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Abstract—Quickly identifying astronomical transients from
synoptic surveys is critical to many recent astrophysical dis-
coveries. However, each of the data processing pipelines in
these surveys contains dozens of stages with highly varying
time and space requirements. Properly predicting the resources
required to run these pipelines is critical for the allocation of
computing resources and reducing the discovery response time.
We propose a machine learning strategy for this prediction
task and demonstrate its effectiveness using a set of timing
measurements from the intermediate Palomar Transient Factory
(iPTF) workflow. The proposed model utilizes the spatiotemporal
correlation of astronomical images, where nearby patches of the
sky (space) are likely to have a similar number of objects of
interest and workflows executed in the recent past (time) are
likely to use a similar amount of time because the machines and
data storage systems are likely to be in similar states. We capture
the relationship among these spatial and temporal features in
a Bayesian network and study how they impact the prediction
accuracy. This Bayesian network helps us to identify the most
influential features for predictions. With proper features, our
models achieve errors close to the random variance boundary
within batches of images taken at the same time, which can be
regarded as the intrinsic limit of prediction accuracy.

Keywords-Workflow Scheduling, iPTF, Spatiotemporal features

I. INTRODUCTION

A transient astronomical event, or simply a transient, is an

astronomical object or event with a relatively short lifespan,

instead of having a fixed location in the sky, like a star, or

a periodic orbit, like a planet [1]. Studying transients such

as the thermonuclear or core-collapse of a supernova helps

researchers to understand the life-cycle of stars and their

interaction in the formation of galaxies and the evolution

of our universe. Thus there are several large synoptic sur-

veys searching for these transients, for example, SLOAN [2],

CATALINA [3], ATLAS [4], the Palomar Transient Factory

(PTF) [5], and the Zwicky Transient Facility (ZTF) [6]. Since

the objects of interest in these projects are short-lived, it is

critical to be able to process the images taken quickly, so that

detailed follow-up observations can be made on the transients

just identified [7]–[10]. For this reason, it is important to

anticipate the resources required for processing the images

from these survey telescopes. Our focus is on the Intermediate

Palomar Transient Factory (iPTF) [11], a successor of the PTF

and a a predecessor of the ZTF. We show that many spatial

and temporal features, common to all similar workflows [12],

[13], are most useful for predicting the resource requirements.

Therefore, the insight developed in this work is relevant to

many astronomical data analysis projects.

Advancements of the optics and the image capturing sys-

tems in the synoptic surveys have dramatically increased the

volume of data captured and created an unprecedented demand

for analyzing these images. For example, the iPTF project

uses a large field camera with 11 active 2048x4096 CCDs that

capture 7.8 square degrees on the sky every two minutes pro-

ducing 70GB per night [14]. The ZTF uses the same telescope

as iPTF, but has an imager with a wider field-of-view and

shorter exposure times yielding an order of magnitude more

data in their search for young supernovae and fast-evolving

transients. Due to the computing resources required, the data

processing tasks are often completed in a computer center. In

the case of iPTF, the images are transferred to the National

Energy Research Scientific Computing Center (NERSC) and

the transient discovery workflow is executed on the Cori

supercomputer [13]. The iPTF workflow on Cori consists of

three main parts: I/O, image subtraction (computation), and

database matching (database queries). The execution time for

these tasks within the analysis workflow varies with a number

of characteristics of the image and system states.

In this paper, we propose a machine learning prediction

strategy for predicting the performance of the iPTF workflow

workload. Our conclusions are not limited to the iPTF work-

flow. Instead, they are readily useable for the ZTF workflow

since the transient discovery tasks, and image attributes of

iPTF and ZTF are similar [12]. In addition, we have taken

care to build the prediction models based on features in image
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analysis workflows. In particular, we design several features

and select two prediction targets that indicate the workload

of the workflow pipeline. The features and prediction targets

allow us to predict workflow performance in real-time. The

critical contribution of this work is a Bayesian network that

represents the conditional correlation among the features and

prediction targets. The Bayesian network allows us to filter

out redundant features, which in turn makes the model more

actionable and avoids overfitting problems. We use experimen-

tal results to support the correctness of the Bayesian network.

The testing data performance of our prediction models trained

with the selected features achieves strong correlations between

prediction and actual values and NMSEs as low as 0.1.

The rest of this paper is arranged as the following. In

Section II, we describe the related work for transient discovery.

Later, we present our preprocessing, feature selection, and

model design methods in Section III. Finally, we present a case

study of iPTF workflow data with our proposed approaches in

Section IV.

II. BACKGROUND

Gravitational wave (GW) detections, neutrino detections,

and electromagnetic spectrum observations can reveal the

death throes of stars [7], [8], [15]. However, the detailed mech-

anism of such stellar explosions is still an open question. Thus,

many of the recent astronomical observations are focused on

gathering data about transients to study the chaotic moments

after stars explode [16]–[25].

To study these transients, one set of telescopes perform

synoptic surveys by repeatedly looking at a large fraction

of sky for any changes, while another set of telescopes,

typically, many larger ones, will be directed to make more

detailed observations about the newly discovered transients.

In this process, the images gathered by the synoptic surveys

need to be processed quickly so that the most promising

candidates can be identified in near real-time for follow-

on observations. Since there are only a limited number of

large telescopes that could complete the follow-up observa-

tions, the workflow for processing the synoptic survey images

must identify the most interesting transients accurately and

reliably [12]. Additionally, the astronomers are increasingly

focusing on short-lived transients, such as gamma-ray bursts

or GW counterparts that might last only hours, which requires

image processing workflows to be completed in minutes. Thus,

such data processing workflows are often quite complex and

require a considerable amount of computing resources, which

is why iPTF uses Cori at NERSC.

The iPTF workflow pipeline processes a high volume of

images in parallel. It consists of I/O operations, computation

for filtering out relevant objects in images with machine

learning techniques, and database operations. Scheduling jobs

for such a workflow on the supercomputer is challenging

since the execution time of different stages depends on the

input data properties. A comprehensive study of workloads

on supercomputers has shown that large-scale applications

on supercomputers have a similar workload within a short

period [26]. However, they conclude that the workload of a

pipeline is likely to vary across a long-time period. Merzky

et al. argue for the same conclusion in their RADICAL-

Pilot paper [27]. Existing methods for scheduling jobs on

supercomputers need an estimation of job workloads. In the

case of iPTF, we use the number of objects to be extracted

from an image as an estimation of workflow. Armstrong et

al. [28] study the problem of scheduling multiple tasks with

different workloads. Tang et al. propose methods for schedul-

ing supercomputer jobs with conflict goals: fairness, wait

time, and system utilization [29] [30]. However, predicting

workload is a challenging task. Users cannot accurately predict

the workload of their programs, so scheduling algorithms

may be given wrong workload information. A follow up

of Tang’s work points out that the workload estimation is

usually inaccurate on supercomputers [31]. They propose a

method for adjusting the expected execution time of user

jobs for better performance. Nevertheless, predicting workload

based on the known software task and data can give more

accurate estimation because domain knowledge is taken into

account. In this paper, we take advantage of the domain-

specific knowledge of iPTF.

The estimation of processing time based on workload is

a challenging task since the execution time depends on both

hardware conditions and software input data. The hardware

condition is often unknown to users of supercomputers. How-

ever, we can infer it based on the execution time of recent

jobs in the workflow pipeline. The software input data we

are dealing with are iPTF images. Based on the available

features of the images, we can predict the processing time

of the bottleneck stage. We define the features and prediction

model in the next section.

III. DESIGN

The iPTF workflow pipeline has 40 checkpoints, labeled

from 0 to 39, see an illustration in Fig. 5. We name the

task between checkpoint i and i + 1 to be processing stage

i, and, therefore the execution time of stage i is the time

difference between the time reported at checkpoint i and that

at checkpoint i+1. Stage 0 of this workflow is to transfer the

image captured by iPTF telescope to NERSC. The remaining

stages of this workflow are executed on Cori [12], [13].

A. Removing I/O anomalies

We discover that the processing time of stage 5, 10, 14, and

19 contain anomalies. These are all I/O stages of the pipeline.

Their mean processing time is higher than their 90% quantile.

Moreover, the pair-wise Pearson correlation coefficients are

all greater than 0.9. Figure 1 (a) illustrates the pair-wise

correlation coefficients of raw dataset. Spearman correlation

coefficients, on the other hand, are not showing such a strong

correlation in Figure 1 (c). Thus, we conclude that the strong

linear correlation of these I/O stages results from a few large

anomalous numerical values. The anomaly values of the I/O

stages are up to hours, which is much larger than the typical

I/O processing time of the program (less than 2 minutes).
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Fig. 1. (a) Pearson correlation coefficients for pair-wise processing time of stages before removing I/O anomalies. (b) Pearson correlation coefficients for
pair-wise processing time of stages after removing I/O anomalies. (c) Spearman correlation coefficients for pair-wise processing time of stages before removing
I/O anomalies. (d) Spearman correlation coefficients for pair-wise processing time of stages after removing I/O anomalies.

Therefore, we use the means of the I/O stage processing time

as breakpoints. After we split the original dataset based on the

mean of these four stages, approximately 10% of the dataset

are classified as anomalous. The anomalous part shows a pair-

wise linear correlation among the I/O stages close to 1, while

the rest 90% of the regular dataset does not show a moderate

pair-wise correlation. Figures 1 (b) and (d) illustrates the pair-

wise correlations between different stages after removing I/O

anomalies. This observation implies that the long execution

time of these I/O stages occur together, from which it is

reasonable to conclude that the I/O system is undergoing a

severe degradation when these images passed through the

pipeline. Consequently, we can confidently filter out these

anomalies. These anomalies have timestamps in 2015, which

was the first year that Cori was in service and are likely the

product of various system instabilities. Our focus should be

on the regular part of the dataset since such anomalies are not

expected moving forward.

B. Prediction Target

Figure 2 illustrates the stage processing time distribution of

all stages from 1 to 38. Stage 36 (between checkpoints 36 and

37) is the dominant stage. This stage is a database-intensive

operation for associating candidates with local galaxies, a

complex spatial query in postgres using q3c [32]. It is a critical

piece of information in prioritizing follow-up observations.

Predicting the processing time of this stage allows the schedule
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Fig. 2. Stage processing time of all stages after removing all I/O anomalies.

of the number of compute nodes ahead of time. For example,

if the predicted time is relatively large, a larger number of

compute nodes can be reserved. The rest of the stages with

relatively long processing time are 25, 29, and 31. Stage 25

is an image subtraction. Stages 29-31 are parts of the real-

bogus (RB) machine learning classifier. The RB classifier

removes the false-positive detections caused by nonlinearity of

the detectors, astrometric misalignment, imperfect convolution

kernels, Poisson noise of bright objects, cosmic rays, and many

other factors. These three stages are computationally intensive

operations.

There are two prediction targets for the workload of an

image: One is the dominant stage 36 processing time, and the

other is the number of celestial objects extracted. Stage 36 is

the most time-consuming step of the entire pipeline. Dominant

stage processing time is a direct measurement of workload.

However, it is subjected to the variance of the supercomputer’s

performance. The number of objects extracted determines the

workload of specific operations. However, it is not available

until the start of database stages, which is the checkpoint

33. Many stages, such as stage 25 and 27, which runs

hotpants for image subtraction, have workloads dependent on

the number of objects extracted. Moreover, the workloads of

database stages are also proportional to the number of objects

extracted. Thus, predicting the number of objects is equivalent

to predicting the workload of multiple stages, which allows

proper resource scheduling. Our goal is to predict the number

of the object extracted at checkpoint 1, which is the start of

the pipeline on Cori.

The proposed prediction targets are weakly correlated. Fig-

ure 3 (a) and (b) depict the boxplots of the processing time

of stage 36 and the number of objects extracted in a 24-hour

interval. From 9:00 AM to 7:00 PM, no iPTF image is taken

because iPTF only operates at night. Different hours have a

similar variance of these two prediction targets. Furthermore,

we can observe that means of the number of objects extracted

TABLE I
THIS TABLE SHOWS THE EARLIEST CHECKPOINT THAT AN IMAGE

ATTRIBUTE IS AVAILABLE.

Feature Name Checkpoint
Right Ascension 2
Declination 2
UTC time of start of observation 2
Julian Date for above 2
Airmass 2
PTF ID 2
Chip ID 2
Filter 2
Seeing 14
Limiting magnitude 14
# of objects extracted 33
# of objects saved 33
Ecliptic Longitude 2
Ecliptic Lattitude 2
Galactic Longitude 2
Galactic Lattitude 2
Extinction on sky 2

and the processing time of checkpoint 36 have correlations

over these periods. Nevertheless, these two prediction targets

are not interchangeable because they only have 0.62 Pearson

and 0.58 Spearman correlations at image granularity.

C. Feature selection

To predict either stage 36 processing time or objects ex-

tracted, we define attributes for making such prediction. There

are two constraints for the prediction model to make a useful

inference. Firstly, the input attributes of the prediction model

should be ready before the output of prediction occur. For

example, the moment when a model makes a prediction for

stage 36, processing time must happen before the timestamp

of checkpoint 36. Otherwise, the prediction result is useless

for scheduling a computing resource since the program for

running stage 36 is already started. Another constraint is

that the prediction model should be light-weighted. Since the

goal of this research is to schedule computational resources

smartly, a heavy machine learning model that consumes larger

resources is unacceptable.

Stage 36 is nearly at the end of the pipeline (39 stages in

total), so it is possible to apply timings of stages from 0 to 35

before checkpoint 36 as prediction attributes. We denote this

class of features as type 1. However, models for predicting

the number of objects extracted does not have the access to

type 1 features since this prediction is expected at checkpoint

1 in order to have a raw estimate of the entire workload. In

addition, some attributes of the image are known in advance

of stage 0, so we can directly apply them as model features

for both of the prediction targets. This class of features is

denoted as type 2. Table I illustrates all the image attributes

and the checkpoints that they are available on the pipeline.

For the image attributes, we denote the number of objects

extracted as type 2a and the rest as type 2b. Type 2b does not

include seeing and the number of objects saved for predicting

the number of objects extracted by our previous constraints.

622



Fig. 3. (a) Average stage 36 processing time in 24 hours period. (b) Average objects extracted in 24 hours period. (c) Average stage 36 processing time in
spatial on right ascension (horizontal) and declination (vertical) scale. (d) Average objects extracted in spatial on right ascension (horizontal) and declination
(vertical) scale. Note the processing time roughly correlates with the position on the sky following the over density of stars in our own galaxy.

In addition to attributes limited to a single image, we can

infer the workload of the current images from the workload of

other images that have been processed in the recent past. From

a temporal point of view, we expect the nearest k number

of images that have been processed by the pipeline should

inform the current workload. We notice that the cameras of

iPTF rotate in the sky in a continuous fashion. However, on

some rare occasions, they jump from one region to another.

Thus, the nearest temporal neighbors may contain some spatial

gaps. We plot the average processing time of stage 36 and

the average objects extracted in Figure 3 (c) and (d) on

9 × 9 on right ascension and declination grids. The heap

maps have continuous colors in most of the regions, which

indicate the similarity of the means of these attributes within

a spatial neighborhood. Therefore, we decided to construct

spatiotemporal features. For example, the processing time of

stage 36 of images taken from nearby coordinates within a

short period can inform the prediction of stage 36 processing

time of the current image. The temporal proximity implies

a similar condition of a computing system, and the spatial

proximity implies a similar number of objects and workloads.

This type of feature is denoted as type 3. Due to the first

constraint, all images in the most adjacent neighborhood must

have reached checkpoint 37 before the start of stage 36 of

the current image for predicting the stage 36 processing time.

For the case of predicting the number of objects, the nearest
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Fig. 4. iPTF prediction model feature summary. Type 1 features are the stage
processing time of current images prior to checkpoint 36. Type 2 features are
the attributes of current image. Category 2a is the number of objects extracted
and category 2b contains other attributes of the images shown in Table I. Type
3 features are the features provided by images in the spatiotemporal nearest
neighborhood.

spatiotemporal neighborhood must have passed checkpoint 33,

according to Table I.

By the first constraint, all attributes selected from adjacent

images must be ready at the checkpoint 36 (for stage 36

processing time) and checkpoint 1 (for the number of objects

extracted) of the current image. Figure 5 illustrates these two

predictions in the workflow.

Figure 4 illustrates the features selected for predicting the

number of objects and stage 36 processing time. Applying

all the available features for making predictions is not an

optimal strategy since some features can be independent of

the prediction target in the presence of other features. In

these scenarios, overfitting problems can occur. Although a

model yields low error after training, the testing performance

is reduced, because random errors of the features and the

prediction target that happen in the training data only are

correlated. However, the correlations of errors may only exist

in the training data. Therefore, the model produces false

inference on testing features.

We propose a Bayesian network of features and prediction

targets in Figure 6. A Bayesian network can show the con-

ditional independence of variables. Features that are directly

linked to a prediction target should be used by prediction mod-

els. The network is created by iterating through combinations

of features and compare their testing errors of trained models.

Although it is possible to construct a Bayesian network

from a greedy algorithm, such as [33], we rely on domain

knowledge of iPTF for the creation of the Bays network to

avoid overfitting. For instance, the part in the dashed rectangle

denotes the Spatiotemporal neighborhood of the current image.

The rest of the figures are features related to the current

image. These two parts should have identical internal topology

since they are both image entities. Therefore, the search range

of Bays network topology is reduced significantly with the

incorporation of domain constraints. In the Section II, we

justify the structure of the Bayesian network by analyzing the

prediction accuracy on testing data with different combinations

of features.

We keep the directions of the arrows that satisfy the

constraints of prediction mentioned in Section III-C. In other

words, if A points an arrow to B, the value of A is available

before B. Thus, this network is a trimmed version designed for

feature selections of our objectives. Our prediction targets are

labeled in red. Features that are directly connected to the red

targets are those that can build a model with the best prediction

results. If there is a long path between a feature and the target,

the correlation between the feature and the target is expected

to be weak, especially when other features are present on its

path to the target.

D. Prediction model

We apply a multi-layer perceptron, a typical neural network

architecture, also denoted as a fully connected network, for

predicting target attributes from input attributes.

A fully connected network consists of layers. The first layer

is the input layer, and the last layer is the output layer. There

are some hidden layers that in-between the input and the output

layer. Let A be a m × n matrix describing the connections

between layer l1 of size n and layer l2 of size m for a fully

connected network. The jth row and ith column of A, aj,i, is

the weight from the jth neuron of l1 to the ith neuron of l2.

Let b be a bias vector of dimension n. The ith element of b
is the bias for the ith neuron of l2. The output feature vector

v from l1 has size n. Then f(Av + b) is the output vector

for layer l2. Our prediction network has one input layer, three

hidden layers, and one output layer. There are 1024 neurons

in the first hidden layer and 256 neurons in the second and

third hidden layers. The final layer has one neuron that outputs

the regression result. The activation function is Relu f(x) =
max(0, x).

An advantage of this neural network is that it is capable

of simulating any functions [34]. For the problem size we

are dealing with, the proposed network size is sufficient.

Moreover, this parameter settings of the multi-layer perceptron

satisfy the requirement of light-weighted machine learning

model, since a prediction for one feature can finish within

a few seconds on a regular desktop computer.

IV. EXPERIMENTAL RESULTS

We conduct experiments on a single Linux machine installed

with a GTX 1080 and CUDA version 10.1.

For a real-world case study, we split the iPTF pipeline

data1 into training data and testing data. The training data

1https://portal.nersc.gov/project/astro250/xswap/iptf/
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Fig. 5. iPTF online prediction illustration. The circles indicate checkpoints of the workflow pipeline. The stages are denoted as arrows. The prediction of
the number of objects is at checkpoint 1. The prediction of the stage 36 processing time is at checkpoint 36.

Fig. 6. iPTF prediction model feature Bayesian network. Features that are
directly connected to the red prediction targets are the one that should be used
by the prediction models.

contains 90% of the data with lower timestamps, and the

testing data includes the other 10%. With such a splitting

strategy, predictions on the testing data are equivalent to real-

time simulations. This splitting method is a simulation of a

production run since the goal is to train historical data for

predicting future results. In addition, we also present 10-fold

cross-validation results for evaluation.

We train the neural network discussed in Section III-D with

Stochastic Gradient Descent (SGD) for 200 epochs with mini-

batch size 256. The learning rate is from 0.88 to 1, with a

0.1 momentum factor. This training strategy guarantees the

convergence of all our experiments. We set the drop-out ratio

per layer to be 0.33 to avoid the overfitting of the model [35].

Training with an adaptive learning rate such as ADAM [36]

does not converge to a reasonable regression accuracy the

same way as SGD. Besides, the final losses of the models are

unstable with different initial parameters. The models trained

with SGD, on the other hand, are stable with better accuracy

results.

More complicated model architectures may yield better

training results after convergence. However, the main goal of

this paper is to evaluate the proposed iPTF workflow features.

Thus, we control the neural network model and training

methods, treating the model as a black-box for regression, for

comparing different choices of input features.

Root mean square error (RMSE), Normalized mean square

error (NMSE), and correlation coefficients (Pearson and Spear-

man) are the evaluation metrics in this section. MSE evaluates

the regression error with formula 1
N

N∑
i=1

(
f̂ (xi)− yi

)2

for

prediction model f̂ , input feature x, and prediction output y.

RMSE is the square root of MSE. NMSE scales down the units

of RMSE with formula 1
xyMSE. A good model should have

small RMSE and NMSE. Correlation coefficients measure if

the predictions have the same trend as the actual data in

the parity graph. The metrics are between 0 and 1. A good

model has large correlation coefficients. Pearson correlation

takes the magnitude of difference into account. The Spearman

correlation examines if the trend of two variables is the same

or not. Although our training objective is to reduce regression

error, the problem can be reduced to a classification problem.

For example, we can classify the workload to be discrete

results, such as small, medium, and large, for different ranges

of the outputs. In this scenario, the absolute errors are less

important due to the change of the error function. If the

correlations between prediction and real measurements are

large, the classification result should be mostly correct, since

the prediction is likely to lie in the right region.

A. Baselines

We can set up the baselines that evaluate the performance

of our model via RMSE. Testing RMSE should fall between

a lower bound and an upper bound.

An upper bound of the prediction targets for RMSE is the

standard deviation. If a prediction model always predicts the

mean of the prediction target in the dataset, its RMSE is

equivalent to the standard deviation. The estimated standard

deviations from the populations are 60.4 for the stage 36

processing time and 653 for the number of objects extracted.

A lower bound of the prediction targets for RMSE is the

estimation of the prediction targets’ standard deviation within
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a batch. iPTF cameras take images in batches. Images within a

batch are processed in parallel with the same checkpoint 0 start

time. These images have very similar spatiotemporal attributes.

A regression model based on our proposed features without

overfitting should give the same results. However, there are

still some non-negligible variances of workload within a single

batch. These variances are unpredictable by the information

given in the features for regression since the attributes are

identical. Thus, the variance within batches can serve as a

lower bound of prediction error. We estimate the average

standard deviation within a batch for the stage 36 processing

time as 20.4 and the number of objects extracted as 210 from

all data.

B. Predicting stage 36 processing time

Discussed in Section III-C, several different types of fea-

tures can be applied to predict stage 36 processing time,

as summarized in Figure 4. The input features have three

categories. The first type is historical processing time from

stage 0 to 35. The second category is the image attributes,

including spatial coordinates. The final type (type 3a) is the

stage 36 processing time of spatiotemporally nearby images

in the pipeline.

The number of the nearest neighbors is a tunable parameter.

We use 1 for simplicity. In this section, we demonstrate the

individual effectiveness of these three types of features.

Rows 1 to 10 of Table II illustrate the results of predicting

stage 36 processing time with a different combination of

features for ten-fold cross-validation. CV refers to the average

of 10-fold cross-validation results, and LF refers to the last

fold (as testing data) of the cross-validation results. The values

in the brackets are prediction evaluations on testing data. The

values that are not in the brackets are prediction evaluations

on training data.

From the first three rows, we can observe relatively large

mean square errors and low correlation coefficients. Thus,

using any of the three features alone, the regression models

do not have reasonably good results on testing data.

The fourth to the sixth rows contain results with pair-wise

combinations of three features. The historical processing time

from stage 0 to 35 of the current image (type 1), combined

with the image attributes (type 2), gives better testing results

than replacing type 2 features with spatiotemporally nearby

image processing time (type 3d). The combination of type

2 and 3d features yields similar results as the combination

of type 1 and 2 features. Thus, we observe that image

attributes can improve the overall performance significantly

when added to either type 1 and 3d features. Type 1 and 3d

images combined (row 6), on the other hand, demonstrate

improvement compared with models trained with either of

them. This observation is expected because both features are

timing features. They are likely correlated with each other.

Nevertheless, joining them together can moderately improve

testing accuracy compared with the results predicted by each

of them separately. Finally, if all these three features are

combined, the overall regression performance on testing data

is the best (row 7). Therefore, the direct connections to stage

36 processing time in Figure 6 is verified.

Rows 9 and 10 of figure Table II illustrate the reasons why

the attributes (types 3a, 3b) and stage processing time 0-35

of the spatiotemporally nearest neighborhood (type 3c) are

not useful for predicting the stage processing time of current

image given the stage 36 processing of the neighborhood (type

3d). We can observe that the testing metrics in rows 9 and 10

are worse than those of row 8. Moreover, if we compare the

results of rows 8 and 9, it is clear that the correlation between

the prediction feature is stronger to the nearest neighbors’

stage 36 processing time than to the rest of type 3 attributes.

Consequently, type 3d should be selected as a feature for

prediction, instead of the rest of the features.

C. Predicting the number of objects extracted

Details of selecting the features of the number of objects

extracted are presented in Figure 4. Prediction of the number

of objects extracted takes place at the beginning of the

pipeline. Thus, the type 1 features adopted for predicting

stage 36 processing time cannot be used in this case, since

the checkpoints for computing stage processing time have not

reached. All image attributes excluding the seeing, limiting

magnitude, objects extracted and saved, on the other hand,

are available at the start of the pipeline. Furthermore, at-

tributes from spatiotemporally adjacent images are available

at checkpoint 2 if we carefully filter the neighborhood N
with constraint {n.checkpoint39 < x.checkpoint1}∀n ∈ N
for current image x. Similar to predicting stage 36 processing

time, the attribute to be predicted (the number of objects

extracted) is selected from the neighborhood. Furthermore,

we also employ the stage processing time and other image

attributes of its spatiotemporally nearest neighborhood. These

features are type 3 features. From the Bayesian network in

Figure 6, we expect types 2b, 3a, and 3b to have a strong

correlation with the prediction objective.

Rows 11-20 of Table II illustrate the results of predicting

the number of objects extracted by our real-time prediction

algorithm on testing data. Rows 11-13 illustrate the prediction

results of using the attributes of the current image (type

2b), the number of objects extracted (type 3a), and other

attributes (type 3b) of the spatiotemporally nearest neighbor-

hood of current image independently. Row 14 demonstrates

the prediction accuracy using the stage processing time of

spatiotemporally nearest neighborhood (type 3c,3d) that are

not directly connected to the prediction target in Figure 6.

Results in row 14 are worse than rows 11, 12, and 13, which

is expected from the Bayesian network since the correlations

of features in row 14 to the prediction target is weaker. Rows

15-17 demonstrate the results of using different combinations

of pair-wise features in rows 11-13. The results of pair-wise

combinations of features are better than results using each

independent feature. Row 18 illustrates the prediction results

of features that are directly connected to the prediction targets

in Figure 6. We can observe further accuracy improvements

in both testing and training data compared with rows 15-17.
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TABLE II
ACCURACY RESULTS OF PREDICTION MODELS. CV REFERS TO THE AVERAGE OF 10-FOLD CROSS-VALIDATION RESULTS AND LF REFERS TO THE LAST

FOLD (AS TESTING DATA) OF THE CROSS-VALIDATION RESULTS. THE VALUES IN THE BRACKETS ARE PREDICTION EVALUATIONS ON TESTING DATA. THE

VALUES THAT ARE NOT IN THE BRACKETS ARE PREDICTION EVALUATIONS ON TRAINING DATA. ROWS 1 TO 10 ARE RESULTS FOR PREDICTING STAGE 36
PROCESSING TIME. THE RANGE OF RMSES SHOULD BE BETWEEN 20.4 AND 60.4. ROWS 11 TO 20 ARE RESULTS FOR PREDICTING THE NUMBER OF

OBJECTS EXTRACTED. THE RANGE OF RMSES SHOULD BE BETWEEN 210 AND 653.

Row
ID

Features CV RMSE CV NMSE CV
Pearson

CV Spear-
man

LF RMSE LF NMSE LF Pearson LF Spear-
man

1 1 38.7 (45.1) 0.212 (0.303) 0.79 (0.66) 0.81 (0.68) 36.9 (51.0) 0.207 (0.230) 0.80 (0.65) 0.81 (0.69)
2 2 29.2 (31.8) 0.135 (0.160) 0.88 (0.82) 0.93 (0.87) 28.1 (44.0) 0.129 (0.216) 0.88 (0.73) 0.93 (0.80)
3 3d 43.4 (42.4) 0.287 (0.280) 0.70 (0.63) 0.75 (0.67) 41.8 (55.1) 0.281 (0.317) 0.72 (0.50) 0.76 (0.56)
4 3a,3b,3c 37.4 (41.7) 0.221 (0.278) 0.79 (0.65) 0.82 (0.67) 36.2 (54.3) 0.223 (0.331) 0.80 (0.53) 0.83 (0.59)
5 1,2 24.0 (28.2) 0.088 (0.125) 0.92 (0.87) 0.95 (0.91) 22.6 (38.6) 0.084 (0.158) 0.93 (0.79) 0.96 (0.86)
6 1,3d 34.1 (36.8) 0.179 (0.213) 0.83 (0.75) 0.86 (0.77) 32.6 (47.5) 0.170 (0.201) 0.84 (0.71) 0.86 (0.75)
7 2,3d 28.0 (30.2) 0.124 (0.145) 0.89 (0.84) 0.94 (0.89) 26.7 (42.1) 0.118 (0.200) 0.90 (0.76) 0.94 (0.83)
8 1,2,3d 23.6 (27.0) 0.085 (0.114) 0.93 (0.88) 0.96 (0.92) 22.5 (36.0) 0.084 (0.137) 0.93 (0.82) 0.96 (0.88)
9 1,2,3a,3b,3c 23.9 (28.5) 0.087 (0.127) 0.92 (0.87) 0.95 (0.90) 22.6 (38.9) 0.084 (0.160) 0.93 (0.79) 0.96 (0.86)
10 1,2,3d,3c,3b,3a 23.7 (27.8) 0.086 (0.122) 0.93 (0.88) 0.96 (0.92) 22.1 (36.3) 0.080 (0.139) 0.93 (0.82) 0.96 (0.88)
11 2b 309.3 (352.5) 0.122 (0.168) 0.83 (0.72) 0.83 (0.68) 311.9 (319.7) 0.125 (0.113) 0.83 (0.75) 0.83 (0.75)
12 3a 321.9 (320.0) 0.135 (0.138) 0.81 (0.76) 0.82 (0.76) 319.2 (335.8) 0.134 (0.128) 0.82 (0.71) 0.83 (0.72)
13 3b 270.7 (303.2) 0.098 (0.127) 0.87 (0.78) 0.87 (0.77) 267.3 (318.5) 0.098 (0.124) 0.87 (0.75) 0.87 (0.75)
14 3c,3d 351.2 (370.5) 0.176 (0.200) 0.77 (0.67) 0.78 (0.65) 344.8 (391.2) 0.166 (0.164) 0.78 (0.63) 0.78 (0.63)
15 2b,3a 262.9 (288.9) 0.090 (0.113) 0.88 (0.81) 0.88 (0.79) 260.3 (287.6) 0.091 (0.095) 0.88 (0.80) 0.88 (0.80)
16 2b,3b 225.6 (265.1) 0.067 (0.097) 0.91 (0.84) 0.91 (0.82) 224.6 (263.4) 0.070 (0.084) 0.91 (0.83) 0.91 (0.83)
17 3a,3b 270.9 (301.8) 0.098 (0.126) 0.87 (0.78) 0.87 (0.77) 267.9 (316.8) 0.098 (0.123) 0.87 (0.75) 0.87 (0.75)
18 2b,3a,3b 226.3 (266.9) 0.067 (0.098) 0.91 (0.84) 0.91 (0.82) 224.5 (265.0) 0.068 (0.083) 0.91 (0.83) 0.91 (0.83)
19 2b,3a,3c,3d 250.5 (284.4) 0.084 (0.114) 0.89 (0.81) 0.89 (0.79) 251.2 (284.7) 0.087 (0.098) 0.89 (0.79) 0.89 (0.79)
20 2b,3a,3b,3c,3d 229.6 (269.2) 0.071 (0.102) 0.91 (0.83) 0.90 (0.82) 226.7 (269.8) 0.070 (0.089) 0.91 (0.82) 0.90 (0.82)

Rows 19 and 20 of Table II prove the point that the stage

processing time of spatiotemporally nearest neighborhood of

the current image is independent of the number of objects

extracted of current image given types 3b, 3a, and 3b. Further-

more, type 3b has a stronger correlation with the prediction

target compared with types 3c and 3d. Therefore, type 3b

should be directly connected to the prediction target, as shown

in the Bays network in Figure 6.

V. CONCLUSION

We study the features for predicting the workload of the

iPTF workflow pipeline. I/O anomalies of the iPTF workflow

pipeline are filtered out. The proposed features and prediction

targets of workloads are summarized into a Bayesian network

that shows the conditional dependency of features. The se-

lected features from the Bayesian network achieve prediction

accuracy close to the lower bound defined by the randomness

within data. Our spatiotemporal feature construction approach

is not limited to the iPTF survey.

In the future, we plan to apply our predictions of workloads

to schedule resources for the ZTF survey. A customized

scheduling approach for the ZTF workflow pipeline can further

improve the throughput of the system.
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