NewMadeleine to sustain bursts of many messages.

The results for the shuffle benchmark, with out-of-order
message, on Omni-Path are depicted in Figure 5. We observe
that all MPI libraries get bounded results except the old
OpenMPI 1.10. It is explained by the fact that on Omni-
Path, MPI libraries rely on PSM2 Matched Queues (MQ)
which directly provide tag-matching infrastructure. It is not
surprising that all libraries benefit from PSM2 properties.
However, NewMadeleine once again gets the best results.

As a summary, on InfiniBand for a benchmark that sends
messages in random order, as depicted in Figure 3, New-

Madeleine gets constant and low time where competitors
obtain linear time or collapse past a given threshold. On
Omni-Path, the complexity is asymptotically the same but
NewMadeleine gets overall better performance.

C. Cholesky Factorization

To evaluate the impact of this work on a computation code,
we have used the task-based tile Cholesky factorization from
the Chameleon software [3]. This dense linear algebra code
is based on tasks scheduled through the StarPU [22] runtime
system, which itself uses MPI for inter-node communications.
Since communications are triggered by tasks data-flow with-
out synchronization, they do not use MPI collectives at all
and rely exclusively on MPI point-to-point communications.
Code instrumentation has shown that 50+ communications are
typically active at the same time.

We have run time_spotrf_tile, the benchmark inte-
grated in the Chameleon package, on both clusters and using
various MPI libraries. The results are shown as GFlop/s on
the Y axis and matrix size on the X axis. Some graphs are
shorter than the others and do not reach large matrix size; this
is due to the fact that slower runs have exceeded the time
allocated for the job and have been killed by slurm before
they completed.

The performance obtained on cluster inti on 4 nodes
(64 cores) is depicted in Figure 7. We observe that the
best overall performance is obtained by NewMadeleine and
MPICH. Performance obtained by other MPI libraries is not
so bad but not on par with the leaders. We added as a thin
red line (labeled old NawMadeleine on graphs) the revision
of NewMadeleine (svn r27200) just before the optimizations
presented in this paper were implemented, so as to be able
to distinguish the precise impact of the mechanisms presented
in this paper and not only compare an MPI library against
another as a whole.

The performance obtained on cluster inti on 196 nodes
(3136 cores) is depicted in Figure 6. We were not able to
run MVAPICH2 on 100+ nodes on this cluster, so its graph
is missing here. Notice that the MPICH graph is shorter due
to Chameleon using the full 31-bits MPI tag space for large
matrices, but MPICH provides only 30-bit tags, thus cannot
reach large matrix (roughly size past 170k). The larger number
of nodes allows for larger matrix size, which increases the
number of messages exchanged and the stress imposed to
the point-to-point communication system. We observe that for
small matrices, where not so many messages are exchanged,
MPICH is fastest. For matrices larger than 80k, NewMadeleine
outperforms all the contenders by a factor of at least 35 %. We
observe that the difference is huge between the current and the
old version of NewMadeleine.

We have run the benchmark on the plafrim cluster with
Omni-Path network too. Since support for PSM2 driver was
added to NewMadeleine after the work described in this
paper, it was not possible to compare old and new version of
NewMadeleine on this cluster. The performance obtained on 4
nodes is depicted in Figure 8. The hierarchy is similar to what

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50000 100000 150000 200000 250000 300000 350000

G
Fl

o
p
/s

Matrix size

time_spotrf_tile - inti-sandy/n196

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
old MadMPI/NewMadeleine

Fig. 6. Chameleon Cholesky factorization performance on cluster inti on 196 nodes (3136 cores).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20000 40000 60000 80000 100000 120000

G
Fl

o
p

/s

Matrix size

time_spotrf_tile - inti-sandy/n4

MadMPI/NewMadeleine
OpenMPI 1.8
OpenMPI 3.0

MPICH 3.2
MVAPICH2 2.3b

old MadMPI/NewMadeleine

Fig. 7. Chameleon Cholesky factorization performance on cluster inti on
4 nodes (64 cores).

was obtained on 4 nodes on the other cluster (given that Intel
MPI is a derivative of MPICH). The performance obtained on
16 nodes (96 cores) is presented in Figure 9. We were not able
to make MVAPICH2 complete the benchmark on 16 nodes.
On this configuration, NewMadeleine performance is clearly
superior to OpenMPI and Intel MPI. Since the difference was
not so large for the micro-benchmarks on this machine, we
guess another property from the MPI library should make the
difference and not only its ability to sustain flows of large
number of requests.

As a summary, NewMadeleine is always the best performing
MPI library except for very small matrices on 196 nodes. It
shines especially in cases with many requests, namely on 196

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20000 40000 60000 80000 100000 120000 140000

G
Fl

o
p

/s

Matrix size

time_spotrf_tile - plafrim-opa/n4

MadMPI/NewMadeleine
OpenMPI 1.10

OpenMPI 3.0
Intel MPI 2017

MVAPICH2 2.3b

Fig. 8. Chameleon Cholesky factorization performance on cluster plafrim
on 4 nodes (96 cores).

nodes and large matrices. When comparing the performance of
the current implementation and the old implementation before
we implemented the mechanisms presented in this article, it is
clear that the performance in the presence of a large number
of requests is critical. However, this is not the only property
of the MPI library that plays a role for this code.

VII. CONCLUSION AND FUTURE WORKS

New kinds of HPC applications and runtimes change the
way the MPI library is used. These runtimes impose large
numbers of point-to-point requests that the MPI library must
sustain. It causes a scalability issue that arise in the tag-
matching subsystem and in the progression engine of the
communication library.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20000 40000 60000 80000 100000 120000 140000 160000

G
Fl

o
p

/s

Matrix size

time_spotrf_tile - plafrim-opa/n16

MadMPI/NewMadeleine
OpenMPI 1.10

OpenMPI 3.0
Intel MPI 2017

Fig. 9. Chameleon Cholesky factorization performance on cluster plafrim
on 16 nodes (384 cores).

In this paper we have proposed an algorithm that is able
to perform matching in constant time in all cases, even
with requests for any source or any tag. We have proposed
mechanisms to avoid contention between progression and
requests submissions, so that bursts of requests submissions
do not hinder communication background progression. We
have implemented these solutions in our NewMadeleine com-
munication library. Micro-benchmarks with large number of
point-to-point requests show that our solution scales better
than state of the art MPI libraries, especially on InfiniBand
hardware. Benchmarks with computation code exhibit a dra-
matic improvement of performance with our solution, with an
increase of 35-40 % of computation speed compared to other
MPI libraries.

The code for the MadMPI library and the benchmarks
has been released as open source and is available for down-
load [21]. The mechanisms described in this paper are enabled
by default in the released code.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the
PLAFRIM experimental testbed, being developed under the Inria
PlaFRIM development action with support from LABRI and IMB
and other entities: Conseil Régional d’Aquitaine, FeDER, Université
de Bordeaux and CNRS (see https://plafrim.bordeaux.inria.fr/).

REFERENCES

[1] W. Schonbein, M. G. F. Dosanjh, R. E. Grant, and P. G. Bridges,
“Measuring multithreaded message matching misery,” in Euro-Par 2018:
Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds.
Cham: Springer International Publishing, 2018, pp. 480–491.

[2] J. Dongarra, M. Abalenkovs, A. Abdelfattah, M. Gates, A. Haidar,
J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan,
“Parallel programming models for dense linear algebra on heterogeneous
systems,” Supercomputing Frontiers and Innovations, vol. 2, no. 4,
2016. [Online]. Available: http://superfri.org/superfri/article/view/90

[3] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost,
M. Sergent, and S. Thibault, “Achieving High Performance on
Supercomputers with a Sequential Task-based Programming Model,”
IEEE Transactions on Parallel and Distributed Systems, 2017. [Online].
Available: https://hal.inria.fr/hal-01618526

[4] O. Aumage, E. Brunet, N. Furmento, and R. Namyst, “NewMadeleine:
a Fast Communication Scheduling Engine for High Performance
Networks,” in Workshop on Communication Architecture for Clusters
(CAC 2007), workshop held in conjunction with IPDPS 2007, Long
Beach, California, United States, Mar. 2007. [Online]. Available:
https://hal.inria.fr/inria-00127356

[5] R. Brightwell, S. Goudy, and K. Underwood, “A preliminary analysis
of the mpi queue characterisitics of several applications,” in 2005
International Conference on Parallel Processing (ICPP’05), June 2005,
pp. 175–183.

[6] R. Keller and R. L. Graham, “Characteristics of the unexpected message
queue of mpi applications,” in Recent Advances in the Message Passing
Interface, R. Keller, E. Gabriel, M. Resch, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 179–188.

[7] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in Recent Advances
in the Message Passing Interface, R. Keller, E. Gabriel, M. Resch, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 11–20.

[8] J. A. Zounmevo and A. Afsahi, “An efficient mpi message queue
mechanism for large-scale jobs,” in 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, Dec 2012, pp. 464–
471.

[9] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigating mpi message
matching misery,” in High Performance Computing, J. M. Kunkel,
P. Balaji, and J. Dongarra, Eds. Cham: Springer International Pub-
lishing, 2016, pp. 281–299.

[10] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda,
“Adaptive and dynamic design for mpi tag matching,” in 2016 IEEE
International Conference on Cluster Computing (CLUSTER), Sept 2016,
pp. 1–10.

[11] T. Hoefler, G. Bronevetsky, B. Barrett, B. R. de Supinski, and A. Lums-
daine, “Efficient mpi support for advanced hybrid programming mod-
els,” in Recent Advances in the Message Passing Interface, R. Keller,
E. Gabriel, M. Resch, and J. Dongarra, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 50–61.

[12] É. Brunet, F. Trahay, and A. Denis, “A Multicore-enabled Multirail
Communication Engine,” in Proceedings of the IEEE International
Conference on Cluster Computing. Tsukuba, Japan: IEEE Computer
Society Press, Sep. 2008, pp. 316–321, poster Session. [Online].
Available: http://hal.inria.fr/inria-00327158

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[14] D. Liu, Z. Cui, S. Xu, and H. Liu, “An empirical study on the
performance of hash table,” in 2014 IEEE/ACIS 13th International
Conference on Computer and Information Science (ICIS), June 2014,
pp. 477–484.

[15] B. Jenkins, “Hash functions,” Dr Dobb’s Journal, Sep. 1997.
[16] MPI Forum, “MPI: A Message-Passing Interface Standard Version 3.1,”

Jun. 2015.
[17] S. Friedman, N. Leidenfrost, B. C. Brodie, and R. K. Cytron, “Hashta-

bles for embedded and real-time systems,” in in Proceedings of the IEEE
Workshop on Real-Time Embedded Systems, 2001, p. 2001.

[18] A. Denis, “pioman: a pthread-based Multithreaded Communication
Engine,” in Euromicro International Conference on Parallel, Distributed
and Network-based Processing, Turku, Finland, Mar. 2015. [Online].
Available: https://hal.inria.fr/hal-01087775

[19] F. Trahay, É. Brunet, and A. Denis, “An analysis of the impact of
multi-threading on communication performance,” in CAC 2009: The
9th Workshop on Communication Architecture for Clusters, held in
conjunction with IPDPS 2009. Rome, Italy: IEEE Computer Society
Press, May 2009. [Online]. Available: http://hal.inria.fr/inria-00381670

[20] A. Denis and F. Trahay, “MPI Overlap: Benchmark and Analysis,” in
International Conference on Parallel Processing, ser. 45th International
Conference on Parallel Processing, Philadelphia, United States, Aug.
2016. [Online]. Available: https://hal.inria.fr/hal-01324179

[21] “PM2 high performance runtime system,” http://pm2.gforge.inria.fr/.
[22] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:

A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Euro-Par 2009, ser. LNCS, Delft, Netherlands, Aug.
2009. [Online]. Available: https://hal.inria.fr/inria-00384363

