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Abstract

Property graphs are a common form of linked data, with path
queries used to traverse and explore them for enterprise transactions
and mining. Temporal property graphs are a recent variant where time
is a first-class entity to be queried over, and their properties and struc-
ture vary over time. These are seen in social, telecom, transit and
epidemic networks. However, current graph databases and query en-
gines have limited support for temporal relations among graph enti-
ties, no support for time-varying entities and/or do not scale on dis-
tributed resources. We address this gap by extending a linear path
query model over property graphs to include intuitive temporal pred-
icates and aggregation operators over temporal graphs. We design a
distributed execution model for these temporal path queries using the
interval-centric computing model, and develop a novel cost model to
select an efficient execution plan from several. We perform detailed
experiments of our Granite distributed query engine using both static
and dynamic temporal property graphs as large as 52M vertices, 218M
edges and 325M properties, and a 1600-query workload, derived from
the LDBC benchmark. We often offer sub-second query latencies on a
commodity cluster, which is 149×–1140× faster compared to industry-
leading Neo4J shared-memory graph database and the JanusGraph/S-
park distributed graph query engine. Granite also completes 100% of
the queries for all graphs, compared to only 32–92% workload comple-
tion by the baseline systems. Further, our cost model selects a query
plan that is within 10% of the optimal execution time in 90% of the
cases. Despite the irregular nature of graph processing, we exhibit a
weak-scaling efficiency of ≥ 60% on 8 nodes and ≥ 40% on 16 nodes,
for most query workloads.

*An extended version of the paper that appears in IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2020.
doi:10.1109/CCGrid49817.2020.00-43
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1 Introduction
Graphs are a natural model to represent and analyze linked data in vari-
ous domains. Property graphs allow vertices and edges to have associated
key–value pair properties, besides the graph structure. This forms a rich
information schema and has been used to capture knowledge graphs (con-
cepts, relations) [1], social networks (person, forum, message) [2], epidemic
networks (subject, infected status, location) [3], and financial and retail
transactions (person, product, purchase) [4].

Path queries are a common class of queries over property graphs [5,
6]. Here, the user defines a sequence of predicates over vertices and edges
that should match along a path in the graph. E.g., in the property graph
for a community of users in Figure 1, the vertices are labeled with their
IDs, their colors indicate their type – blue for Person and orange for a
Post, and they have a set of properties listed as Name:Value. The edges
are relationships, with types such as Follows, Likes and Created. We can
define an example 3-hop path query “[EQ1] Find a person (vertex type) who
lives in the country ‘UK’ (vertex property) and follows (edge type) a person
who follows another person who is tagged with the label ‘Hiking’ (vertex
property)”. This query would match Cleo→Alice→Bob, if we ignore the time
intervals. Path queries are used to identify concept pathways in knowledge
graphs, find friends in social networks, fake news detection, and suggest
products in retail websites [5,6,7]. They also need to be performed rapidly,
within ≈ 1 sec, as part of interactive requests from websites or exploratory
queries by analysts.

While graph databases are designed for transactional read and write
workloads, we consider graphs that are updated infrequently but queried
often. For these workloads, graph query engines load and retain property
graphs in-memory to service requests with low latency, without the need
for locking or consistency protocols [8, 9]. They may also create indexes
to accelerate these searches [10, 11]. Property graphs can be large, with
105–108 vertices and edges, and 10’s of properties on each vertex or edge.
This can exceed the memory on a single machine, often dominated by the
properties. This necessitates the use of distributed systems to scale to large
graphs [12,13].

Challenges Time is an increasingly common graph feature in a variety of
domains [3,14,15,16]. However, existing property graph data models fail to
consider it as a first-class entity. Here, we distinguish between graphs with a
time interval or a lifespan associated with their entities (properties, vertices,
edges), and those where the entities themselves change over time and the
history is available. We call the former static temporal graphs and the latter
dynamic temporal graphs. Yet another class is streaming graphs, where the
topology and properties change in real-time, and queries are performed on
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Figure 1: Sample Temporal Property Graph of a Community of Users

this evolving structure [17,18]; that is outside the scope of this article.
E.g., in the temporal graph in Figure 1, the lifespan, [start, end), is

indicated on the vertices, edges and properties. The start time is inclusive
while the end time is exclusive. Other than the properties of Cleo, the
remaining entities of the graph form a static temporal graph as they are each
valid only for a single time range. But the value of the Country property of
Cleo changes over time, making it a dynamic temporal graph.

This gap is reflected not just in the data model but also in the queries
supported. We make a distinction between time-independent (TI) and time-
dependent (TD) queries, both being defined on a temporal graph [19]. TI
queries are those which can be answered by examining the graph at a single
point in time (a snapshot), e.g. EQ1 executed on the temporal graph. In
contrast, TD queries capture temporal relations between the entities across
consecutive time intervals, e.g., “[EQ2] Find people tagged with ‘Hiking’
who liked a post tagged as ‘Vacation’, before the post was liked by a per-
son named ‘Don’ ”, and “[EQ3] Find people who started to follow an-
other person, after the latter stops following ‘Don’ ”. Treating time as
just another property fails to express temporal relations such as ensur-
ing time-ordering among the entities on the path. While EQ2 and EQ3
should match the paths Bob→PicPost→Don and Alice→Bob→Don, respec-
tively, such queries are hard, if not impossible, to express in current graph
databases. This problem is exacerbated for path queries over dynamic tem-
poral graphs. E.g., the query EQ1 over the dynamic temporal graph should
not match Cleo→Alice→Bob since at the time Cleo was living in ‘UK’, she
was not following Alice.

While platforms which execute snapshot at a time [19,20] can be adapted
to support TI queries over temporal graphs, TD queries cannot be expressed
meaningfully. Even those that support TD algorithms enforce strict tempo-
ral ordering [21], requiring that the time intervals along the path should be
increasing or decreasing, but not both; this limits query expressivity. These
motivate the need to support intuitive temporal predicates to concisely ex-
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press such temporal relations, and flexible platforms to execute them. Lastly,
the scalability of existing graph systems is also limited, with few property
graph query engines that operate on distributed memory systems with low
latency [8, 22], let alone on temporal property graphs.

We make the following specific contributions in this article:

• We propose a temporal property graph model, and intuitive temporal
predicates and aggregation operators for path queries on them (§3).

• We design a distributed execution model for these queries using the
interval-centric computing model (§4).

• We develop a novel cost model that uses graph statistics to select the
best from multiple execution plans (§5).

• We conduct a detailed evaluation of the performance and scalability
of Granite for 8 temporal graphs and up to 1600 queries, derived from
the LDBC benchmark. We compare this against three configurations
of Neo4J, and JanusGraph which uses Apache Spark (§6).

We discuss related work in Section 2 and our conclusions in Section 7.
A prior version of this work appeared as a conference paper [23]. This

article substantially extends this. Specifically, it introduces the temporal
aggregation operator to the query model (Section 3.3) and implements it
within the execution model; offers details, illustrations and complexity met-
rics for our query model, distributed execution model and query optimiza-
tions (Sections 3, 4 and 5); and provides a rigorous empirical evaluation,
including two additional large dynamic temporal graphs, aggregation query
workloads, weak scaling experiments, and results on the component times of
query execution, besides more detailed analysis for the cost model benefits
and baseline platform comparisons (Section 6).

2 Related Work

2.1 Distributed and Temporal Graph Processing

There are several distributed graph processing platforms for running graph
algorithms on commodity clusters and clouds [24]. These typically offer pro-
gramming abstractions like Google Pregel’s vertex-centric computing model [20]
and its component-centric variants [25, 26] to design algorithms such as
Breadth First Search, centrality scores and mining [27]. These execute us-
ing a Bulk Synchronous Parallel (BSP) model, and scale to large graphs and
applications that explore the entire graph. They offer high throughput batch
processing that take O(mins)–O(hours). We instead focus on exploratory
and transactional path queries that are to be processed in O(secs). This
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requires careful use of distributed graph platforms and optimizations for fast
responses.

There are also parallel graph platforms for HPC clusters and accelera-
tors [28]. These optimize the memory and communication access to scale
to graphs with billions of entities on thousands of cores [29]. They focus on
high-throughput graph algorithms and queries over static graphs [30]. We
instead target commodity hardware and cloud VMs with 10’s of nodes and
100’s of total cores, and are more accessible. We also address queries over
temporal property graphs.

A few distributed abstractions and platforms support designing of tem-
poral algorithms and their batch execution [19, 31, 32]. Most are limited to
executing TI algorithms, snapshot at a time, and are unable to seamlessly
model TD queries. Our prior work Graphite offers an interval-centric com-
puting model (ICM) to represent TI and TD algorithms, but limits it to
time-respecting algorithms [21]. We use it as the base framework for our
proposed distributed path query engine, while relaxing the time-ordering,
including indexing and proposing different query execution plans for low-
latency response. There are also some platforms that support incremental
computing over streaming graph updates [33, 34]. We rather focus on ma-
terialized property graphs with temporal lifespans on their vertices, edges
and properties that have already been collected in the past. In future, we
will also consider incremental query processing over such streaming graphs.

2.2 Property and Temporal Graph Querying

Query models over property graphs and associated query engines are popu-
lar for semantic graphs [30, 35, 36]. Languages like SPARQL offer a highly
flexible declarative syntax, but are costly to execute in practice for large
graphs [37, 38]. Others support a narrower set of declarative query primi-
tives, such as finding paths, reachability and patterns over property graphs,
but manage to scale to large graphs using a distributed execution model [39,
40]. However, none of these support time as a first-class entity, during query
specification or execution.

There has been limited work on querying and indexing over specific tem-
poral features of property graph. Semertzidis, et al. [41] propose a model for
finding the top-k graph patterns which exist for the longest period of time
over a series of graph snapshots. They offer several indexing techniques to
minimize the snapshot search space, and perform a brute-force pattern min-
ing on the restricted set. This multi-snapshot approach limits the pattern
to one that fully exists at a single time-point and recurs across time, rather
than spans time-points. It is also limited to a single-machine execution,
which limits scaling.

TimeReach [42] supports conjunctive and disjunctive reachability queries
on a series of temporal graph snapshots. It builds an index from strongly
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connected components (SCC) for each snapshot, condenses them across
time, and use this to traverse between vertices in different SCCs within
a single hop. It assumes that the graph has few SCCs that do not change
much over time. They also require the path to be reachable within a single
snapshot rather than allow path segments to connect across time. Likewise,
TopChain [43] supports temporal reachability query using an index label-
ing scheme. It unrolls the temporal graph into a static graph, with time
expanded as additional edges, finds the chain-cover over it, and stores the
top-k reachable chains from each vertex as labels. It uses this to answer
time-respecting reachability, earliest arrival path and fastest path queries.
Paths can span time intervals. However, they do not support any predicates
over the properties. Neither of these support distributed execution.

There is also literature on approximate querying over graphs. Arrow [44]
examines reachability queries on both non-temporal and temporal graphs
using random walks. These are performed from both the source and the
sink vertices, and an intersection of the two vertex sets gives the result.
They use approximation by bounding the walk length based on the diameter
of the graph and a tunable parameter which balances accuracy and query
latency. Iyer, et al. [45] consider approximate pattern mining on large non-
temporal graphs. They use statistical techniques to sample the graph edges
and estimate the number of occurrences of a specific pattern in the graph.
However, their approach cannot enumerate the actual vertices and edges
forming the pattern.

ChronoGraph [46] supports temporal traversal queries over interval prop-
erty graphs, and is the closest to our work. They implement this by extend-
ing the Gremlin property graph query language with temporal properties.
They propose optimizations to the Gremlin traversal operators, and paral-
lelization and lazy traversals within a single machine, which are executed
by the TinkerGraph engine. However, they do not support novel temporal
operators such as the edge-temporal relationship that we introduce. They
also do not use indexes or query planning to make the execution plan more
efficient. Their optimizations are tightly-coupled to the execution engine,
which does not support distributed execution.

Lastly, there are several open-source and proprietary graph database
systems [8, 47, 48] which provide general-purpose property graph storage
and querying capabilities while allowing transactional access to graph data.
However, these systems do not have first class support for time-varying
graphs and query models that can leverage the temporal dimension. This
leads to temporal queries written in their native language which are neither
intuitive in expressing temporal notion nor efficient during execution due to
lack of time-aware query optimizer and execution engine.

In summary, these various platforms lack one or more of the following
capabilities we offer: modeling time as a first-class graph and query concept;
enabling temporal path queries that span time and match temporal relations
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across entities; and distributed execution on commodity clusters that scales
to large graphs using a query optimizer that leverages the graph’s structure,
temporal features, and property values.

3 Temporal Graph and Query Models

3.1 Temporal Concepts

The temporal property graph concepts used in this paper are drawn from
our earlier work [21]. Time is a linearly ordered discrete domain Ω whose
range is the set of non-negative whole numbers. Each instant in this domain
is called a time-point and an atomic increment in time is called a time-unit.
A time interval is given by τ = [ts, te) where ts, te ∈ Ω which indicates an
interval starting from and including ts and extending to but excluding te.
Interval relations [49] are Boolean comparators between intervals; fully be-
fore relation is denoted by�, starts before relation by ≺, fully after relation
by�, starts after relation by �, during relation by ⊂, equals relation by =,
during or equals relation by ⊆ and overlaps relation by u.

3.2 Temporal Property Graph Model

We formally define a temporal property graph as a directed graph G =
(V,E, PV , PE). V is a set of typed vertices where each vertex 〈vid, σ, τ〉 ∈ V
is a tuple with a unique vertex ID, vid, a vertex type (or schema) σ, and
the lifespan of existence of the vertex given by the interval, τ = [ts, te). E
is a set of directed typed edges, with 〈eid, σ, vidi, vidj , τ〉 ∈ E. Here, eid
is a unique ID of the edge, σ its type, vidi and vidj are its source and
sink vertices respectively, and τ = [ts, te) is its lifespan. We have a schema
function S : σ → K, that maps a given vertex or edge type σ to the set of
property keys (or names) it can have. PV is a set of vertex property values,
where each 〈vid, κ, val, τp〉 ∈ PV represents a value val for the key κ ∈ K
for the vertex vid, with the value valid for the interval τp ⊆ τ . A similar
definition applies for edge property values 〈eid, κ, val, τp〉 ∈ PE .

Further, the graph G must meet the uniqueness constraint of vertices
and edges, i.e., a vertex or an edge with a given ID exist at most once and
for a single continuous duration; referential integrity constraints, where the
lifespan of an edge must be contained within the lifespan of its incident
vertices; and constant edge association, which enforces that the vertices in-
cident on an edge remain the same during the edge’s lifespan. These are
defined in [50].

A static temporal property graph is a restricted version of the temporal
property graph such that τp = τ for the vertex and edge properties, i.e.,
each property key has a static value that is valid for the entire vertex or
edge lifespan, formally stated as:
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∀〈vid, κ, val, τp〉 ∈ PV , 〈vid, σ, τ〉 ∈ V =⇒ τp = τ and ∀〈eid, κ, val, τp〉 ∈
PE , 〈eid, σ, vidi, vidj , τ〉 ∈ E =⇒ τp = τ Temporal property graphs with-
out this restriction are called dynamic temporal property graphs, and allow
keys for a vertex or an edge to have different values for non-overlapping time
intervals, i.e., τp ⊆ τ . E.g., Figure 1 is a dynamic temporal property graph
as Cleo’s property values change over time, but omitting Cleo makes it a
static temporal property graph.

3.3 Temporal Path Query

An n-hop linear chain path query matches a path with n vertex predicates
and n − 1 edge predicates. The syntax rules for this query model and its
predicates are given below, and illustrated for the example queries from
earlier in Table 1.

〈path〉 ::= 〈ve-fragment〉 〈ve-int-fragment〉* 〈v-predicate〉
| 〈ve-fragment〉 〈ve-int-fragment〉* 〈v-predicate〉 ⊕ 〈aggregate〉

〈ve-fragment〉 ::= 〈v-predicate〉 ` 〈e-predicate〉

〈ve-int-fragment〉 ::= 〈ve-fragment〉 | 〈v-predicate〉 〈etr-clause〉 ` 〈e-predicate〉

〈v-predicate〉 ::= 〈predicate〉

〈e-predicate〉 ::= 〈predicate〉 〈direction〉

〈direction〉 ::= → | ← | ↔

〈predicate〉 ::= ? | 〈bool-predicate〉 | 〈prop-clause〉 | 〈time-clause〉 |
〈time-clause〉 AND 〈bool-predicate〉

〈bool-predicate〉 ::= 〈prop-clause〉 | 〈prop-clause〉 OR 〈bool-predicate〉
| 〈prop-clause〉 AND 〈bool-predicate〉

〈prop-clause〉 ::= ve-key 〈prop-compare〉 value

〈time-clause〉 ::= ve-lifespan 〈time-compare〉 interval

〈etr-clause〉 ::= el-lifespan 〈time-compare〉 er-lifespan

〈prop-compare〉 ::= ‘==’ | ‘!=’ | 3

〈time-compare〉 ::= ≺ | � | � | � | u | 6 u

〈aggregate〉 ::= 〈aggregate-op〉[ v-key | ? ]

〈aggregate-op〉 ::= count | min | max

As we can see, the property and time clauses are the atomic elements of
the predicate and allow one to compare in/equality and containment between
a property value and the given value, and a more flexible set of compar-
isons between a vertex/edge/property lifespan and a given interval (time-
compare). These temporal clauses allow a wide variety of comparison within
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the context of a single vertex or edge, and their properties. These clauses
can be combined using Boolean AND and OR operators. Edge predicates can
have an optional direction. The wildcard ? matches all vertices or edges at
a hop.

A novel and powerful temporal operator we introduce is edge time re-
lationship (ETR). Unlike the time clause, this etr-clause allows comparison
across edge lifespans. Specifically, it is defined on an intermediate vertex in
the path (ve-int-fragment), and allows us to compare the lifespans of its left
(el-lifespan) and right (er-lifespan) edges in the path. The motivation for
this operator comes from social network mining [6] and to identify flow and
frauds in transactions networks [4]. E.g., the queries EQ2 and EQ3 from
Section 1 can be concisely captured using this.

We also support a novel temporal aggregate operator to group the result-
set from the path query. The paths are grouped on the first vertex in the
resulting temporal paths, and computes a specific aggregation on a property
at the last vertex of the path. The grouping is time-aware; specifically, it
is based on the duration of the first vertex in the result path. E.g., if the
result-set for a query contains i = 1..m paths of length n each, vi1 − ei1 −
vi2−ei2− ...−vin, and the first vertex vi1 in a result matches the query for the
time period τi = [tis, tie), then we perform a “group by” of the result paths
by the temporal vertex {vi1.id, [tis, tie)}. For all the paths j in a group, we
perform an aggregation operation ⊕ on vjn.prop, where prop is a property on
the last vertex that is selected by the user and may be omitted for a count
aggregation. We return the aggregated result {vi1.vid, [tis, tie),⊕

j
(vjn.prop)}

for each unique temporal vertex group 1. This can help answer queries such
as “[EQ4] Count the number of persons followed by a person ‘Bob’ during
his existence in the network”. The answer to this for Figure 1 varies across
time, taking value 1 during [10, 30)∪ [50, 100) and 0 during [5, 10)∪ [30, 50).
Our Granite implementation supports count, min and max operations for
⊕, while others can also easily be added.

4 Distributed Query Engine

4.1 Relaxed Interval Centric Computing

The high-level architecture of our distributed query engine, Granite, is
shown in Figure 2a. Our query engine uses a distributed in-memory iterative
execution model that extends and relaxes the Interval-centric Computing
Model (ICM) [21]. ICM adds a temporal dimension to Pregel’s vertex-centric
iterative computing model [20], and allows users to define their computation
from the perspective of a single interval-vertex, i.e., the state and properties

1The valid duration for the first vertex can be disjoint, in which case each maximal
contiguous interval for that vertex vid forms a separate temporal group.
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Table 1: Query Syntax Examples

Example Query Query Syntax
EQ1 Find a person who lives
in ‘UK’ and follows a per-
son who follows another person
who is tagged with ‘Hiking’

Type == Person AND Country == UK `
Type == Follows →
Type == Person ` Type == Follows →
Type == Person AND Tag 3 Hiking

EQ2 Find people tagged
with ‘Hiking’ who liked a post
tagged as ‘Vacation’ before the
post was liked by a person
named ‘Don’

Type == Person AND Tag 3 Hiking ` Type
== Likes →
Type == Post AND Tag 3 Vacation
el-lifespan ≺ er-lifespan

` Type == Likes ←
Type == Person AND Name == Don

EQ3 Find people who started
to follow another person, after
they stopped following ‘Don’

Type == Person ` Type == Follows →
Type == Person el-lifespan �
er-lifespan ` Type == Follows →
Type == Person AND Name == Don

EQ4 Count the number of
persons followed by a person
‘Bob’ during his existence in
the network.

Type == Person AND Name == Bob ` Type
== Follows →
Type == Person ⊕ count [?]

for a certain interval of a vertex’s lifespan. In each iteration (superstep)
of an ICM application, a user-defined compute function is called on each
active interval-vertex, which operates on its prior state and on messages it
receives from its neighbors, for that interval, and updates the current state.
A TimeWarp function aligns the lifespans of the input messages to the lifes-
pans of the partitioned interval states for an interval vertex. So each call to
compute executes on the temporally intersecting messages and states for a
vertex. Then, a user-defined scatter function is called on the out-edges of
that interval-vertex, which allows them to send temporal messages contain-
ing, say, the updated vertex state to its neighboring vertices. The message
lifespan is usually the intersection of the state and the edge lifespans.

Messages are delivered in bulk at a barrier after the scatter phase,
and the compute phase for the next iteration starts after that. Vertices
receiving a message whose interval overlaps with its lifespan are activated
for the overlapping period. This repeats across supersteps until no messages
are generated after a superstep. The execution of compute and scatter
functions are each data-parallel within a superstep, and their invocation on
different interval vertices and edges can be done by concurrent threads.

We design Granite using the compute and scatter primitives offered
the Graphite implementation of ICM over Apache Giraph, as illustrated in
Figure 2b. However, ICM enforces time-respecting behavior, i.e., the inter-
vals between the messages and the interval-vertex state have to overlap for
compute to be called on the messages; intervals between the states updated
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by the compute and the edge lifespans have to overlap for scatter to be
called; and scatter sends messages only on edges whose lifespan overlaps
with the updated states.

But the temporal path queries do not need to meet these requirements,
e.g., a query may need to navigate from a vertex to an adjacent vertex
that occurs after it. The TimeWarp operator of ICM enforces this time-
respecting behavior. So we relax ICM to allow non-time respecting be-
havior between compute, scatter and messages to meet the execution
requirements of our path queries, while leveraging its other interval-centric
features.

4.2 Distributed Execution Model

In our execution model, each vertex predicate for a path query and the
succeeding edge predicate, if any, are evaluated in a single ICM superstep.
Specifically, the vertex predicates are evaluated in the compute function
and the edge predicates in the scatter function. We use a specialized
logic called init for evaluating the first vertex predicate in a query. This
is shown in Figs. 2b and 3a.

A Master receives the path query from the client, and broadcasts it to
all Workers to start the first superstep (Figure 2a). Each Worker operates
over a set of graph partitions with one thread per partition, and each thread
calls the compute and scatter functions on every active vertex in its
partition. The init logic is called on all vertices in the first superstep.
It resets the vertex state for this new query and evaluates the first vertex
predicate of the query. If the vertex matches, its state is updated with a
matched flag and scatter is invoked for each of its incident in or out edges,
as defined in the query. Scatter evaluates the next edge predicate, and if
it matches, sends the partial path result and the evaluated path length to
the destination vertex as a message. If a match fails, this path traversal is
pruned.
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In the next iteration, our compute logic is called for vertices receiving
a message. This evaluates the next vertex predicate in the path and if it
matches, it puts all the partial path results from the input messages in the
vertex state, and scatter is called on each incident edge. If the edge
matches the next edge predicate, the current vertex and edge are appended
to each prior partial result and sent to the destination vertex. This repeats
for as many supersteps as the path length. In the last superstep, the vertices
receiving matching paths in their messages send it to the Master to return
to the client.

Figure 3a (Plan 1) illustrates this for a sample path query with vertex
and edge predicates, V 1−E1−V 2−E2−V 3. In superstep 1, init is called
on all vertices to evaluate the vertex predicate V 1, and for the ones that
match, scatter is called to evaluate the edge predicate E1. Those edges
that match send a message to their remote vertex in superstep 2, where all
vertices that receive a message invoke their compute logic to evaluate the
vertex predicate V 2 of the second hop. This is (optionally) preceded by
the TimeWarp operator on all the messages received by an interval vertex.
Vertices that match V 2 call scatter on their edges to match the predicate
E2, and send messages if they too match. In the last superstep, vertices
that receive messages evaluate the predicate V 3, and if there is a match,
return that result path to the user. Each vertex in the last superstep may
return multiple matching paths based on the messages received, and different
vertices may return result paths to the Master.

Scatter also evaluates the edge temporal relationship. Here, the scatter
of the preceding edge passes its lifespan in the result message, and this is
compared against the current edge’s lifespan by the next scatter to decide
on a match. In the case of temporal aggregate queries, the result set is con-
structed in the last superstep, similar to the non-aggregate queries. Then,
the first vertex in each result path, its associated lifespan, and the count or
the property value of the last vertex to be aggregated are extracted and sent
to the Master. The Master temporally groups the values for each distinct
temporal vertex using the TimeWarp operator, and applies the aggregation
operator on the values in each group.

For static temporal graphs, we do not use any interval-centric features of
ICM, such as TimeWarp, and the entire lifespan of the vertex is treated as a
single interval-vertex for execution, and likewise for edges. However, we do
use the property graph model and state management APIs offered by the
interval-vertex.

For dynamic temporal graphs with time varying properties, we leverage
the interval-centric features of ICM. Specifically, we enable TimeWarp of
message intervals with the vertex properties’ lifespans so that compute is
called on an interval vertex with messages temporally aligned and grouped
against the property intervals. Scatter is called only for edges whose
lifespans overlap with the matching interval-vertex, and its scope is limited
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Figure 3: Query execution plans in Granite

to the period of overlap. The compute or scatter functions only access
messages and properties that are relevant to their current interval, and both
can be called multiple times, for different intervals, on the same vertex and
edge.

4.3 Distributed Query Execution Plans

Queries can be evaluated by splitting them into smaller path query segments
that are independently evaluated left-to-right, and the results then com-
bined. Each vertex predicate in the path query is a potential split point.
E.g., a query V 1−E1−V 2−E2−V 3 can be split at V 2 into the segments:
V 1−E1−V 2 and V 3−E2−V 2; execution proceeds inwards, from the outer
predicates (V 1 and V 3) to the split vertex (V 2) which joins the results. This
is illustrated in Figs. 3a (Plan 2) and 3b. A trivial split at the last vertex
predicate V 3 is the default execution of the query from left-to-right, shown
in Figure 3a (Plan 1), while an alternative split at the first vertex predicate
V 1 evaluates this from right-to-left as V 3− E2− V 2− E1− V 1.
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Each split point and plan can be beneficial based on how many ver-
tices and edges match the predicates in the graph. Intuitively, a good plan
should evaluate the most discriminating predicate first (low selectivity, few
vertex/edges match) to reduce the solution space early. A cost model, dis-
cussed in Section 5, attempts to select the best split point.

We modify our Granite logic to handle the execution of two path seg-
ments concurrently. E.g., for a split point V 2, in the first superstep, we
evaluate predicates V 1−E1 and V 3−E2 in the same compute/init and
scatter logic, while in the second superstep we evaluate predicate V 2, as
shown in Figure 3a (Plan 2). In the final superstep when results from both
the segments are available, we do a nested loop join to get the cross-product
of the results. This can be extended to multiple split points in the future.

4.4 System Optimizations

4.4.1 Type-based Graph Partitioning

Giraph by default does a hash-partitioning of the vertices of the graph by
their vertex IDs onto workers. But we use knowledge of the entity schema
types to create graph partitions hosting only a single vertex type. This helps
us eliminate the evaluation of all vertices in a partition if its type does not
match the vertex type specified in that hop of the query. This filtering is
done before the compute is called, at the partitionCompute of Giraph.

We first group vertices by type to form a typed partition each, e.g., Type A
and Type B, as illustrated in Figure 4a. But these can have skewed sizes, and
there may be too few types (hence partitions) to fully exploit the parallelism
available on the workers and their threads. So we further perform a second-
level topological partitioning of each typed partition into p sub-partitions
using METIS [51]. This only considers the edges between vertices of the
same type, i.e., within each typed partition, and uses the edge lifespan as
their weight. This second-level partitioning can also reduce the network
messaging cost between vertices of the same type. The sub-partitions from
each typed partition are then distributed in a round-robin manner among
all the workers. So if there are w workers, t types and p sub-partition per
type, each worker is expected to have t×p

w sub-partitions, with p
w of each

type. Since each superstep typically evaluates a query predicate for a single
vertex type, this ensures load balancing of the typed sub-partitions across
all workers during a superstep execution.

In our experiments using the 100k:A-S graph, described in Section 6.1, we
observe that using type-based partitioning at the first level instead of hash
partitioning improves the average execution time for our query workloads
by 5.8×. When we combine this with METIS partitioning in the second
level, we see a further improvement of 32%. All our results we later report
use this optimization.
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4.4.2 Message Optimization

Path results can have a lot of overlaps. But each partial result path is
separately maintained and sent in messages during query execution. This
redundancy leads to large message sizes and more memory. Instead, we
construct a result tree, where vertices/edges that match at a previous hop
are higher up in the tree and subsequent vertex/edge matches are its de-
scendants. E.g., assuming a full binary tree expansion for a path query
with h hops and n = 2h−1 matching paths, this reduces the result size from
O(h×n) to O(2n− 1). When execution completes, a traversal of this result
tree gives the expanded result paths.

This is illustrated in Figure 4b. Here, vertices A, B and C match the
vertex and edge predicates in the first hop and send their partial result to
their neighbors. D receives the messages from A and B and evaluates itself
for the second-hop predicate. But this execution is not unique to A or B, but
rather shared across them. If D matches, rather than send a message with
two sub-paths, A−D andB−D, we instead send a sub-tree, {A,B}−D in the
message, to its neighbors. Similarly, E which receives messages fro B and C
and matches for the second predicate sends a sub-tree {B,C}−E message.
F receives two sub-trees as messages, evaluates itself for the third predicate
that matches, and sends a larger sub-tree, {{A,B}−D}, {{B,C}−E}−F , to
its neighbor H. G is not a match and prunes its traversal, with no messages
sent. H matches the last predicate successfully, and sends the final result-
tree with H as the root to the Master, which unrolls the tree to return the
paths from H to every leaf as individual results to the client.

4.4.3 Memory Optimizations

In our graph data model, all property keys and values, excluding time inter-
vals, are strings. In Java, string objects are memory-heavy. Since keys will
often repeat for different vertices in the same JVM, we map every property
key to a byte, and rewrite the query at the Master based on this mapping.
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Further, for property values that repeat, such as country, we use interning
in Java that replaces individual string objects with shared string objects.
This works as the graph is read-only. Besides reducing the base memory
usage for the graph by ≈ 5%, it also allows predicate comparisons based on
pointer equivalence.

5 Query Planning and Optimization
A given path query can be executed using different distributed execution
plans, each having a different execution time. The goal of the cost model
is to quickly estimate the expected execution time of these plans and pick
the optimal plan for execution. Rather than absolute accuracy of the query
execution time, what matters is its ability to distinguish poor plans with
high execution times from good plans with low execution times.

We propose an analytical cost model that uses statistics about the tem-
poral property graph, combined with estimates about the time spent in
different stages of the distributed execution plan, to estimate the execution
time for the different plans of a given query. We first enumerate the possible
plans, contributed by each split point in the path query. The graph statis-
tics are then used to predict the number of vertices and edges that will be
active at each superstep of query execution, and the number of vertices that
will match the predicates in this superstep and activate the next hop of the
query (superstep). Based on the number of active and matched vertices and
edges, our cost model will estimate the runtime for each superstep of the
plan. Adding these up across supersteps returns the estimated execution
time for a plan. Next, we discuss the statistics that we maintain, and the
models to predict the vertex and edge counts, and the execution time.

5.1 Graph Statistics

We maintain statistics about the temporal property graph to help estimate
the vertices and edges matching a specific query predicate. Typically, re-
lational databases maintain statistics on the frequency of tuples matching
different value ranges, for a given column (property). A unique challenge for
us is that the property values can be time variant. Hence, for each property
key present in the vertex and edge types, we maintain a 2D histogram, where
the Y axis indicates the different value ranges for the property and the X
axis the different time ranges. Each entry in the histogram has a count of
vertices or edges that fall within that value range for that time range.

E.g., Figure 5a(top) shows such a histogram for the Country property.
Its Y axis lists different country values appearing in the vertices of the
property graph, such as India, UK and US. The X axis divides the lifespan
of the graph into time intervals, say, [0, 50) in steps of 10. The cell values
indicate the number of vertices that have these property values for those time

16



Time

C
o

u
n

tr
y

India

UK

USA

10 20 30 40 50
9 10 12 9 14
4 6 9 5 14
2 4 8 10 12

TimeIndia

UK

USA

10 20 30 40 50
10

14
5 8

12

Tiling

(a) 2-D Histogram of Statis-
tics

India : 10

UK/USA : 5 UK/USA : 8

India/UK : 14
USA : 12

[0,40)

[0,20) [20,40)

[40,50)

(b) Interval Tree for Statistics
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Table 2: Vertex and edge count estimates per superstep and execu-
tion time calculated by the model for two execution plans, for query
EQ2 on 100k:F-S graph

Plan SS ai fi mi ai fi mi Ti (ms)
1 1 100k 3.7× 10−2 3.7k 6.2M 35M 1.3M 531

2 1.3M 7.7× 10−4 1k – – – 132

2 1 51M 7.7× 10−4 39k 273k 88M 67k 4147
2 67k 3.7× 10−2 2.5k – – – 35

intervals, in the entire graph. Here, 9 vertices have the Country property
value as India during time interval [0, 10) and 10 vertices have it during
[10, 20), and similarly for other countries and time intervals.

Formally, for a given property key κ, we define a histogram function
Hκ : (val, τ) → 〈f, δin, δout〉, that returns an estimate of the frequency f of
vertices or edges which have the property value val during a time interval
τ , and the average in and out degrees δ of the matching vertices, which are
maintained for a vertex property.

The granularity of the value and time ranges has an impact on the size of
the statistics maintained and the accuracy of the estimated frequencies. We
make several optimizations in this regard. We use Dynamic Programming
(DP) to coarsen the ranges of the histogram along both axes to form a
hierarchical tiling [52]. This ensures that the frequency variance among
the individual value–time pairs in each tile is no more than a threshold.
For example, in Figure 5a(bottom), the frequencies 9, 10, 12 and 9 for the
property value India during the interval [10, 40) are close to each other
and hence tiled, i.e., aggregated and replaced by their average value 10.
Similarly, India and UK have the same frequency 14 for the interval [40, 50)
and are tiled. This reduces the number of entries that are maintained in
the histogram, i.e., the space complexity, while bounding its impact on the
accuracy of the statistics.

For important properties like vertex and edge types, out-degree and in-
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degree, we pre-coarsen the time steps into, say, weeks, and for other prop-
erties into, say, months to reduce the size of the histogram – the actual
coarsening factor is decided based on how often the properties change in
the graph. For properties with 1000’s of enumerated values (e.g., Tag in
Figure 1), we sort them based on their frequency, cluster them into similar
frequencies, and perform tiling on these clusters. We retain a map between
property values and clusters for these, which is used to rewrite the input
query to replace the property values with these cluster IDs instead.

We use an interval tree to maintain each histogram, with each tile in-
serted into this tree based on its time range. The nodes of the tree will have
a set of tiles (property value ranges and their frequencies) that fall within
its time interval. The invariant for all the nodes in the tree is such that the
interval of a parent node will be after the left child (i.e., start time and/or
end time of parent’s interval is after the left child’s interval), and before
the right child. E.g., the interval tree in Figure 5b is constructed from the
2D histogram in Figure 5a(bottom). Every tile in the histogram becomes
a node or part of a node in the interval tree. We insert a tile in the right
subtree if its interval is greater than the parent node’s interval, in the left
sub-tree if it is lesser, and in the parent if it overlaps with it. To perform
a lookup, we check if the lookup interval is greater than or less than the
parent interval and prune the search space accordingly, similar to a binary
search tree. Calling the H function performs a lookup in this interval tree,
and matches within the set of property ranges.

The time complexity to construct each interval tree includes the time
to aggregate the statistics from the graph, taking O(n · k), where n is the
number of vertices in the graph and k the average number of property names
or keys per vertex type. For each property key, the time taken is dominated
by the tiling step that uses DP, and takes O(p3t3), where p is the number
of (clustered) values for the property key, and t the number of (coarsened)
time units they span [52]. The cost of building the interval tree is O(m · t),
where m is the number of tiles in the coarsened histogram. The lookup time
is O(p · t) in the worst case; for a balanced tree the expected lookup time is
O(log m+ k), where k is the number of intersecting intervals in the tree.

The raw size of the statistics for the graphs used in our experiments
ranges from 4200–5600 kB for about 13–15 property keys.

5.2 Estimating the Active and Matching Vertex and Edge
Counts

A query plan contains either one or two path query segments. The query
predicates on each vertex and its edges in the segment are evaluated in a
single superstep. If two path segments are present, their results are joined
at the split point. Aggregation operators, if any, are also evaluated in the
last superstep. For each segment, we estimate a count of active and match-
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ing vertices and edges in each superstep, given by the recurrence relation
discussed next.

Let P = [π1, π1, ..., πn] denote the sequence of n vertex predicates, π, and
n − 1 edge predicates, π, for a given path query segment. Each predicate
π has a set of property clauses CP (π) = {〈κ, val〉} and a temporal clause
CT (π) = 〈lifespan, τ〉, where κ is a property key, val is a value to compare
its value against, and τ is the interval to compare that vertex/edge/prop-
erty’s lifespan against; and similarly for π. These clauses themselves can be
combined using AND and OR Boolean operators, as described in the query
syntax earlier.

Let σi (σi) denote the type of the vertex (edge) enforced by a clause of
predicate πi (πi). Let Vσ (Eσ) denote the set of vertices (edges) of that
type; if the vertex (edge) type is not specified in the predicate, these sets
degenerate to all vertices (edges) in the graph.

As shown in Figure 2b, each superstep is decomposed into 2 stages: call-
ing init or compute on the active vertices to find the vertices matching
the vertex predicate, and calling scatter on the active edges (i.e., in or
out edges of the matching vertices) to identify the edges matching the edge
predicates. These in turn help identify the active vertices for the next su-
perstep of execution. Initially, all vertices of the graph are active, but if a
type is specified in the starting vertex predicate, we can use the type-based
partitioning to limit the active vertices to the ones having that vertex type.

Let ai and mi denote the number of active and matched vertices, re-
spectively, for vertex predicate πi with type σi, and ai and mi denote the
number of active and matched edges, respectively, for the edge predicate πi
with type σi. These can be recursively defined as:

ai =
{
|Vσ| , if i = 1
min(mi−1, |Vσ|) , otherwise (1)

〈fi, δiin, δiout〉 =
⊗

〈κ,val〉∈CP (πi)
〈lifespan,τ〉∈CT (πi)

Hκ(val, τ)

mi = ai ×
fi
|Vσ|

(2)

ai = mσ
i × (δiin + δiout) (3)

〈fi,−,−〉 =
⊗

〈κ,val〉∈CP (πi)
〈lifespan,τ〉∈CT (πi)

Hκ(val, τ)

mi = ai ×
fi

|Vσ| × (δ̄σin + δ̄σout)
(4)

In Equation 1, we set the active vertex count in the first superstep to
be equal to the number of vertices of type σ. This reflects the localization
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of the search space in the init function to only vertices in the partitions
matching that vertex type. For subsequent supersteps, the active vertex
search space is upper-bounded by |Vσ| but is usually expected to be the
number of matching edges in the previous superstep 2, which would send a
message to activate these vertices and call its compute function.

Next, in Equation 2, we use the graph statistics to find the fraction of
vertices fi

|Vσ | that match the vertex predicate πi (also called selectivity) and
multiply this with the number of active vertices to estimate the matched ver-
tices. This is the expected matched output count from init or compute.
We use H to find the selectivity by iterating through all clauses of a predi-
cate πi, get their frequency, average in degree and average out degree of the
vertex matches for each along with any temporal clause, and then aggregate
(⊗) these frequencies. The aggregation between adjacent clauses can be ei-
ther AND or OR, and based on this, we apply the following aggregation logic
for the frequencies and degrees.

f =
⊗

(f1, f2) =
{

min(f1, f2) , if ⊗ = AND
max(f1, f2) , if ⊗ = OR

(5)

δ =
⊗

(〈fi, δi〉, ...) =
∑
i fi × δi∑
i fi

(6)

Equation 5 returns the smaller of the frequencies while performing an AND,
and the larger of the two with an OR; the former can be an over-estimate
while the latter an under-estimate if the two properties are not statistically
independent. Equation 6 finds the weighted average of the degrees of the
vertices matching the predicates. Once the frequencies of the clauses are
aggregated, we divide it by the number of vertices of this vertex type to get
the selectivity for the vertex predicate.

Then, in Equation 3, we identify the number of edges for which scatter
will be triggered by multiplying the matched vertices with the sum of the
in and out degrees for the matching vertices δ. Lastly, in Equation 4 we
estimate the number of edges matched by the edge predicate πi. Here, we
get the edge selectivity using the frequency of edge matches returned by
the graph statistics, and normalized by the number of preceding vertices of
type σ, times the average of the in and out degrees of vertices of this type,
δ. The edge selectivity is multiplied by the active edge count to get the
matched edges that is expected from the scatter call. These edges will
send messages to their destination vertices, and this will feed into the active
vertex count in superstep i+ 1.

E.g., Table 2 shows the cost model and statistics in action for query
EQ2 on graph 100k:F-S that is described later in Section 6.1. It reports
the counts for the active and matched vertex and edge counts (a,m) using

2This is in the worst case, if vertices and edges that match in the preceding hop activate
mutually exclusive vertices in the next hop.
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Equations 1–4, and the frequency of the vertices and edges (f) as returned
by the histogram, for each superstep of two different query plans. We see
that a1 is higher for Plan 2 than Plan 1 since the plans start at different
vertex types during the init phase, and this will lead to different execution
times for this phase (ι, discussed later). The frequency f1 in Plan 1 is equal
to f2 in Plan, 2 and likewise for f2 of Plan 1 and f1 of Plan 2. This is
expected since the predicate evaluated in superstep 1 of Plan 1 is same as
that of superstep 2 in Plan 2. The cost model also estimates the messages
sent m1 to be 1.3M and 67k for the two plans. Since we assume that the
property values are independent, the selectivities remain constant. a2 = m1
for both plans since we assume that each message from a superstep is sent
to a unique vertex in the next superstep. While the compute calls for Plan
2 is higher, and the scatter calls and messages for Plan 1 is higher. The
execution time model discussed next helps decide which of these plans has
a lower estimated latency.

The clauses for time can also have comparators like �, ≺, etc. and prop-
erty clauses can have ! =. These are supported by the histogram and cost
model. E.g., we get the frequency for a ≺ operator by summing the frequen-
cies for all values smaller than the given value, and for ! = by subtracting
from the total frequency the frequency of values that equal the given value.
All time-variant statistics are maintained in the histogram, while invariants
such as the count of vertex and edges of each type are maintained as part
of global statistics for the graph.

5.3 Execution Time Estimate

Given the estimates of the active/matched vertices/edges in each super-
step, we incorporate them into execution time models for the different
stages within a superstep to predict the overall execution time. We use
micro-benchmarks to fit a linear regression model for the execution times,
I,M,S, CC, and IC, used below. These are unique to a cluster deployment
of Granite, and can be reused across graphs and queries.

As shown in Figure 2b, the init function is called on the active vertices
a1 in the first superstep, and generates m1 outputs that affect the states
of the interval vertex. Its execution time estimate is given by the function
ι = I(a0,m0). For subsequent supersteps i, the compute function is called
similarly on the active vertices, ai, to generate the matched verticesmi. This
has a slightly different execution logic since it has to process an estimated
mi−1 input messages from the previous superstep and does not have to
initialize data structures, unlike init. Its execution time estimate is, ci =
M(ai,mi,mi−1). In a superstep i, scatter is called on the active edges and
generates matched edges, with an estimated time of si = S(ai,mi). Besides
these, there are per-superstep platform overheads: for iterating over vertices
matching a given type, cci = CC(|Vσ|) in the partitionCompute phase, and a
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Table 3: Cost model coefficients for linear regression fit for each execution
phase, as used in our experiments

Init (I) Compute (C) Scatter (S)
a0 m0 cons. ai mi mi−1 cons. ai mi cons.

9.4e-5 -3.1e-5 3.83 7.2e-5 3.3e-5 1.8e-5 1.63 7.9e-5 0 -3.81

Interval
Compute
(IC)

Partition
Compute
(CC)

ai cons. Vσ cons.
-5.1e-6 8.6e-2 -8.0e-6 28.7

base overhead of ici = IC(ai) per active vertex for Graphite.
Given these, the total estimated execution time of the cost model for a

query path segment with n hops is:

T = (ι+ s1 + cc1 + ic1) +
n∑
i=2

ci + si + cci + ici

In practice, these functions are determined by fitting simple linear re-
gression models over query micro-benchmarks performed on the cluster on
which the platform will be deployed. This is done once, and the functions
are common for different graphs and query workloads on that cluster. E.g.,
Table 3 shows the coefficients for the linear equations that we fit for these
functions, for the experiment setup in Section 6.2. Also, Table 2 shows the
estimated execution time Ti in each superstep i for the two execution plans,
using these coefficients. Plan 1 takes lesser time than Plan 2 due to the
latter taking 7.8× longer in superstep 1. This is caused by a high init
execution time, ι, since it has to evaluate 51M vertices (a1) compared to
only 100k in Plan 1. Since the total time is dominated by the init time,
our cost model will choose Plan 1 for executing of this query.

We exclude the time to perform join and aggregation (for aggregate
queries) from the cost model equation. This is based on our observation
that this time is negligible (e.g., 20–30 ms in our experiments) compared to
the overall execution time of a query (1000 ms) in most cases. In contrast,
the execution time for init and the three compute functions together take
about 900 ms. Further, the join and aggregate costs are proportional to the
result set size. Even with a large result set size, there would inevitably
be a large number of intermediate compute calls, and so the relative time
taken by join and aggregate will remain low. Avoiding their inclusion helps
keep the model concise, with only the most significant costs included. The
time taken to find the optimal split point for a query using the approach
described in this section is 2–9ms.
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Figure 6: Modified LDBC Temporal Property Graph schema used in the
evaluation

6 Results

6.1 Workload

We use the social network benchmark from the Linked Data Benchmark
Council (LDBC) [53] for our evaluation of Granite. It is a community-
standard workload with realistic transactional path queries over a social
network property graph. There are two parts to this benchmark, a social
network graph generator and a suite of benchmark queries.

Property Graph Datasets The graph generator S3G2 [54] models a
social network as a large correlated directed property graph with diverse
distributions. Vertices and edges have a schema type and a set of properties
for each type. Vertex types include person, message, comment, university,
country, etc., while edge types are follows, likes, isLocatedIn, etc. The graph
is generated for a given number of persons in the network, and a given de-
gree distribution of the person–follows–person edge: Altmann (A), Discrete
Weibull (DW), Facebook (F) or Zipf (Z).

We make two changes to the LDBC property graph generator. One,
we denormalize the schema to embed some vertex types such as country,
company, university and tag directly as properties inside person, forum,
post and comment vertices. This simplifies the data model. Two, while
LDBC vertices are assigned a creation timestamp that can fall within a
3-year period, we include an end time of ∞ to form a time interval. We
also add lifespans to the edges incident on vertices based on their referential
integrity constraints, and replace time-related properties like join date and
post date with the built-in lifespan property instead. The vertex and edge
lifespans are also inherited by their properties. Figure 6 shows this modified
graph schema.
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Table 4: Characteristics of graphs used in the experiments

Frequent Vertex Types
Graph |V| |E| Persons Posts Comments Forums

Static Temporal Graphs
10k:DW-S 5.5M 20.8M 8.9k 1.1M 4.3M 82k
100k:Z-S 12.1M 23.9M 89.9k 7.4M 2.3M 815k
100k:A-S 25.4M 78.2M 89.9k 8.7M 15.7M 816k
100k:F-S 52.1M 217.6M 100k 12.6M 38.3M 996k

Dynamic Temporal Graphs
10k:DW-D 6.6M 29.3M 10k 1.4M 5.1M 100k
100k:Z-D 15.2M 37.1M 100k 9.3M 4.8M 995k
100k:A-D 32.0M 112.2M 100k 10.8M 20.1M 995k
100k:F-D 52.0M 216.5M 100k 12.6M 38.2M 995k

Frequent Edge Types Unrolled
Graph hasMember∗ hasCreator† Properties#

Static Temporal Graphs
10k:DW-S 3.3M 4.3M 35M
100k:Z-S 1.5M 2.3M 60M
100k:A-S 12.7M 15.8M 157M
100k:F-S 52.2M 38.4 M 325M

Dynamic Temporal Graphs
10k:DW-D 7.2M 5.1M 30M
100k:Z-D 3.2M 4.8M 57M
100k:A-D 25.6M 20.1M 132M
100k:F-D 51.8M 38.3M 222M
∗ forum_hasMember_person † comment_hasCreator_person
# Unrolls multi-valued properties into individual ones

However, this is still only a static temporal property graph. To address
this, we introduce temporal variability into the properties, worksAt, country
and hasInterest of the person vertex. For worksAt, we generate a new prop-
erty every year using the LDBC distribution; the country is correlated with
worksAt, and hence updated as well. We update the hasInterest property
based on the list of tags for a forum that a person joins, at different time
points.

Table 4 shows the vertex and edge counts, the number of vertices of
each type and the total number of property values, for graphs we generate
with 104 (10k) or 105 (100k) persons, with different distributions (DW, Z,
A, F), and with static (S, top) and dynamic (D, bottom) properties. As we
see, the Comments type dominates the number of vertices, with up to 400
comments per person over a 3 year period, followed by about 100 Posts per
person. The most frequent edge types are forum_hasMember_person and
comment_hasCreator_person, while each person Follows 10.2 other friends
on average. Properties such as hasInterest for person and hasTag for com-
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Figure 7: Box and whiskers distribution plot of the result set count for the
100 instances of each non-aggregate query type. Q1–Q7 are reported on the
static graphs while Q8 is on the dynamic graphs. The median result set
count is labeled.

ment take up the most space since they are multi-valued, with an average
of 23 interests per person and 1.22 tags per comment.

Query Workload We select a subset of query templates provided in the
LDBC query workload [53] that conform to a linear path query, and adapt
them for our temporal graphs. Table 5 describes the query templates. These
are either from the Business Intelligence (BI) or the Interactive Workload
(IW). We also include two additional query templates Q5 and Q6 to fully
exercise our query model. Also, query template Q8 depends on worksAt
which is a dynamic property and so it is only evaluated for dynamic temporal
graphs.

Each template has some parameterized property or time value. We gen-
erate 100 query instances for each template by randomly selecting a value for
the parameters, evaluating the query on the temporal graph, and ensuring
that there is at least 1 valid result set in most cases. Query instances are
generated for both the static and dynamic graphs. In addition to these non-
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Table 5: Description of query workload used in the experiments

Query LDBC ID Hops
Property
Predi-
cates

Time
Predi-
cates

Has ER
Predi-
cate?

Description of path to
find (Parameterized property
values are underlined)

Q1 BI/Q9 3 4 1 Yes
Two messages with different tags
belong to the same forum, with a
time ordering between the messages

Q2 BI/Q10 2 6 1 No
A person with a given tag creates a
message with the same tag after a
given date.

Q3 BI/Q16 3 6 1 Yes
A person from a given country has
commented or liked a post before a
person from another given country.

Q4 BI/Q17 4 3 2 Yes

Mutual friendships between three
persons, but with a time-respecting
order in which they befriend each
other.

Q5 – 5 7 3 Yes

A person posts a message with a
given tag to a forum and, after a
time offset, they post another
message to the same forum with a
different tag.

Q6 – 5 7 1 Yes
A person with a specific gender
replies to a post after another
person replies to it.

Q7 BI/Q23 4 5 3 Yes

A person posts a message from
outside their home country, then
befriends another person, and that
person then posts another message
from outside their home country.

Q8 IW/Q11 3 3 1 Yes
Two persons working in different
companies have a common friend
at a time-point.

aggregate queries, we also create another workload that includes a count
temporal aggregate operator to these query templates, i.e., it will group the
results of the original query by the first vertex and its time intervals, and
return the count for each vertex-interval. This helps evaluate the perfor-
mance of aggregate queries. For brevity, we limit these aggregate queries to
the two largest graphs, 100k:A and 100k:F. Figures 7a, 7b, 7c and 7d show
the distribution of the result set count for the (non-aggregate) queries on
the different graphs in our workload.

These illustrate the expressivity of our query model, and ability to in-
tuitively extend it to the time domain. The query length varies between
2 and 5 hops, allowing us to evaluate the cost model and Granite perfor-
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mance for different lengths. All the vertex types appear as predicates in our
workload. The queries filter on both single-valued properties like country
and lastName, and multi-valued properties like hasInterest and hasTag. All
edge types except forum_hasModerator_person are used in the workload.
7 out of the 8 query types have ETR predicate and all the queries have at
least 1 time predicate. They are diverse with respect to result sizes too, as
shown in Figure 7a, 7b, 7c and 7d, and the result counts span several orders
of magnitude, from 100–104.

In our experiments, each query is given an execution budget of 600 secs,
after which it is terminated and marked as failed. The average execution
times are only reported on the successful queries. We verify the correctness
of all queries on Granite and baseline platforms. For the performance eval-
uations, the queries only return the count of the result sets for timeliness.

6.2 Experiment Setup

Our commodity cluster has 18 compute nodes, each with one Intel Xeon E5-
2620 v4 CPU with 8 cores (16 HT) @ 2.10GHz, 64 GB RAM and 1 Gbps
Ethernet, running CentOS v7. For some shared-memory experiments on
other baseline graph platforms, we also use a “big memory” head node with
2 similar CPUs and 512 GB RAM. Granite is implemented over our in-house
Graphite v1.0 ICM platform [21], Apache Giraph v1.3.0, Hadoop v3.1.1 and
Java v8. By default, our distributed experiments use 8 compute nodes
in this cluster, run one Granite Worker JVM per machine with 8 threads
per Worker, and have 50 GB RAM available to the JVM. The graphs are
initially loaded into Granite from JSON files stored in HDFS, with their
pre-computed cost model statistics, and the query workloads run on this
distributed in-memory copy of the graph.

6.3 Baseline Graph Platforms

We use the widely-used Neo4J Community Edition v3.2.3 [47] as a base-
line graph database to compare against. This is a single-machine, single-
threaded platform. We use three variants of this. One specifies the workload
queries using the community standard Gremlin query language (N4J-Gr, in
our plots), and the other uses Neo4J’s native Cypher language (N4J-Cy).
Both these variants run on a single compute node with 50 GB heap size. A
third variant uses Cypher as well, but is allocated 8× 50 = 400 GB of heap
space on the head node (N4J-Cy-M ). As graph platforms are often memory
bound, this configuration matches the total distributed memory available to
our Granite setup by default. We build indexes on all properties in Neo4J.

There are few open source distributed graph engines available. Janus-
Graph [8], a fork from Titan, is popular, and uses Apache Spark v2.4.0 as a
distributed backend engine to run Gremlin queries (Spark, in our plots). It
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uses Apache Cassandra v2.2.10 to store and access the input graph. Spark
runs on 8 compute nodes with 1 Worker each and 50 GB heap memory
per Worker. Cassandra is deployed on 8 additional compute nodes. This is
based on the recommended configuration for JanusGraph on Cassandra 3.
Spark initially loads the graph from Cassandra into its distributed mem-
ory present on its 8 compute nodes. This load time is not considered as
part of the query execution time. So effectively, only the 8 Spark nodes
are used during query execution. For all baselines, we follow the standard
performance tuning guidelines provided in their documentation 4 5.

Since these platforms do not natively support temporal queries over
dynamic temporal graphs, we transform the graphs into a static tempo-
ral graph using techniques described by Wu, et al. and used earlier by
Graphite [21, 43]. This static property graph converts the time-intervals on
vertices and edges of the original interval graph into an expanded set of
vertices and edges that are valid for just a single discrete time point. This
lets us adapt the query to operate on the static graph, albeit a bloated one.
Also, temporal aggregation is not feasible internally on these platforms. So
we perform the final aggregation at the client side for queries with an aggre-
gate operator. JanusGraph/Spark is unable to load these two large graphs
in-memory, and hence was not evaluated for the aggregate queries. The
results from all platforms for all queries are verified to be identical.

6.4 Effectiveness of Cost Model

We first evaluate the effectiveness of Granite’s cost model in identifying the
optimal split point for the distributed query execution. For each query type
(template), we execute its 100 query instances using all their possible query
plans, i.e., every possible split point is considered for each query. From the
execution time of all plans for a query, we pick the smallest as its optimal
plan. We compare this against the plan selected by our cost model, and
report the % of excess execution time that our model-selected plan takes
above the optimal plan. This is the effective time penalty when we select a
sub-optimal plan.

Figure 8a shows a violin plot of the the distribution of this % excess
time over optimal, for the different fixed split points 1–4 executed for the
100 queries of type Q4 (non-aggregate) on graph 100k:A-S, compared to the
plan selected by our cost model (CM) – lower this value, closer to optimal
the performance. We see that the execution time varies widely across the
plans, with some taking 8× longer than optimal. Also, some split points like
2 and 3 are in general better than the others, but among them, neither is
consistently better. In contrast, our cost model plan has a low mean excess

3https://docs.janusgraph.org/storage-backend/cassandra/
4https://neo4j.com/docs/operations-manual/3.2/performance/
5https://docs.janusgraph.org/advanced-topics/hadoop/
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Figure 8: Effectiveness of cost model in picking the best plan for non-
aggregate queries

time of 2.9%, relative to 12.2% and 6.9% excess time taken by these other
split points. Also, it is not possible to a priori find a single fixed split point
which is generally better than the rest, without running the queries using
all split points. These motivate the need for an automated analytical cost
model for query plan selection.

We analyze the accuracy of the cost model for 100k:A, the second largest
graph, in more detail, and its impact on the execution cost. First, Figure 8b
shows a scatter plot between the actual and the model-estimated execution
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Table 6: % excess time spent over the Optimal plan by the Cost Model selected plan, for
different query percentiles of each query type

(a) 100k:A-S

%le Q1 Q2 Q3 Q4 Q5 Q6 Q7
75 1.8 0 2.2 0 0 0 0
90 6.8 0 12.6 0 0 0 0
95 8.5 0 24.6 0 56 0 0
99 17.6 0 47.1 0 123 0 195

(b) 100k:A-D

%le Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
75 0 0 0 0 0 0 0 0
90 0 0 42 0 7.1 0 0 59
95 2.4 0 124 66 8.8 0 0 112
99 3.6 0 198 191 12 0 0 277

(c) 100k:A-S (Temporal Aggregate)

%le Q1 Q2 Q3 Q4 Q5 Q6 Q7
75 0 0 0 0 0 0 0
90 5.7 0 20 0 19 0 0
95 6.3 0 24 0 24 0 0
99 8.3 0 30 0 52 0 0

(d) 100k:A-D (Temporal Aggregate)

%le Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
75 0 0 0 0 0 0 0 0
90 4 0 6 0 28 0 0 57
95 12 28 21 132 39 0 0 175
99 18 145 84 166 57 0 0 643
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Figure 9: Cost Model Accuracy. % of times the optimal plan, the second
best plan and the other plans were selected by our model
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time for the 100k:A-S static graph; the plot has ≈ 2500 points. Overall, we
see a high correlation coefficient of ρ = 0.87. There is an over-estimation
for Q7 (maroon) due to an inaccurate estimation of the number of matching
edges in the second hop, and under-estimates for Q1 to Q5. But Q6 (purple)
shows a high correlation of ρ = 0.94.

Given these execution time inaccuracies of the model, we examine its
effect on: (1) picking the optimal execution plan, and (2) on the latency
penalty when it does not pick the optimal plan. Figures 9 show the fraction
of times the cost model selects the optimal plan, the second best plan, and
the rest of the plans, for the static and dynamic variants of 100k:A, and for
non-aggregate and aggregate queries. We also have corresponding data in
Tables 6 which report for different query types (columns), and for different
percentiles of their queries (rows), what is the % excess execution time over
the optimal spent by the plan chosen by the cost model.

For the non-aggregate queries, the best or the second best plan were
selected over 97% of the time across all queries, as seen in Figures 9a and 9b.
For queries Q2, Q4, Q6 and Q7, the optimal plan was chosen 99% of the
time. In Q2, this is due to a short query length of 2 that reduces the
cumulative errors in the model, as well as a high difference in cost between
the best and the second best plans. This is seen in Figure 8c, which gives the
ratio of the 2nd, 3rd and 4th best plan relative to the optimal. For Q2, the
best plan evaluates the person vertices first, which are 500× fewer than the
message vertices evaluated first by the other plan. As a result, the optimal
execution time is 10× smaller than the other and the model easily selects
the former plan. Similarly, Q6 also exhibits a high difference in cost between
the optimal plan and the remaining three. But the top two plans for queries
Q4 and Q7 have a similar cost. For Q4, starting at either ends causes a high
fan-out and hence the plans that start at the two intermediate hops have a
lower, but similar, cost. In such cases, as Figures 9a and 9b show, we may
occasionally select the second best plan.

However, the consequence of choosing the second best plan on the actual
execution latency is low when the top-2 plans have a similar model cost. In
fact, for 100k:A-S, we see from Table 6a that the execution time of the
model-selected plan is within 2% of the optimal execution time for the 75th
percentile query, within a query type, and within 13% for the 90th percentile
query. Its only at the 95th percentile query that we see higher penalties of
8–56% for 3 of the 7 query types. Even for the dynamic graph 100k:A-D,
6 of the 8 query types have negligible time penalties at the 90th percentile
query in Table 6b, while two, Q3 and Q8, have higher penalties of 42–59%.
The sub-optimal behavior happens when the execution model predicts a
similar cost for the top-2 plans but selects the actual second-best, and the
observed runtime for the second-best is much worse than the best. E.g.,
for the 100k:A-S graph, the difference in actual execution cost between the
optimum and second best plans for query Q3 is 18%. This causes the model
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to select the second best plan ≈ 28% of the time, and causes ≈ 5% of the
queries to take 25% or longer to execute than the optimal plan.

We see similar trends for the temporal aggregate queries as well, in Fig-
ures 9c and 9d, and Tables 6c and 6d. The models predict the same costs
for these aggregate queries since it ignores the aggregate operation and join
costs due to their negligible overheads. Despite that, these queries perform
on par or better than the equivalent queries without the aggregation step.
In fact, this is broadly applicable to all the graphs, as observed in Figure 8d.
It reports that across all queries and graphs evaluated, our cost model picks
the best (optimal) or the second best plan over 95% of the time.

In summary, the cost model is accurate when the query is of shorter
length, and accurate enough to distinguish between the similar good plans
and the rest when certain predicate have high cardinalities. So we pre-
dominantly pick a plan that is optimal, or has an execution time that is
close to the optimal plan. Thus, while our cost model is not perfect, it is
accurate enough to discriminate between the better and the worse plans,
and consequently reduce the actual query execution time.

6.5 Comparison with Baselines

Figures 10 show the average execution time on Granite and the baseline
platforms (Y axis, log scale) for the different non-aggregate query types (X
axis) for the static temporal graphs, and Figures 11 for the dynamic temporal
graphs. Only queries that complete in the 600 sec time budget are plotted.
As Table 7 shows, Janus/Spark did not run (DNR) for several larger graphs
due to resource limits when loading the graph in-memory from Cassandra.
32–79% of queries did not finish (DNF) within the time budget on Neo4J
for 100k:F-S, the largest graph. Granite completes all queries on all graphs,
often within 1 sec. For the largest graph 100k:F-S, Granite uses 16 nodes
to ensure that the graph fits in distributed memory.

The bar plots show that Granite is much faster than the baselines, across
all graphs and all query types, except forQ5 on the smallest graph, 10k:DW-
S. On average, we are 149× faster than N4J-Cy-M, 192× faster than N4J-
Cy, 154× faster than N4J-Gr and 1140× faster than Spark. Other than
the largest graph, Granite completes on an average within 500 ms for all
static graphs and most query types, and on an average within 1000 ms for
100k:F-S and all the dynamic graphs.

Focusing on specific query types for the largest static temporal graph,
100k:F-S, Q2 takes the least time for Granite due to its short path length
of 2. The left-to-right execution by the baseline platforms is the optimal
query plan, but we are still able to out-perform them due to the parallelism
provided by partitioning. Granite takes ≈ 5 secs for Q3 due to the huge
number of results, ≈ 5.9M on average. But this query does not even com-
plete for N4J-Cy and Spark. Granite’s tree-based result structure is more
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Figure 10: Comparison of average execution time of Granite with baseline
systems for non-aggregate query types, on Static Temporal Graphs

compact, reducing memory and communication costs. Q4 for this graph is
also 89–112× better in Granite than the baselines, with large result sizes
of ≈ 72k on average. Here, there is a rapid fan-out of matching vertices
followed by a fan-in as they fail to match downstream predicates, leading to
high costs. Q7 queries are able to complete only in Granite and not on the
baseline platforms. This query has an optimal split point of 1 or 2 which
is not adopted by the baselines. In fact, baselines use the worst possible
left-to-right plan, which we see is 4× slower than the optimal for Granite.
Granite is also consistently better for the dynamic graphs. Similar to

the static graphs, the only time that our average query time is slower than
a baseline is for Q5 on 10k:DW-D. Here, the default left-to-right execution
is near-optimal, and the query has a low traversal fan-out and < 10 results.
So the baselines are in an ideal configuration while Granite has overheads
for distributed execution.

Neo4J using Cypher, on the single compute node (N4J-Cy) and the big
memory node (N4J-Cy-M), are the next best to Granite. The large memory
variant gives similar performance as the regular memory one for the smaller
graphs, but for larger graphs like 100k:A and 100k:F, it out-performs. For
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Figure 11: Comparison of average execution time of Granite with baseline
systems for non-aggregate query types, on Dynamic Temporal Graphs

the latter graph, N4J-Cy could not finish several query types. Though Neo4J
uses indexes to help filter the vertices for the first hop, query processing for
later hops involves a breadth first traversal and pruning of paths based on the
predicates. There are also complex joins between consecutive edges along the
path to apply the temporal edge relation. These affect their execution times.
Gremlin and Cypher variants of Neo4J are comparable in performance, with
no strong performance skew either way. Interestingly, the Gremlin variant of
Neo4J is able to run most query workloads for all graph, albeit with slower
performance.

The Janus/Spark distributed baseline takes the most time for all these
queries. This is despite omitting its initial graph RDD creation time (≈
80 secs). Granite persists the graph in-memory across queries. Despite us-
ing distributed machines, Spark is unable to load large graphs in memory
and often fails to complete execution within the time budget. A similar
challenge was seen even for alternative engines like, Hadoop, used by Janus-
Graph and Spark was the best of the lot.

In the bar plots, we also show a black bar for the single-machine base-
lines, which is marked at the 1/8th execution time-point – this shows the
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Figure 12: Comparison of average execution time of Granite with baseline
systems for Temporal Aggregate query types

theoretical time that would be taken by these platforms if they had perfect
parallel scaling on 8 machines, though they do not support parallel exe-
cution. As we see, Granite is often able to complete its execution within
that mark, showing that our distributed engine shows scaling performance
comparable or better than highly optimized single-machine platforms, even
if they had ideal scaling.

Lastly, we compare the performance of temporal aggregate queries for the
two largest static and dynamic graphs, 100k:A and 100k:F. Their execution
times on the different platforms are shown in Figure 12. For the static
graphs, we observe from Figures 12a and 12b that Granite is much faster
than all the baselines for most query types. On average, we are 165× faster
than N4J-Cy-M, 175× faster than N4J-Cy and 95× faster than N4J-Gr. This
is 10× faster even when compared with the perfect scaling extrapolation for
the baselines.

These temporal aggregate queries are slower compared to their non-
aggregate equivalents. Specifically, for 100k:A-S, Granite takes 64% (≈
315 ms) more on average while the baseline platforms on average are 56%
(N4J-Cy), 42% (N4J-Gr) and 78% (N4J-Cy-M) slower, which translates to
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Table 7: % of queries that complete within 600 seconds for different plat-
forms on the temporal graphs

Graph Spark N4J-Gr N4J-Cy N4J-Cy-M Granite
Static Graphs, Non-aggregate queries

10k:DW 100 99 99 80 100
100k:Z 93 90 100 100 100
100k:A DNR 100 90 98 100
100k:F DNR 66 21 68 100

Dynamic Graphs, Temporal aggregate queries
100k:A DNR 98 65 99 100
100k:F DNR 60 68 65 100
Graph Spark N4J-Gr N4J-Cy N4J-Cy-M Granite

Dynamic Graphs, Non-aggregate queries
10k:DW DNR 96 98 96 100
100k:Z DNR 100 90 98 100
100k:A DNR 97 46 46 100
100k:F DNR 30 20 75 100

Dynamic Graphs, Temporal aggregate queries
100k:A DNR 95 46 99 100
100k:F DNR 36 19 78 100

≈ 24–53 secs longer, per query. The baselines’ time increase considerably
due to the additional overhead of sending the entire result set back to client
to perform the temporal aggregation, as opposed to just sending the total
number of results for the non-aggregate queries. Since Granite does this
natively in a distributed manner, we mitigate this cost.
Granite completes all these queries when executed using the plan se-

lected by the cost model (Table 7). The baseline platforms are only able to
complete, on average, 79% (N4J-Gr), 67% (N4J-Cy) and 82% (N4J-Cy-M)
of the queries on the static graphs, and this is worse for the dynamic graphs,
ranging from 33%–89%.

Also, as Figures 12a and 12b show, we take under 1 sec to run all queries
on 100k:A-S except Q7, and within 2.1 secs for all queries on the largest
graph, 100k:F-S, except Q3 – query Q3 takes longer due to the large result
count of ≈ 4.3M (Figure 7d). For dynamic graphs, we take under 3 secs
for all queries on 100k:A-D except Q4 and Q7, and within 9.2 secs for all
queries on the largest graph, 100k:F-D, except Q3 (Figures 12c and 12d).
None of the baseline platforms could finish query type Q7 for 100k:F-S or
100k:F-D. This query starts and ends with the Post vertex type, which has
a high cardinality. Also, these queries on the baseline platforms need to
accumulate all the results for client-side aggregation. Both of these lead to
memory-pressure for the larger graphs.
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6.6 Components of Execution Time

Next, we briefly examine where the time is spent in distributed execution.
As an exemplar, Figure 13 shows a stacked bar plot of the time taken by
Q7 in different supersteps, and within different workers in a superstep, for
the 100k:A-S graph. The stacks represent the time taken by the init/com-
pute, scatter, and join phases of Granite, the interval compute parent phase
of Graphite (ICM), the partition compute grand-parent phase of Giraph
(VCM), and other residual time such as barrier synchronization and JVM
garbage collection (GC), in each superstep. These times are averaged across
all 100 instances of the query type. For deterministic execution, we select a
fixed split point for the execution plan that is optimal for a majority of the
queries, which, for Q7 is at the third vertex in the path.

For Q7, the first superstep time is dominated by the init logic as the
predicate operates on the Post vertex type, which has 8.7M vertices. Its
scatter time is minimal as only 71k out edges match out of 250k and are
used to send messages. The overheads of interval compute are small, but
partition compute takes longer at 140 ms. In the latter, the Giraph logic
which we extend selects the active partitions based on the vertex type of
the query predicate (Post, in the case of Q7), iterates through its active
vertices, invokes interval compute on each with the incoming messages, and
clears the message queue. The other time is non-trivial at 145 ms. This is
caused by GC triggering due to memory pressure, and taking 110 ms, with
the rest going to the superstep barrier.

In superstep 2, the compute time is negligible at 1.5 ms as only 3.4k
Person vertices are active across both branches of the query plan, but scatter
takes 247 ms since 2.83M edges are processed along one branch of the plan
– the Person vertex has a high out-edge degree – out of which 31k satisfy
the predicate. About 100 ms is taken by partition and interval computes, for
selecting and iterating over the relevant active vertices, and for performing
TimeWarp and state initialization, while there is a GC overhead of 64 ms
in other. In the last superstep, there is a small time taken for compute and
to join the results.

Interestingly, the time taken by each phase is similar across the different
workers in a superstep for this query. This indicates that the partitioning
manages to balance the load for this query type. However, for other queries
like Q4 (not shown for brevity), we observe that in some supersteps, scatter
takes 79% longer for the slowest worker compared to the fastest due to a
skew in the number of edges activated per worker. Also, queries like Q4 take
less time for the first superstep but a larger time in superstep 2 due to a
high fanout, going from 36k edges processed in the first step to 1.48M edges
in the second step. In others like Q3, the first superstep is dominated by
scatter since the initial vertex type Person has only 89k vertices with 770 of
them matching, but these cause 950k edges to be processed of which 122k

37



1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8Worker    
 Superstep 

0
200
400
600
800

1000
1200
1400

Su
pe

rs
te

p 
tim

e 
(m

s) Init/Compute
Scatter
Join

Interval Compute
Partition Compute
Others

1 2 3

I:688 ms,S:27 ms,IC:66 ms,
PC:140 ms,O:145 ms

C:1.5 ms,S:247 ms,IC:40 ms,
PC:60 ms,O:97 ms

C:3.9 ms,J:1.5 ms,IC:3 ms,
PC:1.4 ms,O:2.3 ms
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match and trigger messaging.
In summary, the different supersteps have high variability in execution

times and there is also variability in the time taken by each phase. Despite
that, the cost model is able to discriminate and select near-optimal plans.
The load is mostly balanced across workers in a superstep, though this
depends on the query type. Much of the time is spent directly in processing
the query using compute and scatter, with some additional overheads for the
other phases.

6.7 Weak Scaling

We evaluate the weak scaling capabilities of Granite using the static Facebook-
distribution graphs. We use 4 different system resource sizes – 2, 4, 8 and 16
Workers, with 1 compute node per Worker, and the graph sizes increase pro-
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portional to the Worker count – 12.5k:F-S, 25k:F-S, 50k:F-S and 100k:F-S.
This attempts to keep the workload per Worker constant across the scal-
ing configurations, with the per-Worker vertex and edge counts remaining
within ±18% and ±23% of their mean, respectively. 100k:F-S is partitioned
into 512 partitions (128 per vertex type), and other graphs into 256 par-
titions (64 per vertex type). This ensures that we have enough partitions
for the compute threads to process them in parallel across all Workers. We
generate and use a 100 query workload for each query type, for each graph.

The left Y axis of Figure 14 (bars) shows for each query type, the average
relative execution time when using w = 4, 8, 16 Workers, compared to w = 2
Workers. The right Y axis (circles) shows the scaling efficiency = t2

tw
%,

i.e., time taken on 2 Workers vs. time taken on w Workers. With perfect
weak scaling, the relative time should be constant and efficiency 100%. The
asymmetric nature of graph data structure makes it rare to get ideal weak
scaling. However, we do see that query types Q1, Q5, Q6 and Q7 offer
≥ 60% scaling efficiency on up to 8 Workers, and all queries but Q3 and
Q4 have ≥ 40% efficiency on up to 16 Workers. Q3 and Q4 are unable to
fully exploit the additional resources due to stragglers among their threads,
which are often 10× slower due to uneven load. These two queries also have
the largest result cardinality, which causes more messages to be sent over
the network as the number of machines increase. As a result, they have poor
scaling efficiency.

7 Conclusions
In this article, we have motivated the need for querying over large temporal
property graphs and the lack of such platforms. We have proposed an intu-
itive temporal path query model to express a wide variety of requirements
over such graphs, and designed the Granite distributed engine to implement
these at scale over the Graphite ICM platform. Our novel analytical cost
model uses concise information about the graph to allow accurate selec-
tion of a distributed query execution plan from several choices. These are
validated through rigorous experiments on 8 temporal graphs with a 1600-
query workload, derived from the LDBC benchmark. Granite out-performs
the baseline graph platforms and gives < 1 sec latency for most queries.

As future work, we plan to explore out of core execution models to scale
beyond distributed memory, indexing techniques to accelerate performance,
more generalized temporal tree and reachability query models, and compare
performance with other research prototypes and metrics from literature.
Designing incremental query execution strategies over streaming property-
graph updates is also a related and under-explored challenge. The Granite
platform is also finding relevance in analyzing epidemiological networks that
form temporal property graphs constructed from, say, digital contact tracing
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for the COVID-19 pandemic. This may motivate the need for further query
operators.
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