Deep Reinforcement Learning for IoT Network
Dynamic Clustering in Edge Computing

Qingzhi Liu*, Long Cheng', Tanir Ozcelebi*, John Murphy', Johan Lukkien*
*MCS, Eindhoven University of Technology, The Netherlands
fCS, University College Dublin, Ireland
Email: q.liu.1 @tue.nl, long.cheng@ucd.ie, t.ozcelebi @tue.nl, j.murphy @ucd.ie, j.j.lukkien@tue.nl

Abstract—How to process the big data generated in large IoT
networks is still challenging current techniques. To date, a lot of
network clustering approaches have been proposed to improve
the performance of data aggregation in IoT. However, most of
them focus on partitioning networks with static topologies, and
thus they are not optimal on handling the case with moving ob-
jects in the networks. Moreover, as the best of knowledge, none of
them has ever considered the performance of following computing
in edge servers. To improve these problems, in this work, we pro-
pose a highly efficient IoT network dynamic clustering solution in
edge computing using deep reinforcement learning (DRL). Our
approach can both fulfill the data communication requirements
from IoT networks and load-balancing requirements from edge
servers, and thus provide a great opportunity for future high
performance IoT data analytics. We implement our approach by
Deep Q-learning Network (DQN) model, and our preliminary
experimental results show that the DQN solution can achieve
higher score in cluster partitioning compared with the current
static benchmark solution.

I. INTRODUCTION

Edge computing is an efficient solution to process large
amount of data aggregated from Internet of Things (IoT). The
traditional aggregated data sets in IoT are of small size, such
as sensing data. Therefore, a non-optimized data aggregation
solution will not obviously affect the performance of the
edge computing. Because the edge servers can re-allocate the
data to multiple servers through wired network, which can
easily achieve Giga-byte communication speed. However, with
the fast development of IoT in recent years, the property
of data flow in IoT changes. Firstly, data in IoT becomes
increasingly larger, such as video, images, etc. Secondly, data
comes from not only homogeneous static devices, but also
heterogeneous dynamic devices. To process these data in the
edge in an efficient way, such as applying the advanced parallel
computing techniques, we need an effective data aggregation
in 10T, since a non-optimized data aggregation solution could
result in performance bottlenecks for parallel computing. For
the interesting of this work, we focus on the load balancing
issues in such scenarios.

To date, many solutions for data aggregation in IoT net-
works and load balancing for parallel computing have been
proposed respectively. However, almost all the techniques in
the two fields are total independent from each other, and the
research on optimizing the performance on both aspects is
limited for two main challenges.

CCGrid’ 19, online at https://doi.org/10.1109/CCGRID.2019.00077

« Different Requirements: The requirements on IoT net-
work and parallel computing are different. On one hand,
most solutions for data aggregation in IoT focus on
increasing the communication performance, such as data
aggregation speed. On the other hand, most solutions for
parallel and distributed computing focus on balancing
the data size aggregated in servers to improve their load
balancing. For example, from the IoT viewpoint, the
deployed servers should be close to most of the IoT
devices, so that the communication latency and energy
consumption can be minimized. However, from the com-
puting viewpoint, balanced data size on the servers could
greatly speed up the data processing [1].

o Dynamic Networks: The data aggregation solution should
not only consider the topology of a network, but also
the dynamic objects in the network. As a dynamic object
moving inside the detection range of IoT devices, such as
proximity sensing, an IoT device would produce data trig-
gered by the object. In this condition, the data aggregation
scheduling should be adaptive to the dynamic networks.
However, most existing solutions just focus with a static
data flow pattern.

In this paper, we propose a deep reinforcement learning
(DRL) based solution for IoT network clustering. In each
cluster, the data produced from cluster member devices is
aggregated to the edge server located in the cluster. In general,
our solution has two main properties.

« We assume each IoT device produces regular data of a
fixed size periodically. Our solution partitions the IoT
network into clusters to maximize the performance that
is related with data aggregation in both edge computing
and IoT networks.

« We assume objects move in the area of IoT network,
which trigger the neighbor IoT devices to produce data
with larger size than regular data. Our solution adapts
the pattern of network clustering to the changing of
aggregated data.

To achieve the goal, we propose a Deep Q-Learning Net-
work (DQN) model. The preliminary experiments prove the
feasibility of our solution. The experimental results show that
the DQN model improves the system performance significantly
in the IoT network with dynamic objects compared with the
solution using static partitioned clusters.

Edge Servers

Server 1 Server 2

Dynamic Object
| e loT Network

Fig. 1. The system model of IoT network and parallel servers. The data
aggregation is based on the partitioned clusters.

The paper is organized as follows. Related work is discussed
in Section II. The system model is present in Section III.
The DQN based solution is explained in Section IV. The
preliminary experimental results are presented in Section V.
Finally, we discuss the future work in Section VI and conclude
the paper in Section VIIL.

II. RELATED WORK

Cluster based data aggregation is widely used in wireless
networks [2] [3] [4]. Typically, the network nodes are parti-
tioned to several groups, and the member nodes in a cluster
send the data to the cluster header. The network clustering
is used to optimize the performance of the network, such
as energy consumption, communication latency, etc. Most of
the network clustering solutions are designed based on the
global information of network. To cope with the situation
without global information, some researches focus on self-
adaptive self-organization systems [5]. For example, [6] makes
the network converge to the optimized network clustering by
the local decision of each node using evolutionary theory.

To cope with more complicated resource management prob-
lems in networks, some researches exploit Reinforcement
Learning (RL). For example, [7] presents a solution that
translates the tasks with multiple resource demands into a
RL problem. Its experimental results show that the RL model
has comparable performance to the state-of-the-art heuristic
solutions. [8] presents a resource allocation mechanism based
on DRL in vehicle-to-vehicle communications. The solution
makes each agent optimize sub-band and transmission power
for satisfying the latency constraints using distributed local
information.

III. SYSTEM MODEL

The system model includes a IoT network and edge com-
puting servers as shown in Figure 1. The IoT network consists
of homogeneous nodes. Each node produces data periodically,
and transfers messages to the servers by multi-hop commu-
nication. Several edge servers are deployed to make parallel
computing for the aggregated data from the IoT network.

Cluster 1 e o _ | Cluster 1 °
[J [J
[J [[J [J
[J []
| °] | ° °
° [J ', ° ‘1
L4
® o I ® [] Pl
"o L=, P
L4 .~ e
® ¢ ® l_'- - 4 "’ P A “
Ve S lo [}
® 2 \‘ me®l ‘ ’,'
4 [’
. . r) . 4
o | H ‘“~_ - ! .
° P \‘ . -
” /,
—v‘—‘\.fl Cluster 2 lustel
(a) (b)
B Server ’ Dynamic Object

==== Cluster Border Line '::‘. Object Detection Range

Fig. 2. The dynamic object triggers the neighbor IoT devices to produces
data of larger size. As the object moves from the position as in (a) to (b),
the cluster partition changes to maintain the balance of aggregated data in the
servers.

For collecting data from IoT devices to multiple servers, the
network is partitioned into clusters, and each edge server
resides in a cluster. Each server is responsible for collecting
the data from the IoT devices of a cluster.

We suppose each IoT device sends regular report data
of a fixed size periodically to the server of its cluster. An
object moves in the area of IoT network, and triggers the
neighbor IoT devices to produce sensing data of larger size.
For example, the object could be a person moving around.
The sensor attached to each IoT device detects the proximity
of person. Once a person appears in the detection range of the
device, the IoT device captures the image of the person and
sends image data to the server of its cluster.

The network clustering depends on the position of the
moving object in the IoT network and the data aggregation
requirements. Figure 2 presents an example. To guarantee the
aggregated data size in both servers are equal, the network
clustering pattern must change to adapt to the movement of
object in the area. In this paper, we utilize DRL approach to
find the optimized network clustering in the IoT network with
dynamic objects.

IV. DEEP REINFORCEMENT LEARNING SOLUTION

We use Deep Q-Learning Network (DQN) as the DRL
model for dynamic network clustering. We assume that the
agent performing DQN model resides in a server, and all the

required information about IoT network are collected to the
DQN model.

A. Actions

Suppose a set of servers P = {p1,...p;, ...pn } reside in the
network with 7 € [1,n]. A cluster-core o; is set at the position
of server p;. To partition the IoT network into clusters, we first
select the IoT network node that is closest to the cluster-core
o; as the cluster header h;. After that, we partition the network
into clusters C' = {¢y, ...¢;, ...c, } with @ € [1,n] based on the
cluster headers. To simplify the implementation, we partition

[]
[J o
°
. < é : " Server
s, OV e,

Dynamic Object

===
[] o
[]
> S e ’
Sen <
)

|
——> Trajectory of Dynamic Object

“, 2 A Position of Cluster-Core
ewel.s? ;

<""A"">. ----- > Moving Direction of Cluster-Core
4v_

Fig. 3. The IoT network is partitioned into clusters based on the movement
position of cluster-cores.

the network to Voronoi clusters. After the initialization, each
server resides in a cluster.

To control the partition of clusters, we move the cluster-
cores of clusters. The action state space A is the movements
of all the cluster-cores. In our implementation, each cluster-
core has five movement actions: Up, Down, Left, Right, Stay.
At each time step, the DQN model selects and performs a
movement action on a cluster-core. After the movement, the
network re-selects the IoT network node that is closest to the
cluster-core o; as the cluster header h;, and re-partitions the
network into clusters based on the new cluster headers. An
example of moving cluster-cores and partitioning clusters is
shown in Figure 3.

B. Reward

The action reward is the satisfactory to the requirements on
both IoT network and edge computing aspects. We define the
two requirements that the network clustering should fulfill as
follows.

« Edge Servers: Name the size of data aggregated to each
server p; as d;, and D = {dy, ...d;, ...d,, } with i € [1,n].
To maximize the parallel computing speed by edge
servers, the aggregated data size should be balanced in the
servers. We use the average absolute deviation value of D
that is normalized in [0, 1] to quantify this load balancing
requirement. We have W = 1 3>"" | [1 — %].

e IoT Network: Name the total number of communication
hops to transfer all the data in cluster ¢; to server p; as
bi. B = {b1,...b;,..b,} with i € [1,n]. As we assume
the IoT network uses multi-hop communication, more
communication hops means higher communication time
for aggregating the same amount of data. To keep the
speed for aggregating data of each cluster on the same
level, the number of communication hops for transferring
all the data in each cluster should be balanced. We use the
average absolute deviation value of B that is normalized
in [0, 1] to quantify the requirement of IoT network. We
have H = 1 y°" [1 — liomean(B)ly

mean(B)

We combine the two indexes together as the reward of DQN
model. The reward function at time ¢ is expressed as r; =
W x H. The objective of DQN model is to find a policy to
maximize the expected cumulative discounted rewards R; as

TABLE I
THE PARAMETERS OF THE WIRELESS SENSOR NETWORK IN THE REAL
DEPLOYMENT.
Parameters [2 Clusters | 3 Clusters | 4 Clusters
Learning Rate 0.001 0.001 0.001
Discount 0.9 0.9 0.9
Min Espilon 0.01 0.01 0.01
DNN Layers 3 3 3
Neurons in Layer 1 | 200 400 600
Neurons in Layer 2 | 100 200 300
Neurons in Layer 3 | 50 100 150

follows, where § € [0,1] is the discount factor for reward r;
and k is the number of time steps from ¢.

Rt = Eﬂ- Zﬁerk (])
k=0

C. Q-Value

Name s, as the input state data of the DQN model at time ¢.
The input state space .S includes: (i) the neighbor connectivity
matrix of the network; (ii) the cluster ID of each node; (iii)
the size of data that is produced in each node. A policy 7 is a
mapping from the state space S to the action space A. DQN
aims to find the optimal policy to maximize R;. The Q-value
Q(s¢,ay) is defined as the reward R; when taking action a,
in state s; using policy m. We use Q-value to measure the
quality of a certain action in a given state. Our DQN model
uses a fully connected DNN with weight set § to approximate
the Q-function. After taking the action, the agent receives the
reward r; and the IoT network moves to a new state s;yi.
We select the action to be taken in the state s; is the one that
maximizes the Q-value.

a; = arg max Q(s¢, a) 2)
acA

The improved policy with Q-values is based on the fol-
lowing update equation, where Q' is the improved policy and
a € [0, 1] is the learning rate.

Q' (s1,a1) =Q(s1, 1) + afri+
51;163\3‘(@(5&1,&) — Q(5¢, at)] 3)

The DQN model updates its DNN at each iteration to
minimize the loss function L.

L= [re+ BmaxQ(sit1,a) — Qs ar))? 4)

V. PRELIMINARY EXPERIMENTAL RESULTS

We evaluate the performance of the DQN model in a
simulation IoT network. The network is deployed in an square
area of 150mx 150m. The nodes are randomly scattered in the
area. As a preliminary experiment, we test the model in 40
nodes with 2 clusters, 60 nodes with 3 clusters, and 80 nodes
with 4 clusters respectively. The data transmission range of
nodes is 40m, 35m, 30m for 2, 3 and 4 clusters respectively.

-
-

o
®
o
@

o
@
=4
o

o
=
o
=

N

fffffff Static Voronoi Clusters
DQN Clusters (Moving Avg.)
- - - - DQN Clusters (Polynomial Curve Fitting)

o
@

o
Y

o
IS

o

AWNMWMM

"""" Static Voronoi Clusters
DQN Clusters (Moving Avg.)
- - - - DQN Clusters (Polynomial Curve Fitting)

)
o
o
N

Credit to Fulfill the Request
Credit to Fulfill the Request
b

"""" Static Voronoi Clusters
DQN Clusters (Moving Avg.)
- - - - DQN Clusters (Polynomial Curve Fitting)

e '

Credit to Fulfill the Request
o
o

o
)

o

200 400 600 800 1000
Learning Rounds

o

200 400

(a) 2 Clusters.

Learning Rounds

(b) 3 Clusters.

o

600 800 1000

o

500 1000 1500 2000
Learning Rounds

(c) 4 Clusters.

Fig. 4. The credits of data aggregation using the DQN model in multiple clusters.

The detection range of objective is 2 times larger than the
transmission range. We set one dynamic object in the IoT area.
The speed of object is 1m/s, and it is initialized at the position
of a random cluster header. We randomly select another cluster
header as the moving direction of the object. The object
moves to the direction until it is outside the deployment area.
After that, the object moves to the opposite direction. We
assume each node produces one message of 1Kb every 10
seconds. If the object is in the detection range of a node, the
node produces a message of 10Kb. The communication speed
between [oT nodes is 1Kb/s. To simplify the simulation, we
ignore the interference in wireless communication. The DQN
model is processed in every 10 seconds. Each round of training
lasts for 500 seconds. The parameter values of DQN model
are shown in Table L.

We use a static cluster partition algorithm without DQN
model for comparison. In the comparison solution, each server
is set as a cluster header, and the network is partitioned
to Voronoi clusters. We compare the average reward score
between our DQN solution and the Voronoi clustering solution.

The experimental results of 2, 3 and 4 clusters are shown
in Figure 4(a), 4(b) and 4(c) respectively. The results of DQN
model are shown by the moving average with window size 11,
and the result trend is illustrated by a 4 round polynomial curve
fitting. In all the three experiments, our DQN approach has
significant improvement compared with the benchmark results.
After convergence, the improvements are around 56%, 47%,
and 32% in 2, 3 and 4 clusters respectively. The improvement
decreases as the number of clusters increases. The main reason
is that we only select one cluster-core to move in a time step.
If all cluster-cores perform actions in a time step, the chance
to find the cluster partition with higher reward will increase.

VI. FUTURE WORK

There are multiple points in the DRL model that we will
improve in the future work.

« We use only one object with direct moving pattern in the
implementation. This moving pattern cannot represent the
real dynamic objects in IoT systems. We will evaluate
whether the reinforcement learning model could cope
with multiple objects moving in a more real pattern, such
as random walk.

« To simplify the DQN model, we set one cluster-core in
each cluster. In our next step work, we will set multiple
cluster cores in a cluster. This will provide smaller
granularity for controlling the cluster shape.

o This paper assumes that the IoT network is static, and
only the object moves around. It is unknown whether
the reinforcement learning solution can cope with a IoT
network in which every node moves randomly.

VII. CONCLUSIONS

This paper presents a DRL solution for dynamic network
clustering in IoT networks with edge servers. The aim is
to optimize the data aggregation clustering to fulfill the re-
quirements from both the 10T network and edge computing
aspects. Our preliminary experiments show that the proposed
DQN model can achieve better results compared to the static
benchmark solution. In such scenarios, our work has showed
that it is feasible to apply DRL techniques to IoT networks
and edge computing. Moreover, we also believe that our design
and implementation have offered an alternative to the current
network clustering solutions.

REFERENCES

[1] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos, “Improving
the robustness and performance of parallel joins over distributed systems,”
Journal of Parallel and Distributed Computing, vol. 109, pp. 310-323,
2017.

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
System sciences, 2000. Proceedings of the 33rd annual Hawaii interna-
tional conference on. 1EEE, 2000, pp. 10—pp.

[3] G. Chen, C. Li, M. Ye, and J. Wu, “An unequal cluster-based routing
protocol in wireless sensor networks,” Wireless Networks, vol. 15, no. 2,
pp. 193-207, 2009.

[4] J. Yu, Y. Qi, G. Wang, and X. Gu, “A cluster-based routing protocol
for wireless sensor networks with nonuniform node distribution,” AEU-
International Journal of Electronics and Communications, vol. 66, no. 1,
pp. 54-61, 2012.

[5] Q. Liu, A. Pruteanu, and S. Dulman, “Gradient-based distance estimation
for spatial computers,” The Computer Journal, vol. 56, no. 12, pp. 1469—
1499, 2013.

[6] Q. Liu, S. Dulman, and M. Warnier, “Area: an automatic runtime evolu-
tionary adaptation mechanism for creating self-adaptation algorithms in
wireless networks,” 2013) colocated with AAMAS (W09), p. 23, 2013.

[7]1 H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. ACM, 2016, pp. 50-56.

[8] H. Ye and G. Y. Li, “Deep reinforcement learning for resource allocation
in v2v communications,” in 2018 IEEE International Conference on
Communications (ICC). 1EEE, 2018, pp. 1-6.

