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Abstract—Users of cloud computing are overwhelmed with
choice, even within the services offered by one provider. As
such, many users select cloud services based on description
alone. In this quantitative study, we investigate the services of 2
of major IaaS providers. We use 2 representative applications
to obtain longitudinal observations over 7 days of the week
and over different times of the day, totalling over 14,000
executions. We give evidence of significant variations of perf-
ormance offered within IaaS services, calling for data-driven
brokers that are able to offer automated and adaptive decision
making processes with means for incorporating expressive user
constraints.
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I. INTRODUCTION

The cloud is a transformative computing paradigm that
has touched almost every application in the modern world.
The cloud computing market is a fierce one with high
competition between enormous multinational technology
companies such as Google, Amazon and IBM, and relatively
smaller and more specialised companies such as Flexiant
and DigitalOcean. There are well documented differences
between such cloud service providers (CSPs), most notably
in terms of pricing schemes and hardware heterogeneity.
This gives impetus for the development of inter-CSP brokers,
an active area of research (cf. [1], [2], [3], [4]).

However, there is also need for work on intra-CSP deci-
sion support. On the surface of it, the services offered by any
single CSP might seem straight forward as they are classified
under easily identifiable tags such as general-purpose, high-
memory, and cpu-optimised. As such, intuition would dictate
that a customer simply needs to select a class that matches
their application type and then select an instance from that
class that falls within their budget.

Nonetheless, selection is not as easy as it looks. First,
most CSPs offer a bewildering range of IaaS services in
the form of different instance types under some variants of
the aforementioned classes. A quick survey of the major
CSPs demonstrates this as depicted in Fig. 1. CSPs such as
Amazon and Microsoft offer a total of 57 and 67 instance
types, respectively. One CSP not represented in the plot
is IBM SoftLayer, which allows its customers to create
custom instances using parameter sliders including number
of cores (between 1 and 56), memory (between 1GB and

242GB), and storage (between 25GB and 100GB), as well
as other settings. In total, this offers a range of 768 possible
setting permutations! Ultimately, this leads to customer
frustration [5], [6] and suboptimal selection of instances [7].
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Figure 1: The number of Linux-based instance types offered
by major IaaS vendors, as of July 2017.

Second, and more importantly for our purposes in this
paper, other works [8], [9], [10] have indicated that instances
of a single CSP are not necessarily equally cost effective. In
other words, IaaS customers do not get more performance
the more money they pay, even within instances of the same
class (e.g. high-memory) of a single CSP.

In this paper, we investigate variation between intra-
CSP instance types in detail. For this, we employ intensive
benchmarking using 2 representative real-world applications,
running them 14,300+ times over different times and days
of the week. We use this methodology to analyze the intra-
CSP performance of 2 major IaaS CSPs: Amazon Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).

Our philosophy here is pragmatic. We use applications
that are representative and open source, thus allowing others
to produce follow-up comparative studies (as rightly called
for in [9]). More importantly, we take the user’s perspective,
observing application performance as a user would.

II. RELATED WORK

Cloud computing literature is crowded with efforts at-
tempting to optimise service selection using a number of
different approaches. One prevalent approach relies on the
‘book value’ attributed to offered services. Examples of this
approach come from both academia (cf. [11]) and business
(cf. [12]).



However, the above approach is flawed as there is suffi-
cient evidence that the book values published by CSPs are at
best only indicative, but neither representative nor reliable.
An early study [13] looked into variances between a few
EC2 instance types using standard benchmarks and noted
that there are no “best performing instance type”. Other
studies have identified variances within one provider [13],
[14], [15], [16], [17], and over a span of several days [18],
[9], different times of the year [19], and different regions
of a single IaaS provider [20], [9]. Recent works [8], [9]
indicated that cloud instance performance is difficult to
foresee based on the information the CSP offers and, thus,
selecting the optimal instance is a non-trivial decision.

Therefore, some have tried to gain better understanding
of the potential performance of cloud instances using bench-
marking suites and various modelling techniques; e.g. [21],
[17], [22]. Others use profile-based methods (cf. [23], [24],
[25]) or application-specific performance models (cf. [26]).

However, little attention is given to variation in cost-
effectiveness over similar instances or of the performance
of a single instance type. Consequently, our knowledge
of the IaaS instance search space is still constrained in
dimensionality. This is what we address in our study.

III. METHODOLOGY

The objectives of our experimental strategy are to:
• Ascertain if instance classification and description is

indeed helpful for instance selection or not.
• Identify the degree of variation in the performance of

a single instance type.
• Uncover differences in cost effectiveness between in-

stance types of a single CSP.

A. Experimental strategy

Our overall strategy is to study the variation in the
performance of running a uniform application workload over
different instance types. In order to collect enough data
points to identify any potential performance variance, we
repeated the workload with a 10 minute delay between each
pair of runs. All application parameters and input were
kept constant between application runs in order to reduce
dimensionality. We also ran the applications over different
times of the day and over all days of one week to control
for temporal variances such as diurnal patterns.

Our main performance metric is the time an application
workload takes to execute. In addition, we also use a suite
of Linux system performance monitoring tools (namely
vmstat, glances, and sysstat) for continuously moni-
toring VM resource utilisation.

B. Cloud infrastructures

We identified our target infrastructures as Amazon EC2
and Google GCE as two of the major players in the IaaS
market. From each, we examined a subset of their instance

Table I: Computational specifications of EC2 instances.

Series Instance

vC
PU

E
C

U RAM Storage Price
Type (GiB) (GB) ($/h)

T2 (General t2.small 1 Var. 2 20 0.026
Purpose) t2.medium 2 Var. 4 20 0.052

M3 m3.medium 1 3 3.75 4(S) 0.070
(General m3.large 2 6.5 7.5 32(S) 0.140
Purpose) m3.xlarge 4 13 15 32(S) 0.280

C4 c4.large 2 8 3.75 20 0.116
(Compute c4.xlarge 4 16 7.5 20 0.232
Optimised) c3.xlarge 4 14 7.5 32(S) 0.239

Table II: Computational specifications of GCE instances.

Series Instance

vC
PU

G
C

E
U

RAM Storage Price
Type (GB) (GB) ($/h)

Standard n1-standard-1 1 2.75 3.75 16 0.036
Type n1-standard-2 2 5.5 7.5 16 0.071

n1-standard-4 4 11 15 16 0.142
High Mem. n1-highmem-2 2 5.5 13 16 0.106

High n1-highcpu-2 2 5.5 1.8 16 0.056
CPU n1-highcpu-4 4 11 3.6 16 0.118

n1-highcpu-8 8 2.2 7.2 16 0.215

types that seem suitable for running each of our applications.
Note that there hardly was a straightforward answer to
“which instance type is best for running this application”,
which is the point of running this study. As such, we ended
up with a set from each provider. These are summarised in
Tables I–II, all running 64-bit Ubuntu 14.04.

Only on-demand instances are used; they have no long-
term commitments and are charged on a pay-as-you-go basis
at an hourly rate. All instances are located in western Europe
zones. The ‘Price’ column refers to the hourly charge for
running a VM of the referenced instance type.

It is important to note the units the two providers use
to describe their respective instance types. Both give the
number of virtual cores assigned to a VM (i.e. ‘vCPU’).
They both give an indicative amount of CPU capacity, but
they each use their own opaque unit: EC2 uses ‘ECU’ while
GCE uses ‘GCEU’. Amazon does not advise how an EC2
Compute Unit (ECU) relates to physical processing speed; it
only assures that it is a standard unit across its different IaaS
offerings. Google compute engine unit (GCEU)is an abstrac-
tion of compute resources where, according to Google, 2.75
GCEUs represent the minimum power of one logical core.
In either case, there is no clear indication how they relate
to physical processing speed.

C. Use cases

We use 2 applications representative of different architec-
tures in relation to intensity of memory and CPU usage:

VARD: is a tool to detect and tag spelling variations in
historical text [27], and is is a pre-processor to a wide range
of corpus linguistic tools. It runs as a single-threaded Java
application that holds an in-memory representation of the
full text and dictionaries that are constantly being updated as
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Figure 2: The overall distribution of VARD execution times.
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Figure 3: The overall distribution of smallpt execution times.

text is being processed. VARD is representative of repetitive
memory-intensive applications used for other uses such as
business transaction processing, and document analysis.

smallpt: is a C++ application for simulating multiple
light sources and how their illumination reflects off different
objects in a 3D space. smallpt is a multi-threaded OpenMP
based CPU-intensive application. For our benchmarks, we
select a box scene that is constructed out of 9 very large
overlapping spheres. The image is computed using equations
that solve the rendering equation. Monte Carlo path tracing
is used with Russian roulette for path termination.

IV. RESULTS

A. Overall distributions

The distributions of application execution times are dis-
played using violin plots (Fig. 2–3), where red dots mark
medians and instance types are sorted increasingly by cost
from the left. We directly observe some interesting patterns.

First, running smallpt is generally much more predictable
than VARD in terms of how long it will take to execute.
Quartiles are narrow for smallpt over most instances types.
We ascribe this to smallpt being a CPU intensive applica-
tion, as memory is typically under higher contention from
other guest VMs than CPU resources are. This is validated
when we inspect the only exceptions: the cheapest 2 EC2
instances, which exhibit large uncertainty. This is easily
explained considering EC2’s CPU Credits scheme1 that is
only offered on the T2 instance series. Under this scheme,

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html#t2-instances-cpu-credits

customers collect credits for idle instances that they can later
spend for full CPU utilisation.

Second, VARD execution times exhibit rather wide
ranges. Moreover, many VARD execution times follow bi-
modal distributions, which are quite pronounced on EC2
instances. In comparison, GCE instances are again more
predictable with distributions that are closer to being uni-
instead of bimodal.

Finally, and perhaps most peculiarly, instance types
clearly break the common intuition of “you get what you
pay for”. There are multiple examples of this. One surprising
case is that of EC2 m3.medium2 that consistently performs
badly for VARD (a memory intensive application!) as well
as smallpt. Another example is n1S1 outperforming all other
GCE instance types for running VARD.

A general observation from the above confirms the com-
plexity of selecting an IaaS instance. Choosing one purely
based on its computational specifications, the performance
it promises, or how much budget is available is an as-
sured recipe for uncertainty that may result in very low
performance. It is worth stressing that this uncertainty is
experienced with 2 market-leading IaaS providers.

B. What could be done in X hours?

Due to the observed variation, we identify two scenarios
that we use going forward. These are labelled Best Case and
Worst Case, which correspond to the lower and upper quar-
tiles, respectively, as observed in the overall distributions.

We focus first on the number of times each application
could be executed in a certain amount of time (we chose 12
hours) as a proxy for performance for applications requiring
repetitive or sequential execution. See Fig. 4–5.

The first impression is a reinforcement of the notion that
“you get what you pay for” does not always hold. This is
signified by plots that do not follow the trend of increasing
number of executable jobs for more expensive instances.
This is especially noticeable for VARD on both EC2 and
GCE. On EC2, one could run just as many jobs on the
cheapest instance type (t2.small) as on the most expensive
one (c4.xlarge). For GCE, it is actually more effective
to use the cheapest instance (n1S1) than any other. With
smallpt, the trend is closer to what is expected with some
minor deviations. For instance, c4.xlarge is able to run
more jobs than the slightly more expensive c3.xlarge and
m3.xlarge instances on EC2.

To further examine such counter-intuitive cost-
effectiveness, we calculated the cost of running the
maximum number of jobs per instance type, indicated
above each plotted bar. The costs reveal further implications
to instance selection: for relatively short, repetitive
workloads like VARD and smallpt, smaller instances are

2Since carrying out our work, AWS has discontinued the m3.medium
EC2 instance type.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html#t2-instances-cpu-credits
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html#t2-instances-cpu-credits
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Figure 4: The maximum number of VARD jobs in 12 hrs.
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Figure 5: The maximum number of smallpt jobs in 12 hrs.

extremely more cost effective than those equipped with
higher computational specifications. For example, one could
run between 427 and 445 VARD jobs on EC2 t2.small
for just $0.31 as opposed to 459–608 jobs for almost 9
times as much ($2.76) on c4.xlarge. Another observation
is that VARD performance on higher spec instance types is
less certain than on cheaper ones. This was exhibited by the
distributions in §IV-A, but is made more evident now with
only the interquartile range affecting the best and worst
case scenarios. Coupled with the low cost-effectiveness of
such instance types, higher spec instance types pose higher
risk and cost with relatively less reward.

C. How much (and how long) for Y jobs?

We now try to unravel cost-effectiveness and variation
therein from the perspective of users who need to execute a
certain number of jobs. This is a decisive constraint for many
applications where the number of sub-jobs is synonymous
with work rate, aiming to process a certain amount of data
points or to reduce uncertainty to a desirable level, etc. For
this, we apply the Best and Worst case scenarios to the
average costs of running 1,000 jobs. We assume that each
submitted job takes the same amount of time. The results
are plotted in Fig. 6–7 where we also indicate the amount
of time needed for executing 1,000 jobs above each bar.

With VARD on EC2, the cheapest instance t2.small is
the most cost-effective: only $0.75 to run 1,000. This cost
rises between 6 and 8 folds for the most expensive instance.
The amount of time reveals interesting facts as well. One
can spend 27-29 hours to run 1,000 jobs on t2.small as
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Figure 6: The cost of running 1000 VARD jobs.
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Figure 7: The cost of running 1000 smallpt jobs.

opposed to 20-27 hours on c4.xlarge or 24-32 hours on
m3.large. In effect, the user would pay much more for
an uncertain reduction in execution time. t2.medium is the
most balanced in terms of cost and execution time: $1.25 for
22-24 hours, i.e. 3-5 times cheaper than the expensive nodes
and with a fairly certain and acceptable execution time.

For VARD on GCE, it is both time and cost effective to
use the cheapest instance type n1S1, which can finish 1,000
job runs for just $0.90 in exactly 25 hours. All other instance
types are more expensive in time and cost.

For smallpt, the trend of predictable performance is ob-
served as seen in §IV-B with some additional observations.
c4.xlarge provides the best cost:hour ratio compared to
other EC2 instances, able to run 1,000 jobs for the same
cost as with c4.large, but in nearly half the time. The
same trend is noticed in m3.xlarge and m3.large.

Interestingly, the cost of smallpt jobs on GCE are almost
equal on all instances except n1S2 and n1mem2. In terms
of time, n1CPU8 (the most expensive per hour) takes only
58-59 hours which is less than half of the time needed on
the next fastest instance type (n1CPU4 and n1S4). This is a
clear example illustrating that the cheapest instance is not
necessarily the most cost- or time-effective.

smallpt also draws a stark contrast between the two
CSPs. GCE seems to outshine EC2 for executing smallpt
jobs. Comparing n1S2, the second least cost- and time-
effective GCE instance, to its EC2 counterparts: it is of
equivalent performance and cost to c4.large but much
cheaper than m3.large. Furthermore, general purpose GCE
instance types extremely outperform the EC2 counterparts.



V. DISCUSSION

We now reflect on the presented results and distil a
number of learned lessons regarding the current state of IaaS.

Lesson 1: IaaS instances are not always as advertised:
An overarching outcome from our results is that selecting
an instance type based solely on what its virtual hardware
specifications are is an error-prone decision making strategy.
Instances might offer different specifications but perform
very similarly (e.g. GCE’s n1S4 and n1CPU4) and vice
versa (e.g. EC2 m3.large and GCE n1S2). Performance
variation within each instance and different pricing levels
further exacerbates the decision process.

This is a very significant outcome as it undermines a
large host of previous works that allocate cloud resources
based only on clock speeds and RAM capacities. Our results
demonstrate quite clearly that such model-based scheduling
is, at best, naı̈ve and sub-optimal. Attempts to draw up a
rule set to formalise instance selection would fail to account
for inexplicable deviances such as those observed with EC2
m3.medium. This is perhaps something that only the CSPs
can explicate with any confidence. Instead, deeper under-
standing of how different instances really perform is needed.
There is already some work based on live benchmarking
(e.g. [24]) and subsequent machine learning (ML)-based
allocation (e.g. [28], [8]), and we call for future research
to develop further in this direction.

Lesson 2: Superficial application profiling is insufficient:
The other side of selecting instances based on their spec-
ifications is restricting an application to a certain type /
class of instances based on its stereotypical profile. We have
observed how a memory-intensive application performs very
poorly on a number of high-memory instances, and instead
performs rather well on cpu-optimised ones.

This further confounds users wanting to optimise their
cloud workloads as it essentially expands the selection space.
Accordingly, this gives more impetus to use automated
methods (such as those using ML) for the exploration of
a wider search space of CSPs and their instance types. Such
methods need to be adaptive to be able to tailor selection for
each particular workload and its sensitivities such as those
triggered by change in input parameters and data [29], [30].

Lesson 3: Decisions are heavily driven by user con-
straints: This seemingly obvious principle is surprisingly
absent from many related works that reduce cloud de-
ployment to a simple scheduling optimisation problem. We
observed how the decision to run one application (say
VARD) on a single IaaS (say EC2) would change completely
based on what the user’s constraints are. In this particular
case, they could maximise the chance of running as many
jobs as possible during a certain period of time by choosing
t2.medium (under the worst case scenario), but if they
were on a budget then they would choose t2.small. If,
instead, they wanted this to be done as soon as possible
and budget was not a restriction, c4.xlarge would be best.

These are only a basic set of constraints; there would be
other sets of functional and non-functional constraints that
would heavily influence the decision making process. As
such, any automated process needs to allow users to express
such constraints and different combinations thereof, and be
able to take said constraints in consideration when forming
an instance selection method.

Lesson 4: Comparing across providers is complicated:
There are significant differences between instances of differ-
ent CSPs even if they appear similar on the surface. It is very
difficult for users to compare across providers, especially
with added uncertainty of variable instance performance.

Both EC2 and GCE use their own flavours of well known
hypervisors: Xen in the case of EC2, and KVM for GCE.
From the end user perspective, these hypervisors are black
boxes. The details of parallel workload on virtual machines,
resource allocation algorithms, and how virtual cores are
pinned to physical cores are some of the key details that
are not (and probably will never be) provided by these
and other IaaS CSPs to users. Consequently, IaaS users
cannot perceive any collocation or interference effect on
their running application. This further laments the need for
automated adaptive selection processes.

A related side note: we observed EC2 performance to
be more variable than GCE’s. This fluctuation might be
attributed to EC2’s underlying hypervisor technology, Xen,
which others have observed variability with [31].

Lesson 5: All is not lost: Pascal’s quote holds true here:
“It is not certain that everything is uncertain”. Despite all
the observed variability, there still remains a fair degree of
certainty that is only clear once we detach ourselves from
the instances’ ‘book value’. This, of course, comes at a cost
and requires automation to achieve and also to detect. As
such, there is an opportunity here to build adaptive and
customisable brokers to provide such knowledge [3], [4].

VI. CONCLUSION

We carried out extensive experiments on 2 market-leading
IaaS providers, EC2 and GCE, identifying variances in
instance performance and cost-effectiveness. Our results
indicate that instance selection incurs a considerable degree
of uncertainty as performance does not necessarily match
declared computational specifications. In addition, matching
general application profile with instance types is subopti-
mal. This is especially true for running memory-intensive
applications, and is more discernible in EC2.

Nonetheless, we still found a fair degree of confidence in
instance performance albeit over large execution samples.
Coupled with the sheer number of instances and their
varying configurations and pricing, the search space for an
optimal instance for a given application becomes substantial.
However, predictability of optimal cloud instance selection
can only be achieved through automated and adaptive search
of such space.
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