
—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 1

Scalable Distributed DNN Training using TensorFlow and
CUDA-Aware MPI: Characterization, Designs, and

Performance Evaluation

Ammar Ahmad Awan, Ching-Hsiang Chu,
Hari Subramoni, and Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
{awan.10, chu.368, subramoni.1, panda.2}@osu.edu

Jeroen Bédorf
Minds.ai

Santa Cruz, the United States
jeroen@minds.ai

Leiden Observatory, Leiden University
Leiden, the Netherlands

Abstract—The current wave of advances in Machine Learn-
ing (ML) and Deep Learning (DL) have been triggered by
the availability of large-scale datasets, efficient CPU and GPU
hardware, and development of easy-to-use software frameworks
like TensorFlow (TF), Caffe and Torch. TensorFlow has been, by
far, the most widely adopted ML/DL framework. However, little
exists in the literature that provides a thorough understanding
of the capabilities which TensorFlow offers for the distributed
training of large ML/DL models that need computation and
communication at scale. Most commonly used distributed train-
ing approaches for TF can be categorized as follows: 1) Google
Remote Procedure Call (gRPC), 2) gRPC+‘X’: X = (InfiniBand
Verbs, Message Passing Interface (MPI), and GPUDirect RDMA),
and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with
MPI, and Horovod with NVIDIA NCCL. In this paper, we
provide an in-depth performance characterization and analysis
of these distributed training approaches on various GPU clusters
including the Piz Daint system (#6 on Top500). We perform
experiments to gain novel insights along the following vectors: 1)
Application-level scalability of DNN training, 2) Effect of Batch
Size on scaling efficiency, 3) Impact of the MPI library used for
no-gRPC approaches, and 4) Type and size of DNN architectures
(e.g ResNet vs. MobileNet). Based on these experiments, we
present two key insights: 1) Overall, No-gRPC designs achieve
better performance compared to gRPC-based approaches for
most configurations, and 2) The performance of No-gRPC is
heavily influenced by the gradient aggregation using the Allre-
duce communication pattern. Finally, we propose a truly CUDA-
Aware MPI Allreduce design that exploits 1) CUDA kernels to
perform large reductions on the GPU and 2) A pointer cache
to avoid overheads involved in queries to the CUDA driver. Our
proposed designs have been implemented in MVAPICH2-GDR
and offer 5-17× better performance than NCCL2 for small and
medium messages, and reduces latency by 29% for large messages
on 16 GPUs (nodes). The proposed optimizations help Horovod-
MPI to achieve approximately 90% scaling efficiency for ResNet-
50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8×
and 3.2× higher throughput than the native gRPC method for
ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.

I. INTRODUCTION

Deep Learning (DL) has been a significant contributor to
the recent achievements in the Artificial Intelligence (AI)
realm. Novel approaches like back-propagation in Deep Neural
Networks (DNNs) were investigated around the 1980 time
frame [36]. However, the potential of these approaches was
marred by slow hardware and lack of sufficient training data.

To this end, the current resurgence and a renewed interest
in DL and DNN-based solutions to classical as well as new
Machine Learning (ML) problems can be attributed to the
widespread availability of 1) versatile and large-scale datasets
like ImageNet [1], and 2) efficient computation capabilities in
modern hardware architectures like Graphics Processing Units
(GPUs) and multi-/many-core CPUs. These two trends have
positively influenced the development of several high-level
DL toolkits like Caffe [9], [25], Microsoft Cognitive Toolkit
(CNTK), Facebook PyTorch [5], and Google TensorFlow [11].
Implementing DNN and back-propagation techniques in an
efficient manner has been a challenging problem. However,
these toolkits have played a crucial role in making ML and
DL more accessible for both academic as well as industry-
based researchers in various fields. In the context of DL
frameworks, it is pertinent to mention that TensorFlow is
the most popular DL framework and has seen widespread
adoption. Today, more than 1,600 people have contributed to
the TensorFlow GitHub repository [6] and several hundred
research papers have utilized TensorFlow for both research
and commercial applications. However, TensorFlow in its early
days was criticized for its slower performance [39] as well as
lack of support for efficient distributed training and limited
support for High Performance Computing (HPC) systems. To
this end, recent efforts by the TF developers as well as the
open source community are commendable and performance
has significantly improved for both single-GPU/single-node
as well as multi-GPU/multi-node (distributed) training. The
gRPC [19] library, which is the official distributed training
infrastructure for TF, has been optimized for tensor transfers
(fewer memory operations), but still uses the relatively slow
standard Ethernet networks. However, gRPC can take advan-
tage of InfiniBand (IB) using the IP over IB (IPoIB) protocol
which offers significantly better performance. At the same
time, the community has been actively exploring Message
Passing Interface (MPI) – a de facto standard for the HPC
community – based designs to improve distributed training on
HPC clusters. However, the active interest and contributions
from the community have led to several disjoint efforts and
fragmentation in the way users can take advantage of the
advanced distributed training designs in TF. The two broad

ar
X

iv
:1

81
0.

11
11

2v
1

 [
cs

.D
C

]
 2

5
O

ct
 2

01
8

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 2

challenges that we investigate in this paper are: ”1) What is the
most efficient tensor communication (for gradient aggregation)
framework for TensorFlow and 2) How can we improve the
performance of this communication using CUDA-Aware MPI?
Several detailed questions follow this broad challenge. It is
pertinent to note that little in existing literature can offer
insights to the following key questions, which are of significant
interest if large-scale distributed training is employed.

• What are the available choices for distributed training
using TensorFlow for a given execution platform?

• What are the key features and performance characteristics
of the various distributed training approaches for Tensor-
Flow?

• How can we optimize the performance of distributed
training using TensorFlow on modern HPC systems?

A. Contributions
To the best of our knowledge, this is the first paper that

offers a comprehensive landscape that highlights, evaluates,
and optimizes a diverse set of approaches that deal with
distributed DNN training using TensorFlow at scale. In this
paper, we make the following key contributions:

• We provide an in-depth categorization, design analysis,
and performance characterization of distributed training
approaches for TensorFlow using state-of-the-art DNNs
like ResNet-50, MobileNet, and NASNet.

• We propose a truly CUDA-Aware MPI Allreduce design
that exploits 1) CUDA kernels to perform large reductions
on the GPU and 2) A pointer cache to avoid overheads
involved in queries to the CUDA driver.

• We illustrate benefits of the proposed MPI Allreduce
optimizations using micro-benchmarks as well as appli-
cation workloads (tf cnn benchmarks) using TensorFlow
and Horovod.

• We present a comprehensive and large-scale performance
evaluation (up to 128 GPUs) for all the available dis-
tributed training approaches on three modern HPC sys-
tems.

II. OVERVIEW OF COMMUNICATION LIBRARIES FOR
DISTRIBUTED TRAINING: PAST, PRESENT, AND FUTURE

We first provide a brief historical perspective on various DL
frameworks and how they utilize communication libraries for
distributed training. Next, we describe communication libraries
for distributed training using TensorFlow. We conclude this
section with a discussion on how TensorFlow is moving
towards a different system to handle community contributions
and how it may affect the distributed training approaches we
discuss in Section III.

A. DL Frameworks and Communication Libraries
Most ML/DL frameworks started with single-node/single-

GPU designs. Caffe, for example, had no support for multi-
node distributed training and only external efforts [8], [12],
[24] provide such support. However, the exponential growth in
the size of DNN architectures and an ever-increasing need for

speed has forced the ML/DL framework designers to rethink
their strategy and to start utilizing existing communication
schemes or design their own libraries from scratch. Microsoft
Cognitive Toolkit (CNTK) [29] is based on an MPI design
whereas Caffe2 [9] uses the Gloo [10] collective communi-
cation library developed by Facebook, which is similar to
NVIDIA’s NCCL [32] library. Gloo exploits the InfiniBand
verbs interface and Remote Direct Memory Access (RDMA)
technology to offer various reduction algorithms. Apart from
the communication libraries that come integrated with the
frameworks, there are external (commercial) efforts to enable
efficient distributed training. For example, IBM has developed
the PowerAI Distributed Deep-learning Library (DDL), which
uses a multi-ring reduction algorithm. The library is built on
top of IBM’s Spectrum MPI (a derivative of OpenMPI) and
as such supports all the network interfaces that are supported
by the OpenMPI library. According to IBM, the library can be
integrated with TensorFlow, Caffe and Torch. Intel has devel-
oped the Intel Machine Learning Scaling Library (MLSL) [40].
This library is built on top of Intel MPI and therefore supports
various interconnects such as InfiniBand, Omni-Path, and
Ethernet. The library offers a set of communication primi-
tives that neural network frameworks can take advantage of
when performing distributed communication. According to the
research paper it is integrated with Intel-Caffe, TensorFlow,
and Intel’s own neural-net compiler called nGraph. To bring
support to TensorFlow, the library modifies the Horovod [37]
library by inserting the MLSL communication primitives.

B. Communication Libraries for TensorFlow
Our focus in this paper is on distributed training using

TensorFlow, which, by default, can be realized using the
official Google RPC (gRPC) library. gRPC is a generic point-
to-point communication library and has no collective com-
munication support. It works in a simple client/server style
fashion and has been tightly integrated with TF. However,
TF has been extended by contributors to take advantage of
additional communication libraries like MPI, RDMA Verbs,
and NCCL. We discuss the libraries that TF uses in more
detail in the following sections. gRPC is a point-to-point RPC
library which exchanges data using a pre-defined message
format described in the protobuf language [4]. Each node
launches a server process responsible for receiving messages
from the other nodes. At the launch of TF, the user has to
specify IP and port number of the listening server for all the
other nodes in the training run. gRPC offers no CUDA-Aware
operations, and as such, all data is first staged on the host
before being sent over the network. Recent optimizations have
however reduced the number of copy operations required to
convert GPU buffers into protobuf messages. All the commu-
nication operations are handled by a group of threads which
allow overlapping data transfers for optimal performance.
gRPC uses the HTTP/2 protocol on top of TCP/IP based
networks. The generality of the library causes it to also be
widely used outside of the deep learning application area.
Message Passing Interface (MPI) is a de facto standard for

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 3

expressing distributed-memory programs. Several implemen-
tations of the MPI standard like MPICH [2], MVAPICH [30],
OpenMPI [42], and CrayMPI [35] have been developed and
optimized over the period of several years for various pro-
cessor architectures and high-performance interconnects like
High-speed Ethernet (HSE) and InfiniBand. In recent years,
accelerators like NVIDIA GPUs have been adopted by most
HPC systems [28]. As a result, MPI extensions have been
proposed to support efficient communication between GPUs.
Initially, without the capability of direct access of GPU mem-
ory, MPI applications required explicit copying of GPU data
to a staging buffer in host memory in order to push the data
to the network. Similarly, data movement from CPU to GPU
was needed after receiving the data on the host through an
MPI Recv operation. This significantly impacts performance
as well as productivity. Thus, several MPI libraries including
OpenMPI and MVAPICH2-GDR [30] provide CUDA-Aware
MPI primitives to transparently perform such copy opera-
tions. These CUDA-Aware MPI libraries significantly improve
performance and productivity for MPI+CUDA applications.
NVIDIA NCCL offers multi-GPU communication primitives.
NCCL (pronounced Nickel) has been developed by NVIDIA
to efficiently tackle communication for DL workloads. NCCL’s
API closely resembles the MPI interface and provides com-
munication primitives for broadcast, all-gather, reduce, reduce-
scatter, and all-reduce. Precisely, NCCL’s goal is to provide
fast communication of messages between GPUs in dense
multi-GPU machines like the DGX-1 and DGX-2 [31]. NCCL
1.x was, in fact, a single-node library. However, since its
introduction, NCCL has significantly evolved and now offers
multi-node collective operations using IB verbs. To launch
NCCL2 applications, users still need to rely on an out-of-
band mechanism for connection management. MPI launchers
like “mpirun” are used to set up connections and assign ranks
while NCCL primitives are used for the actual communication.

C. Future TensorFlow Developments
Google is currently redesigning how contributions are in-

cluded in the TensorFlow source tree. When TensorFlow 2.0
is released, a number of options that we have analyzed in
this paper might not be available anymore. However, Google
understands the importance of supporting multiple networking
options and is actively working on creating a special interest
group (SIG) related to networking. At the moment of writing,
the APIs to add additional communication methods to TF
have not been formalized. However, there are plans to re-
enable the current contributions and introduce support for new
communication APIs such as UCX [7].

III. ANALYSIS OF DESIGN AND PERFORMANCE: SEVERAL
DISTRIBUTED TRAINING APPROACHES FOR TENSORFLOW

We now dive into the various distributed training designs for
TensorFlow and group them into categories based on how the
communication libraries are exploited. Next, we provide the
performance analysis for all of these approaches. A high-level

hierarchy of all these TF approaches is illustrated in Figure 1.

Distributed
TensorFlow

gRPC Accelerated
gRPC

gRPC+X

gRPC+MPI

gRPC+Verbs

gRPC+GDR

No-gRPC
Baidu-MPI

Horovod
MPI

NCCL

Fig. 1. Various Approaches for Distributed Training using TensorFlow

A. gRPC-based Designs
The standard distributed training method for TensorFlow is

the so-called Parameter Server (PS) model [26]. In this model,
there are worker processes that perform the heavy compute
work and separate parameter server processes responsible for
combining the worker processes results. In other words, the
PSs are responsible for storing and updating the parameters
(e.g., weights) of the neural network. TensorFlow programs
can specify the number of workers and number of PS tasks that
should be used. The PS tasks generally do not require much
computing power and can run on nodes without accelerators.
Depending on the nodes used it is possible to run both a worker
process and a PS process on the same machine. TensorFlow
comes with a set of support classes that are built on top of the
worker and PS instances to enable monitoring and restarting
the training process. This can be used for checkpointing
(saving) the training state or for fault tolerance in case a
worker node crashes due to hardware failure. TensorFlow’s PS
model utilizes the gRPC library for communication between
processes. It allows programs (optionally written in different
programming languages) to communicate via the TCP/IP
protocol by using RPCs and uniform data buffers. However,
the user is responsible for configuring the end-points for each
of the launched processes. This can be a labor-intensive task
and requires knowledge about the cluster and used nodes.
TensorFlow uses the following steps to exchange tensor buffers
between the processes: The producer process:

1) After a tensor, for which it has been determined that it
has to be sent to another process, has been computed it
is placed on a table.

2) If there is no outstanding request for the tensor then it
stays in the table until a request is received.

3) If there is a request for this tensor then it is served
immediately and removed from the waiting table.

The consumer process:
1) Send a tensor request to the producer.
2) Wait until the producer returns the requested data.
3) Once the data has been received continue processing of

the tensor graph
This is an example of a pull model where the data is pulled
from producer to consumer. The gRPC library will send the

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 4

tensor request message and the return message that contains
the tensor data. This data is encoded via the protobuffer
library [4]. If the tensor was computed on the GPU, then
the tensor data first has to be completely copied to the host
memory before it can be encoded in the protobuffer format
and transferred. If the tensor’s destination is in GPU memory,
then similar steps will have to be taken, where the decoding
takes place in the host memory before the decoded data is
copied to the GPU. Challenges in Extending gRPC-based
Designs: The tight integration of TF with gRPC makes it
non-trivial to add support for additional network protocols.
However, TensorFlow’s design allows for offloading just the
tensor transfers, which are the most data-intensive communi-
cation operations during the processing of neural networks.
With the high-performance GPUs (and other accelerators)
currently available it is critical that the data transfers happen
as fast as possible, otherwise, the GPUs would sit idle waiting
for data. The more administrative communication operations
such as setting up the network and controlling the execution
are less time critical and will always be performed via the
gRPC stack. Hence, no matter if the tensor communication
is offloaded to another method, the requirement for setting
up communication endpoints stays in place. This offloading
functionality is what enables the RDMA over Converged
Ethernet (RoCE) support that Google’s internal TensorFlow
version supports. It also enables (external) contributors to
add support for other network stacks, see the next section.
Because the changes happen on the deeper levels of TF, the
user does not have to make any changes to his designed
neural net. The only change required is the specification of
the communication protocol in the execution script. However,
to take advantage of these contributed packages the user will
have to build TF from source and point the build process
to the correct libraries. gRPC-based communication can also
transparently take advantage of the IPoIB [17] interface if IB
is the underlying interconnect.

B. gRPC+‘X’ Designs
We broadly discuss three gRPC extensions: 1) gRPC+MPI,

2) gRPC+Verbs, and 3) gRPC+GDR.
1) MPI: The gRPC+MPI method adds support for sending

tensors using MPI primitives (see Section II-B). Depending on
the support that the MPI library offers, this allows TF to make
use of advanced network interconnects such as IB and Omni-
Path. The current implementation of the gRPC+MPI method
uses a single thread for all the MPI related operations. On
one side, this increases compatibility with MPI frameworks
that are not thread-safe, but on the other side, it can hamper
performance. Especially when many small data tensors are
exchanged there would be enough bandwidth available for
parallel transfers which could increase overall performance.
MPI processes are uniquely identified using their rank, which
is incompatible with the TCP/IP connection strings that gRPC
uses to identify processes. Therefore a mapping is created
from the gRPC identifiers to the MPI process ranks during
the initialization of TF.

2) Verbs: The gRPC+Verbs protocol uses the RDMA-verbs
API. By directly using the verbs APIs, there is no need for
setting up a global execution environment as required by MPI.
However, many features that are available in MPI have to be
manually implemented. Examples include features like pinned
memory buffers to improve the performance of data-transfers,
and the use of GPUDirect RDMA. The pinned memory func-
tionality is implemented in the gRPC+Verbs [3] protocol and
can be utilized via the tf.contrib package. Another approach to
exploit IB Verbs for gRPC in a more transparent fashion has
been presented in [14]. We refer to this as Accelerated gRPC
in Figure 1.

3) GDR: The last contributed protocol is the gRPC+GDR
protocol. This protocol adds GPUDirect RDMA (GDR) func-
tionality for NVIDIA GPUs. This allows tensors to be directly
read/written from/to the GPU memory to/from the network
adapter without having to first transfer data to the host mem-
ory. This saves a full memory copy and reduces latency. In
order to take advantage of this protocol, it is required that
the system used has the correct drivers and hardware installed
to support this operation. Currently, it is only supported for
Intel and AMD CPUs combined with an NVIDIA GPU and
Mellanox IB Host Controller Adapter (HCA). The details of
this extension are available in [43]. It is pertinent to mention
that GDR support has been exploited by MPI runtimes like
MVAPICH2 and OpenMPI and can be utilized transparently
on systems that support this feature and have the required
GPU/HCA hardware available. Unfortunately, gRPC+GDR
designs did not run properly on any of our clusters, so no
results or discussion is provided for this design.

C. No-gRPC Designs

Besides the parameter server method to combine (reduce)
the results of worker processes, there is the option to use
collective operators to perform the reduction. When using
these collective operators, there are no separate processes
responsible for gathering and updating the network parameters.
Instead, the task is distributed over the worker processes.
The collective operator required for these operations is called
Allreduce; a communication primitive widely used in the
HPC/MPI community. There are two ‘No-gRPC’ designs
available as contributed packages to TF: 1) Baidu and 2)
Horovod. Both introduce the so-called reduction operators
for TF [21] and exploit the Allreduce primitive. Because the
reduction based approach is not available in the standard TF
version, it requires a bit more work to make use of it than
the protocol changes described above. The way these methods
are integrated is by overloading a subset of the default TF
operators. During execution, these packages get invoked as
part of the network (model) configuration phase and detect
which of the parameters used in the execution graph need to
be combined. Next, additional reduction operators are inserted
into the execution graph. During the execution of the graph,
these operators are executed, which invokes the corresponding
implementation of the Allreduce operator. A major advantage
for the users of these reduction based methods is that the steps

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 5

required to setup the execution of the neural network are much
simpler. It is no longer required to launch and configure the
additional parameter servers. Furthermore, because both these
methods are based on the MPI execution model, the user does
not need to configure the endpoints explicitly. Instead, the
MPI library/launcher can handle the discovery and connection
management.

1) Baidu: Baidu’s design is part of the tf.contrib package
in the TF codebase. It is called tf.contrib.mpi collectives and
can be enabled during the compilation and configuration steps
when building TF from source. This extension is not currently
available in the TensorFlow wheels (binary packages) available
from Google’s website. Baidu’s design contains a custom ring-
reduce implementation of Allreduce built on top of MPI Send
and MPI Irecv primitives. This gives access to the same MPI
advantages as mentioned above, namely extensive network
support and support for CUDA-Aware MPI operators which
reduces the number of required memory operations.

2) Horovod: The second method, introduced by Uber, is
available as an external Python package called Horovod and
can be installed using the pip package manager. The design
of Horovod is based on the mpi collectives implementation
and as such the user side modifications are similar for these
packages. However, Horovod design offers some advantages of
Baidu’s design. Horovod can take advantage of two different
reduction implementations. The first is based on the standard
MPI Allreduce operator. The reduction method that this oper-
ator uses depends on the underlying MPI implementation. For
example, MVAPICH2-GDR now supports efficient CUDA-
Aware MPI Allreduce designs as discussed in Section V
while default MPICH [2] and OpenMPI only provide naive
implementations of MPI Allreduce for GPU buffers. More
specifically, the actual reduction implementation in an MPI
runtime can differ based on the supercomputer or cluster that
is used. Many system vendors add custom communication
methods that are designed and tuned specifically for the
specific hardware and network topology. The second Horovod
implementation exploits NVIDIA NCCL library, which is
based on InfiniBand verbs and CUDA kernels to handle
communication across and within nodes, respectively. NCCL2
currently cannot be used on the Piz Daint system because
it has the proprietary Aries interconnect, which does not
support IB verbs. The MPI variant of Horovod, on the other
hand, is portable and can be used on the Piz Daint system
via Cray’s CUDA-Aware MPI implementation. Horovod also
provides a unique feature called “Tensor Fusion”. When using
this method, several small tensors are combined in a single
reduction operation. The idea is that by performing several
large reductions instead of many small ones the latency is
reduced and bandwidth is used more efficiently. The tensor
fusion feature is controlled via a runtime threshold parameter,
and we experimentally determine the best threshold for a given
platform.

D. Performance Analysis
We now present a comprehensive performance comparison

of all the aforementioned approaches to perform distributed
training using TensorFlow. In order to understand the trends
for distributed training, the most fundamental question that
often gets missed is: What is the best batch size one should use
for distributed training?. In this context, the general intuition
is that a bigger batch size will lead to better performance.
However, we perform single-GPU experiments to understand
this behavior in a more pragmatic fashion. Figure 2 shows
the impact of the batch size for three GPU generations: 1)
Kepler (K80), 2) Pascal (P100), and 3) Volta (V100). The
key insight here is: faster GPUs offer better performance
for larger batch sizes up to the point of diminishing returns.
For ResNet-50, the sweet spot seems to be 64 for all three
GPUs. Thus, we choose 64 as the single-GPU batch-size
baseline and utilize this for all distributed training experiments
performed for ResNet-50. The performance numbers for all

0
50

100

150
200
250

300
350
400

1 2 4 8 16 32 64 128

Im
ag

es
/s

ec
on

d
(H

ig
he

r i
s b

et
te

r)

Batch Size

K80 P100 V100

Fig. 2. Effect of Batch Size on Performance for Different GPU Architectures

six approaches except grpc+gdr are presented in Figure 3.
The main insight we gain from these experiments is: gRPC
and grpc+‘X’ designs are, in general, slower than Horovod
designs. Secondary observations include: 1) Baidu’s design
despite using the ring-allreduce lags behind Horovod-NCCL
and grpc+‘X’ designs and 2) Horovod-MV2 is always slower
than Horovod-NCCL2. We have used TensorFlow version
1.10.0 for all our experiments. Performance of Allreduce:
The observation about the different performance we get for
NCCL2 compared to MVAPICH2 for Horovod designs merits
further investigation. This is because the only difference in
Horovod-NCCL and Horovod-MPI design is the utilization
of the corresponding Allreduce primitive. Thus, we perform
additional experiments using MPI/NCCL benchmarks to better
understand this behavior. Indeed, the performance of NCCL
Allreduce is better than MPI Allreduce in MVAPICH2, as
shown in Figure 4. We performed a thorough analysis of
Allreduce designs in the MVAPICH2 library and found a clear
opportunity for performance optimizations to deal with DL
workloads (large message sizes). Based on this, we propose
optimizations for Allreduce and highlight the performance
benefits we observed for these enhancements in Section V.

IV. OPTIMIZING tf cnn benchmarks FOR HPC SYSTEMS

The performance analysis presented in Section III was made
possible via the official TensorFlow benchmarking scripts

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 6

0
100
200
300
400
500
600
700
800
900

1000

1 2 4 8 16Im
ag

es
/s

ec
on

d
(H

ig
he

r i
s b

et
te

r)

No. of Nodes (GPUs)

Baidu-MPI Horovod-MPI Horovod-NCCL2 gRPC+verbs gRPC+MPI gRPC (IPoIB)

Fig. 3. Performance Analysis of Six TensorFlow Approaches for Distributed Training of ResNet-50 on the RI2 Cluster (see Section VI-B). 1) gRPC was
executed using IP addresses of the InfiniBand interface to make sure that tensor communication happens using the efficient IPoIB channel. 2) MPI refers to
the MVAPICH2 [30] MPI library for all cases. 3) The latest version of NCCL2 (2.3.4) was used for all the experiments.

1

10

100

1000

10000

100000

1000000

8 32 12
8

51
2 2K 8K 32
K

12
8K

51
2K 2M 8M 32
M

12
8M

La
te

nc
y

(µ
s)

Message Size (Bytes)

MPI NCCL2

Fig. 4. Micro-benchmark Performance for MPI Allreduce and NCCL Allre-
duce on the RI2 Cluster (see Section VI-B). 1) MPI refers to existing
MVAPICH2 MPI Library and 2) NCCL2 refers to NCCL 2.3.4

called tf cnn benchmarks [20]. To evaluate various platforms
and distributed TF implementations, we modified these ap-
plication level benchmarks and added support for running
Baidu’s design. We also modified the scripts to enable gRPC
and gRPC+X runs using SLURM [44]. During the start-
up phase, we pull in the SLURM environment variables in
order to determine the total number of launched benchmark
instances and their unique IDs (rank). This is required to
setup the configurations that do not use MPI, but also require
that each process is uniquely identified. The unique ID is
consequently used to determine the type of process (worker,
or parameter server) and to setup the underlying network
connections. Because this is based on the SLURM environ-
ment variables it is trivial to adapt this to other workload
managers, by using the variables that are specific to that
workload manager or particular mpirun version. Once this
setup is complete, and the various processes are connected
to each other, the neural network will be initialized. This
modification to tf cnn benchmarks allowed us to test all of
the several distributed training configurations with exactly the
same neural network design and data processing routines. This
ensures that any performance differences between the various
networking options can be directly attributed to the reduction
algorithm and the networking library. The benchmark suite
allows users to test the performance of various convolutional
neural networks using TensorFlow. For our tests, we use

three different image classification networks, MobileNet [23],
ResNet-50 [22] and NASNet-large [45]. To prevent that our
results are influenced by file I/O (disk) performance, we only
use synthetic input data. The training phase for all the various
approaches will remain common and contains exactly the
same operations as the real neural network training with the
difference being the usage of synthetic data instead of real
images that need to be read from a storage subsystem. After
a number of warm-up iterations, a set of ten iterations will be
performed to determine the image throughput rate. Note that
because synthetic data is used we purely measure the GPU
and network performance for the multi-node cases but only
the GPU performance for a single process case. The CPU
(used for decoding image data) and storage media (used for
loading data) are not part of our tests since we focus only
on the scaling characteristics of distributed training. However,
when doing real training runs these components will influence
the final performance, especially the storage media will be
important as a large number of GPUs will have to be fed with
fresh training data during each iteration.

V. OPTIMIZING CUDA-AWARE MPI PRIMITIVES

Based on the analysis in Section III, we observed that
the MPI Allreduce primitive is a significant performance
bottleneck for the Horovod-MPI approach. Thus, the primary
challenge we have to deal with is a better and more efficient
MPI Allreduce design to tackle DL workloads at scale. To
address this, we propose two major design optimizations: A)
Truly CUDA-Aware reduction method that exploits CUDA
based computations in addition to GPUDirect-based commu-
nication, and B) An advanced caching scheme for GPU-based
(device) pointers to avoid query overhead in the critical path.

A. CUDA Kernel-enabled Allreduce for large messages
Although offloading reduction operations to GPU kernels

has been discussed before [16], [27], [33], for large messages
it has not fully leveraged the GPU computing power for
Allreduce algorithms. To perform large-message Allreduce
operations efficiently, a variety of “reduce-scatter followed by
allgather (RSA)” algorithms are widely used. Two popular

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 7

algorithms are: 1) Ring-based RSA [34]: first a virtual ring
is constructed between processes. Next, each process sends
a chunk of data to its left neighbor and performs reduction
upon the chunk received from its right neighbor for (p − 1)
steps, where p denotes the number of processes. At the end
of this reduce-scatter phase, each process owns a partial final
result vector. Then a similar ring-based allgather is performed
to gather the complete final result (notable implementations:
NCCL and Baidu Allreduce). 2) Recursive vector halving
and doubling RSA [41]: each process pair exchanges half of
the vector/message and reduces it. Next, the message size
is halved, and a different pair of processes is selected for
log p steps. Allgather is performed in reverse and doubles the
message size at each of the log p steps (notable implementa-
tions MPICH and MVAPICH2). The first method is popular
because of the bandwidth-optimized feature, while the second
method is expected to be more efficient at scale. However,
the existing MVAPICH2 implementation of recursive vector
halving and doubling RSA relies on the CPU to perform
reduction operations, which is a waste of GPU compute power.
In this paper, we propose and implement a CUDA-Aware
MPI Allreduce primitive using recursive vector halving and
doubling RSA, with GPU kernel-enabled reduction operations.
There are three major benefits: 1) significantly reduces the
reduction latency for large messages by fully utilizing the
massive parallelism and high-bandwidth memory of GPUs. 2)
Avoids expensive data movement from GPU to host memory.
3) Leverages advanced hardware and software features such
as GPUDirect RDMA to improve intra-node and inter-node
communication.

B. Optimized Pointer Cache for Device Buffers

The CUDA unified addressing feature allows NVIDIA GPU
devices to share a unified address space with the host. This
means that there is no distinction between a device pointer and
a host pointer, i.e., the same pointer value could represent host
memory or device memory at different times. MPI libraries
like MVAPICH2 have implemented various algorithms to opti-
mize MPI primitives for host and device buffers. Therefore, the
MPI runtime needs to identify the buffer type before selecting
the most performant algorithm. The CUDA driver provides a
low-level API to perform this identification. However, each
MPI call may need to query the buffer type multiple time
even when the pointer value remains unchanged. This incurs
a significant delay in the MPI function as the call accesses
multiple driver modules as illustrated in Figure 5 (red dashed
arrow). To mitigate this overhead, we designed a Pointer
Cache, which stores the pointer information, as depicted in
Figure 5 (dark-red solid box and arrows). There are two
ways to maintain the cache: 1) one-time driver lookup at
MPI-level, 2) interception of the device allocation APIs at
application-level. In the first approach, the MPI runtime caches
(i.e., inserts) the buffer type of the given pointer when it is
seen for the first time. However, the runtime is not able to
invalidate a cache entry when the buffer gets de-allocated by
the application without notifying the MPI runtime. This leads

Deep Learning Applications (Tensorflow)

MPI Interface

CUDA Runtime Interface

CUDA Driver Interface

OS Kernel

Pointer
Cache

User space
Kernel space

Query, Insert,
Remove

Insert, Remove

Fig. 5. Pointer Cache Design (dark-red box and arrows) to avoid expensive
queries to the CUDA driver (red dashed arrow).

to the second approach. We let the MPI runtime intercept
CUDA memory management APIs, e.g., cuMalloc and cuFree,
and update the pointer cache accordingly. This way, the MPI
runtime only has to query the cache but not maintain it. This
optimization improves the performance of all CUDA-aware
MPI primitives, including the ones primarily used by the deep
learning frameworks.

C. Performance Benefits

To evaluate the proposed optimizations, we conducted ex-
periments across 16 NVIDIA Tesla K80 GPU nodes at a
local cluster (RI2). We used micro-benchmarks to compare the
Allreduce performance between default MVAPICH2 (MPI),
NVIDIA NCCL (NCCL2), and the new MVAPICH2 imple-
mentation (MPI-Opt). Figure 6 shows that the new method
yields 4.1× faster Allreduce compared to the default MVA-
PICH2 solution for small and medium messages (i.e., smaller
than 128KB) due to the pointer cache. Yet, MPI-Opt is 17×
faster than NCCL2 for Allreduce operation of 8-byte data.
For larger message sizes, the optimized GPU kernel-enabled
reduction scheme provides up to 8× (1.4×) performance
improvement compared to the default MVAPICH2 (NCCL2)
library. With the significant benchmark-level improvements,
we next present the application level performance of the
enhanced MPI primitives.

1

10

100

1000

10000

100000

1000000

8 32 12
8

51
2 2K 8K 32
K

12
8K

51
2K 2M 8M 32
M

12
8M

La
te

nc
y

(µ
s)

Message Size (Bytes)

MPI NCCL2 MPI-Opt

Fig. 6. Benefits of the Allreduce optimizations. 1) MPI refers to existing
MVAPICH2 MPI Library. 2) MPI-Opt refers to the optimizations made
available in MVAPICH2-GDR 2.3rc1

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 8

VI. COMPREHENSIVE PERFORMANCE COMPARISON OF
EXISTING AND PROPOSED DESIGNS

We now present an in-depth performance comparison of all
the distributed training approaches with existing communica-
tion libraries as well as with our proposed Allreduce design
schemes. We perform various experiments on three different
clusters: 1) The RI2 cluster at The Ohio State University, 2)
The Owens cluster at Ohio Supercomputing Center (OSC), and
3) The Piz Daint cluster at Swiss National Supercomputing
Centre.

A. Performance of CPU vs. GPU based Training
We performed several GPU and CPU based training exper-

iments. However, there are many additional vectors that need
to be considered to provide a sound performance evaluation.
The default CPU installation of TensorFlow offers much
slower performance compared to GPU-based training. We also
explored the Intel-optimized TensorFlow version. However,
we chose to only focus on GPU results in this paper as the
discussion and comparison of default CPU, optimized CPU,
and GPU based training is beyond the scope of this paper.

B. RI2
The RI2 cluster at The Ohio State University consists of
20 nodes connected via Mellanox SB7790 and SB7800 In-
finiBand switches. Each node is equipped with two 14-core
Intel (Broadwell) Xeon E5-2680 v4 2.4 GHz processors, 128
GB DDR3 Memory, one NVIDIA Tesla K80 GPU, and one
single port InfiniBand EDR HCA. Based on the proposed
optimizations for Allreduce discussed in Section V, we now
provide a comparison of the best performing Horovod-NCCL
approach (shown earlier in Figure 3), Horovod-MPI, and the
proposed Horovod-MPI-Opt approach that takes advantage of
the optimized MPI Allreduce design. As we can clearly see
in Figure 7, Horovod-MPI-Opt performs much better than
Horovod-MPI as well as offering better/comparable perfor-
mance as Horovod-NCCL2 for most cases. The “ideal” bar
for all the graphs in this section has been calculated us-
ing a linear speedup formula: Ideal = Images/second
(for 1 GPU) × #GPUs

0
100
200
300
400
500
600
700
800
900

1000

1 2 4 8 16

Im
ag

es
/s

ec
on

d
(H

ig
he

r
is

be
tt

er
)

No. of GPUs

Horovod-MPI Horovod-NCCL2 Horovod-MPI-Opt (Proposed) Ideal

Fig. 7. Performance comparison for ResNet-50 training using three Horovod
versions on the RI2 Cluster (up to 16 GPUs). 1) NCCL 2.3.4 was used for
NCCL experiments. 2) MPI refers to the MVAPICH2 [30] library. 3) MPI-Opt
refers to the new Allreduce designs made available as part of the MVAPICH2-
GDR 2.3rc1 library.

C. Owens
Owens is a 23,392-core Dell Intel Xeon E5-2680 v4 machine
with 160 GPU nodes equipped with NVIDIA Pascal P100
GPUs. Each node is equipped with a dual-socket Intel Xeon
processor (28 cores) and an IB EDR HCA. We have used
the Owens cluster to extend our finding from RI2 to a larger
scale as well as a newer GPU generation. The cluster is heavily
used by HPC researchers across the US, so we limit our per-
formance evaluation to only the best performing TF variants
from RI2. Figure 8 provides the performance comparison of
Horovod-NCCL2 and Horovod-MPI-Opt for the distributed
training of ResNet-50 on up to 64 Pascal GPUs. Clearly, we
can observe that our proposed Allreduce optimizations have
enabled Horovod-MPI-Opt to achieve near-ideal scaling that
is better/comparable to Horovod-NCCL designs. It is pertinent
to mention that the Horovod designs have been the best for
all configurations on RI2 as well as the Owens cluster.

1

4

16

64

256

1024

4096

16384

1 2 4 8 16 32 64

Im
ag

es
/s

ec
on

d
(H

ig
he

r
is

be
tt

er
)

No. of Nodes (GPUs)

Horovod-NCCL2 Horovod-MPI-Opt Ideal

Fig. 8. Performance comparison for ResNet-50: Training performed using
two Horovod designs on the Owens Cluster (up to 64 GPUs). 1) NCCL 2.3.4
was used for NCCL experiments. 2) Horovod-MPI-Opt refers to the design
that takes advantage of the new Allreduce implementation made available in
the MVAPICH2-GDR 2.3rc1 library.

D. Piz Daint
We now provide the scaling results up to an even larger scale
(up to 128 Pascal GPUs) on the Piz Daint cluster. We also
extend our evaluation for Piz Daint with two more DNN
architectures: 1) MobileNet [23] and 2) NASNet [45]. Each
node of the Piz Daint cluster is equipped with a single P100
GPU and a 12-core Intel Xeon E5-2690 v3 (Haswell) CPU.
The nodes are connected using the Cray Aries communication
technology based on the Dragonfly topology. The machine has
thousands of compute nodes so the actual placement (distance)
between the processes is random and can influence the actual
execution time. The software stack is designed by Cray and
optimized for the machine. This means that we have limited
control over the used (MPI) libraries and just use what the
system has available. Because of this software limitation, we
were not able to test out the Horovod-NCCL implementation
on this system as there is no support for IB verbs, which NCCL
uses for inter-node communication. For Horovod-MPI, we
have used the default Cray-MPICH (v7.6) library. The scaling
results for Piz Daint are presented in Figure 9 for four different
approaches (Horovod-MPI, gRPC, gRPC+MPI, and Horovod-
MPI). It is clear that gRPC+MPI approach shows the worst

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 9

scaling. This is because of its single-threaded implementation.
The bottleneck is especially visible for NASNet-large model
as a large number of model parameters need to be transferred
over the network. Baidu-MPI and Horovod-MPI perform very
similar, with Horovod-MPI showing slightly better results. The
gRPC results fall slightly behind the Baidu-MPI and Horovod-
MPI solutions. Given that all these implementations use the
same underlying communication network the performance
difference can be attributed to the way the parameter server
solution is implemented. While training approaches have an
impact on performance, the scaling behavior is also directly
related to the size of the DNN. Mobilenet shows worst scaling
compared to the ideal (16% efficiency for Horovod-MPI),
as communication of gradients cannot be overlapped (hidden
behind) the relatively smaller computation. NASNet-large, the
largest network we have tested, shows near-ideal scaling (92%
efficiency for Horovod-MPI as the computation is large enough
to be overlapped with gradient communication. Resnet-50 falls
in between the two extremes with 71% efficiency for Horovod-
MPI.

VII. RELATED WORK

There are a significant number of research efforts from
academia and industry toward understanding and developing
scalable deep learning systems. Ben-Nun and Hoefler present
an in-depth concurrency analysis of various DNN architectures
with a focus on distributed training in [13]. Cui et al. propose
a “GeePS” parameter server to support scalable data-parallel
training across GPU nodes by mitigating data movement
overhead caused by GPU stalling in [18]. Chilimbi et al.
propose a distributed system called Adam to achieve scalable
DL training for large DNN models, and a 120-machine cluster
was used for a demonstration [15]. Shi et al. evaluated the per-
formance of distributed DL frameworks such as TensorFlow,
CNTK, Caffe-MPI and MXNet over single-GPU, multi-GPU,
and multi-node (4 nodes) scenarios [38], [39]. They identify
several performance bottlenecks such as I/O access and data
communication among GPUs. However, the scalability of
these DL frameworks is not evaluated. The authors of [40]
have presented an extension of the Horovod [37] design that
uses the Intel Machine Learning Scaling (MLSL) library for
distributed training with TensorFlow. However, the study is
focused on scaling CPU-based training only and no GPU
results are presented.

VIII. CONCLUSION

In this work, we evaluated a wide range of communication
methods that can be used with the TensorFlow deep learning
framework. Our focus has been on the scalability, and usability
of the various techniques. We compared MPI based reduction
methods, custom written reduction schemes, and TensorFlow’s
native parameter server model. For our evaluation, we used
three different image classification networks, each with a
significantly different number of parameters to be exchanged.
We further introduced an improved reduction method for GPU
based data. The optimized designs have been integrated into

MVAPICH2 and have been made publicly available since the
MVAPICH2-GDR 2.3rc1 release. This method shows up to
1.4× faster Allreduce operations compared to the NVIDIA
NCCL2 communication library in micro-benchmarks. Our
performance evaluation shows that the customized reduc-
tion based methods, i.e., Horovod-MPI and Horovod-NCCL,
outperform the parameter server methods, i.e., gRPC and
gRPC+X, for all three evaluated neural nets and all three
systems. The experimental results show that the proposed opti-
mizations help Horovod-MPI achieve approximately 98% and
90% scaling efficiency for training on 16 and 64 GPU nodes
on the RI2 and Owens clusters, respectively. Finally, Horovod-
MPI yields 1.8× and 3.2× higher throughput than the native
gRPC method for ResNet-50 and MobileNet, respectively, on
the Piz Daint cluster across 128 nodes.

ACKNOWLEDGMENT

This research is supported in part by National Science
Foundation grants #CNS-1513120, #ACI-1450440 and #CCF-
1565414, and a grant from the Swiss National Supercomputing
Centre (CSCS) under project ID s716. The authors would like
to thank Jonathan Perkins and Dr. Khaled Hamidouche for
extending invaluable help in implementing the pointer cache
design for MVAPICH2-GDR.

REFERENCES

[1] “ImageNet,” http://image-net.org/, [Online; accessed October 29, 2018].
[2] “MPICH: High-Performance Portable MPI,” https://www.mpich.org/,

[Online; accessed October 29, 2018].
[3] “Open Sourcing TensorFlowOnSpark: Dis-

tributed Deep Learning on Big-Data Clusters,”
http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-
tensorflowonspark-distributed-deep, [Online; accessed October 29,
2018].

[4] “Protocol Buffers,” https://developers.google.com/protocol-buffers/,
[Online; accessed October 29, 2018].

[5] “PyTorch,” https://pytorch.org/, [Online; accessed October 29, 2018].
[6] “Tensorflow: An Open Source Machine Learning Framework for Every-

one,” https://github.com/tensorflow/tensorflow, [Online; accessed Octo-
ber 29, 2018].

[7] “UCX-Unified Communication X,” http://www.openucx.org/, [Online;
accessed October 29, 2018].

[8] “Intel/caffe,” https://github.com/intel/caffe, 2016, [Online; accessed Oc-
tober 29, 2018].

[9] “Caffe2 Framework,” https://caffe2.ai, 2017.
[10] “Gloo: Collective Communication Library with Various Primitives

for Multi-machine Training.” https://github.com/facebookincubator/gloo,
2017, [Online; accessed October 29, 2018].

[11] M. Abadi, P. Barham, J. Chen et al., “Tensorflow: A system for large-
scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,
2016, pp. 265–283.

[12] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-Caffe:
Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on
Modern GPU Clusters,” in Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’17. New York, NY, USA: ACM, 2017.

[13] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed
Deep Learning: An In-Depth Concurrency Analysis,” CoRR, vol.
abs/1802.09941, Feb. 2018.

[14] R. Biswas, X. Lu, and D. K. Panda, “Accelerating TensorFlow with
Adaptive RDMA-based gRPC,” in 25th IEEE International Conference
on High Performance Computing, Data, and Analytics (HiPC’18),
December 2018.

http://image-net.org/
http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep
http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep
http://www.openucx.org/
https://caffe2.ai

—Submitted to IEEE IPDPS 2019 (Main Track) for Peer Review— 10

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128Im
ag

es
/s

ec
on

d
(H

ig
he

r
is

be
tt

er
)

No. of GPUs

(a) NASNet-large

1
4

16
64

256
1024
4096

16384

1 2 4 8 16 32 64 128
No. of GPUs

Baidu-MPI Horovod-MPI gRPC+MPI gRPC ideal

(b) ResNet-50

1
4

16
64

256
1024
4096

16384
65536

262144

1 2 4 8 16 32 64 128
No. of GPUs

(c) Mobilenet

Fig. 9. Performance Comparison for Various Distributed Training Approaches using 1) NASNet-large, 2) ResNet-50, and 3) Mobilenet on the Piz Daint
Cluster (up to 128 GPUs). MPI refers to Cray-MPICH (v7.6) MPI Library.

[15] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
Adam: Building an Efficient and Scalable Deep Learning Training
System,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). Broomfield, CO: USENIX Association,
2014, pp. 571–582.

[16] C. Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and D. K. Panda,
“CUDA Kernel Based Collective Reduction Operations on Large-scale
GPU Clusters,” in 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), May 2016, pp. 726–735.

[17] J. Chu and V. Kashyap, “Transmission of IP over InfiniBand (IPoIB),”
Requests for Comments, RFC Editor, RFC 4391, Apr 2006. [Online].
Available: https://tools.ietf.org/html/rfc4391

[18] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “GeePS:
Scalable Deep Learning on Distributed GPUs with a GPU-specialized
Parameter Server,” in Proceedings of the Eleventh European Conference
on Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM,
2016, pp. 4:1–4:16.

[19] Google, “Google’s Remote Procedure Call Library (gRPC),” http://www.
grpc.io.

[20] ——, “TensorFlow Benchmarks,” https://github.com/tensorflow/benchmarks,
2018, [Online; accessed Oct-2018].

[21] ——, “TensorFlow Custom Operators: Adding an Op,”
https://www.tensorflow.org/extend/adding an op, 2018, [Online;
accessed Oct-2018].

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” ArXiv e-prints, Dec. 2015.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[24] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:
Near-linear Acceleration of Deep Neural Network Training on Compute
Clusters,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2592–2600.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[26] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’14. Berkeley, CA, USA: USENIX Association, 2014,
pp. 583–598. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2685048.2685095

[27] X. Luo, W. Wu, G. Bosilca, T. Patinyasakdikul, L. Wang, and J. Don-
garra, “ADAPT: An Event-based Adaptive Collective Communication
Framework,” in Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’18.
New York, NY, USA: ACM, 2018, pp. 118–130.

[28] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “TOP 500
Supercomputer Sites,” http://www.top500.org.

[29] Microsoft, “CNTK,” http://www.cntk.ai/, 2017, [Online; accessed April-
2017].

[30] MVAPICH2: High Performance MPI over InfiniBand and iWARP,
http://mvapich.cse.ohio-state.edu/, [Online; accessed October 29, 2018].

[31] NVIDIA, “AI Research & Developement — NVIDIA DGX Sys-
tems,” https://www.nvidia.com/en-us/data-center/dgx-systems/, [Online;
accessed October 29, 2018].

[32] NVIDIA, “NCCL,” https://github.com/NVIDIA/nccl, 2017, [Online; ac-
cessed October 29, 2018].

[33] L. Oden, B. Klenk, and H. Frning, “Energy-Efficient Collective Re-
duce and Allreduce Operations on Distributed GPUs,” in 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, May 2014, pp. 483–492.

[34] P. Patarasuk and X. Yuan, “Bandwidth Optimal All-reduce Algorithms
for Clusters of Workstations,” J. Parallel Distrib. Comput., vol. 69, no. 2,
pp. 117–124, Feb. 2009.

[35] H. Pritchard, D. Gilmore, M. ten Bruggencate, D. Knaak, and M. Pagel,
“Message passing toolkit (MPT) software on XT3,” in Cray User Group
2006 Proceedings, 2006.

[36] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318–362.

[37] A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep
Learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.

[38] S. Shi and X. Chu, “Performance Modeling and Evaluation of
Distributed Deep Learning Frameworks on GPUs,” CoRR, vol.
abs/1711.05979, 2017.

[39] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking State-of-the-Art
Deep Learning Software Tools,” CoRR, vol. abs/1608.07249, 2016.

[40] S. Sridharan, K. Vaidyanathan, D. Kalamkar, D. Das, M. E. Smorkalov,
M. Shiryaev, D. Mudigere, N. Mellempudi, S. Avancha, B. Kaul, and
P. Dubey, “On Scale-out Deep Learning Training for Cloud and HPC,”
ArXiv e-prints, Jan. 2018.

[41] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, Feb. 2005.

[42] The Open MPI Development Team, “Open MPI : Open Source High
Performance Computing,” http://www.open-mpi.org.

[43] B. Yi, J. Xia, L. Chen, and K. Chen, “Towards Zero Copy Dataflows
Using RDMA,” in Proceedings of the SIGCOMM Posters and Demos,
ser. SIGCOMM Posters and Demos ’17. New York, NY, USA: ACM,
2017, pp. 28–30.

[44] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in JSSPP 2003. Springer, 2003,
pp. 44–60.

[45] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Trans-
ferable Architectures for Scalable Image Recognition,” CoRR, vol.
abs/1707.07012, 2017.

https://tools.ietf.org/html/rfc4391
http://www.grpc.io
http://www.grpc.io
http://arxiv.org/abs/1408.5093
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://www.top500.org
http://www.cntk.ai/
http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org

	I Introduction
	I-A Contributions

	II Overview of Communication Libraries for Distributed Training: Past, Present, and Future
	II-A DL Frameworks and Communication Libraries
	II-B Communication Libraries for TensorFlow
	II-C Future TensorFlow Developments

	III Analysis of Design and Performance: Several Distributed Training Approaches for TensorFlow
	III-A gRPC-based Designs
	III-B gRPC+`X' Designs
	III-B1 MPI
	III-B2 Verbs
	III-B3 GDR

	III-C No-gRPC Designs
	III-C1 Baidu
	III-C2 Horovod

	III-D Performance Analysis

	IV Optimizing tf_cnn_benchmarks for HPC Systems
	V Optimizing CUDA-Aware MPI Primitives
	V-A CUDA Kernel-enabled Allreduce for large messages
	V-B Optimized Pointer Cache for Device Buffers
	V-C Performance Benefits

	VI Comprehensive Performance Comparison of Existing and Proposed Designs
	VI-A Performance of CPU vs. GPU based Training
	VI-B RI2
	VI-C Owens
	VI-D Piz Daint

	VII Related Work
	VIII Conclusion
	References

