
SMARTWATTS: Self-Calibrating
Software-Defined Power Meter for Containers

Guillaume Fieni
Univ. Lille / Inria

France
guillaume.fieni@univ-lille.fr

Romain Rouvoy
Univ. Lille / Inria / IUF

France
romain.rouvoy@univ-lille.fr

Lionel Seinturier
Univ. Lille / Inria

France
lionel.seinturier@univ-lille.fr

Abstract—Fine-grained power monitoring of software activities
becomes unavoidable to maximize the power usage efficiency
of data centers. In particular, achieving an optimal schedul-
ing of containers requires the deployment of software-defined
power meters to go beyond the granularity of hardware power
monitoring sensors, such as Power Distribution Units (PDU) or
Intel’s Running Average Power Limit (RAPL), to deliver power
estimations of activities at the granularity of software containers.
However, the definition of the underlying power models that
estimate the power consumption remains a long and fragile
process that is tightly coupled to the host machine.

To overcome these limitations, this paper introduces SMART-
WATTS: a lightweight power monitoring system that adopts
online calibration to automatically adjust the CPU and DRAM
power models in order to maximize the accuracy of runtime
power estimations of containers. Unlike state-of-the-art tech-
niques, SMARTWATTS does not require any a priori training
phase or hardware equipment to configure the power models
and can therefore be deployed on a wide range of machines
including the latest power optimizations, at no cost.

Index Terms—Energy, Containers, Power model

I. INTRODUCTION

Modern data centers are continuously trying to maximize
the power usage efficiency (PUE) of their hardware and
software infrastructures to reduce their operating cost and
eventually their carbon emission. While physical power meters
offer a suitable solution to monitor the power consumption
of physical servers, they fail to support the energy profiling
at a finer granularity: dealing with the software services
that are distributed across such infrastructures. To overcome
this limitation, software-defined power meters build on power
models to estimate the power consumption of software artifacts
in order to identify potential energy hotspots and leaks in
software systems [1] or improve the management of re-
sources [2]. However, existing software-defined power meters
are integrating power models that are statically designed, or
learned prior to any deployment in production [3], [4]. This
may result in inaccuracies in power estimations when facing
unforeseen environments or workloads, thus affecting the
exploitation process. As many distributed infrastructures, such
as clusters or data centers, have to deal with the scheduling
of unforeseen jobs, in particular when handling black-box
virtual machines, we can conclude that the adoption of such
static power models [5] has to be considered as inadequate in
production. We therefore believe that the state-of-the-art in this

domain should move towards the integration of more dynamic
power models that can adjust themselves at runtime to better
reflect the variation of the underlying workloads and to cope
with the potential heterogeneity of the host machines.

In this paper, we therefore introduce SMARTWATTS, as
a self-calibrating software-defined power meter that can au-
tomatically adjust its CPU and DRAM power models to
meet the power accuracy requirements of monitored software
containers. Our approach builds on the principles of sequential
learning principles and proposes to exploit coarse-grained
power monitors like Running Power Average Limit (RAPL),
which is commonly available on modern Intel’s and AMD’s
micro-architecture generations, to control the estimation error.
We have implemented SMARTWATTS as an open source
power meter to integrate our self-calibrating approach, which
is in charge of automatically adjusting the power model when-
ever some deviation from the ground truth is detected. When
triggered, the computation of a new power model aggregates
the past performance metrics from all the deployed containers
to infer a more accurate power model and to seamlessly update
the software-defined power meter configuration, without any
interruption. The deployment of SMARTWATTS in various
environments, ranging from private clouds to distributed HPC
clusters, demonstrates that SMARTWATTS can ensure accurate
real-time power estimations (less than 3.5 % of error on
average, at a frequency of 2 Hz) at the granularity of processes,
containers and virtual machines. Interestingly, the introduction
of sequential learning in software-defined power meters elim-
inates the learning phase, which usually last from minutes to
hours or days, depending on the complexity of the hosting
infrastructure [3], [5].

Additionally, our software-defined approach does not re-
quire any specific hardware investment as SMARTWATTS can
build upon embedded power sensors, like RAPL, whenever
they are available. The code of SMARTWATTS is made avail-
able online as open-source software1 to encourage its deploy-
ment at scale and to leverage the adoption and reproduction of
our results. The key contributions of this paper can therefore
be summarized as follows:

1) a self-calibrating power modelling approach,
2) CPU & DRAM models supporting power states,

1https://github.com/powerapi-ng/smartwatts-formula

1

ar
X

iv
:2

00
1.

02
50

5v
1

 [
cs

.D
C

]
 2

 J
an

 2
02

0

https://github.com/powerapi-ng/smartwatts-formula

3) an open source implementation of our approach,
4) an assessment on container-based environments.
In the remainder of this paper, we start by providing

some background on state-of-the-art power models and their
limitations (cf. Section II) prior to introducing our contribu-
tion (cf. Section III). Then, we detail the implementation of
SMARTWATTS as an extension of the BITWATTS middleware
framework (cf. Section IV) and we assess its validity on three
scenarios (cf. Section V). We conclude and provide some
perspectives for this work in Section VI.

II. RELATED WORK

A. Hardware Power Meters

Over the years, hardware power meters have evolved to
deliver hardware-level power measurements with different
levels of granularity, from physical machines to electronic
components.

WATTPROF [6] power monitoring platform supports the
profiling of High Performance Computing (HPC) applications.
This solution is based on a custom board, which can collect
raw power measurements from various hardware components
(CPU, disk, memory, etc.) from sensors connected to power
lines. The board can connect up to 128 sensors that can be
sampled at up to 12KHz. As in [7], the authors argue that
this solution is able to perform per-process power estimation,
but they only validate their approach while running a single
application.

WATTWATCHER [4] is a tool that can characterize workload
energy power consumption. The authors use several calibration
phases to build a power model that fits a CPU architecture.
This power model uses a predefined set of Hardware Perfor-
mance Counters (HWPC) as input parameters. As the authors
use a special power model generator that can target any CPU
architecture, which has be to carefully described.

RAPL [8] offers specific hardware performance counters
(HWPC) to report on the energy consumption of the CPU since
the “Sandy Bridge“ micro-architecture for Intel (2011) and
“Zen“ for AMD (2017). Intel divides the system into domains
(PP0, PP1, PKG, DRAM) that report the energy consumption
according to the requested context. The PP0 domain repre-
sents the core activity of the processor (cores + L1 + L2 + L3),
the PP1 domain the uncore activities (LLC, integrated graphic
cards, etc.), and PKG represents the sum of PP0 and PP1, and
the DRAM domain exhibits the DRAM energy consumption.
Desrochers et al. demonstrate the accuracy of the DRAM
power estimations of RAPL, especially on Intel Xeon pro-
cessors [9].

B. Software-Defined Power Meters

To get rid of the hardware cost imposed by the above
solutions, the design of power models has been regularly
considered by the research community over the last decade,
in particular for CPU [5], [10]–[13]. Notably, as most ar-
chitectures do not provide fine-grained power measurement
capabilities, McCullough et al. [12] argue that power models

are the first step towards enabling dynamic power management
for power proportionality at all levels of a system.

While standard operating system metrics (CPU, memory,
disk, or network), directly computed by the kernel, tend to
exhibit a large error rate due to their lack of precision [11],
[13], HWPC can be directly gathered from the processor (e.g.,
number of retired instructions, cache misses, non-halted cy-
cles). Modern processors provide a variable number of HWPC
events, depending on the generation of the micro-architectures
and the model of the CPU. As shown by Bellosa [10] and
Bircher [14], some HWPC events are highly correlated with
the processor power consumption, while the authors in [15]
concluded that not all HPC are relevant, as they may not be
directly correlated with dynamic power.

Power modeling often builds on these raw metrics to apply
learning techniques [16] to correlate the metrics with hardware
power measurements using various regression models, which
are so far mostly linear [12]. Three key components are com-
monly considered to train a power model: a) the workload(s)
to run during sampling, b) the minimal set of input parameters,
and c) the class of regression to use [16]–[19].

The workloads used along the training phase have to be
carefully selected to capture the targeted system. In this
domain, many benchmarks have been considered, but they are
mostly a) designed for a given architecture [16], [20], b) man-
ually selected [5], [17]–[19], [21]–[24], or even c) private [17].
Unfortunately, this often leads to the design of power models
that are tailored to a given processor architecture and manually
tuned (for a limited set of power-aware features) [16], [17],
[20], [21], [23]–[26].

C. Limitations & Opportunities

To the best of our knowledge, the state of the art in hardware
power meters often imposes hardware investments to provide
power measurements with an high accuracy, but a coarse
granularity, while software-defined power meters target fine-
grained power monitoring, but often fail to reach high accuracy
on any architecture and/or workload.

This paper clearly differs from the state of the art by
providing an open source, modular, and self-adaptive imple-
mentation of a self-calibrating software-defined power meter:
SMARTWATTS. As far as we know, our implementation is the
first to deliver both CPU and DRAM power estimations at
runtime for any software packaged as processes, containers or
virtual machines. Unlike existing approaches published in the
literature, the approach we describe is i) architecture agnostic,
ii) processor aware, and iii) dynamic. So far, the state of the art
fails to deploy software-defined power meters in productions
because i) the model learning phase can last from minutes to
days, ii) the power models are often bound to a specific context
of execution that do not take into account hardware energy-
optimization states, and iii) the reference power measurement
requires specific hardware to be installed on a large amount of
nodes. This therefore calls for methods that can automatically
adapt to the hardware and workload diversities of heterogenous

2

perf events
selection
(§ 3.E)

host
modelling

(§ 3.B)

pres

power
estimation

(§ 3.F)

idle power

pres

ppkg(c), pdram(c)

Mres

estimation erroridle isolation
(§ 3.C)

perf events
monitoring

(§ 3.D) model
calibration

(§ 3.F)

c

target error

eHwPC

e H
w

PC

 ˆ dyn ˆ dyn

eHwPC
rapl

ˆ dyn

Fig. 1. Overview of SMARTWATTS

environments in order to maintain the accuracy of power
measurements at scale.

III. SMARTWATTS POWER MONITORING

We therefore propose to support self-calibrating power mod-
els that leverage Reference Measurements and Hardware Per-
formance Counters (HWPC) to estimate the power consump-
tion at the granularity of software containers along multiple
resources: CPU and DRAM. More specifically, our contribu-
tion builds upon two widely available system interfaces: RAPL
to collect baseline measurements for CPU and DRAM power
consumptions, as well as Linux’s perf events interface to
capture the Hardware Performance Counters (HWPC) events
used to estimate the per-container power consumption from
resource-specific power models, which are adjusted at runtime.

A. Overview of SMARTWATTS

Figure 1 introduces the general architecture of SMART-
WATTS. SMARTWATTS manages at runtime a set of self-
calibrated power models (Mf

res) for each power-monitorable
resource res (e.g., CPU, DRAM). These power models are
then used by SMARTWATTS to estimate the power consump-
tions of i) the host p̂res and ii) all the hosted containers c:
p̂res(c).

SMARTWATTS uses p̂res to continuously assess the accu-
racy of the managed power models (Mf

res) and to ensure
that the estimated power consumption does not diverge from
the baseline measurements reported by RAPL (praplres , cf.
Section III-B). Whenever the estimated power consumption
error (εres) diverges from the baseline measurements beyond
a configured threshold, SMARTWATTS automatically triggers
a new online calibration process of the diverging power model
to better match the current input workload.

To better capture the dynamic power consumption of the
host, SMARTWATTS needs to isolate its static consumption.
To do so, we use a dedicated component that activates when
the machine is at rest—e.g., after booting (cf. Section III-C)—
to monitor the power activity of the host.

In addition to the static constant, SMARTWATTS estimates
the power consumption of the host from a set of raw input
values that refers to HWPC events, which are selected at
runtime (cf. Section III-E).

This design ensures that SMARTWATTS keeps adjusting its
power models to maximize the accuracy of power estima-
tions. Therefore, unlike the state-of-the-art power monitoring
solutions, SMARTWATTS does not suffers from estimation
errors due to the adoption of an inappropriate power model
as it autonomously optimizes the underlying power model
whenever a accuracy anomaly is detected.

B. Modelling the Host Power Consumption

For each resource res ∈ {pkg, dram} exposed by the
RAPL interface, the associated power consumption praplres can
be modelled as:

praplres = pstaticres + pdynres (1)

where pstaticres refers to the static power consumption of the
monitored resource (cf. Section III-C), and pdynres reflects the
dynamic power dissipated by the processor along the sampling
period.

Then, we can compute a power model Mf
res = [α0, · · · , αn]

that correlates, for a given frequency f (among available
frequencies F , cf. Section III-D), the dynamic power con-
sumption (p̂dynres) to the raw metrics reported by a set of
of Hardware Performance Counter (HwPC) events (cf. Sec-
tion III-E), Ef

res = [e0, . . . , en]:

∃f ∈ F, p̂dynres = Mf
res · Ef

res (2)

We build Mf
res from a Ridge regression—a linear least

squares regression with l2 regularization—applied on the past
k samples Sf

k = 〈pdynres , E
f
res〉, with pdynres = praplres − pstaticres .

By comparing pdynres + pstaticres with praplres , we can continuously
estimate the error εres =| pdynres − p̂dynres | from estimated
values in order to monitor the accuracy of the power model
Mf

res. Whenever the error exceeds a given threshold set by
the administrator, a new power model is generated for the
frequency f by integrating the latest samples.

C. Isolating the Static Power Consumption

Isolating the static power consumption of a node is a
challenging issue as it requires to reach a quiescient state in
order to capture the power consumption of the host at rest.
To capture this information, we designed and implemented a
power logger component that runs as a lightweight daemon
with low priority that periodically logs the package and
DRAM power consumptions reported by RAPL. Then, we
compute the median value and the interquartile range (IQR)
from gathered measurements to define the pstaticres constant as
: pstaticres = medianres−1.5× IQRres. This approach intends
to filter out outliers reported by RAPL, including periodic
measurement errors we observed, and to consider the lowest
power consumption observed along a given period of time.

By default, SMARTWATTS assumes that the static consump-
tion of the host does not requires to be spread across the
active containers. However, other power accounting policies
can be implemented. For example, by reporting an empty static
consumption, SMARTWATTS will share it across the running
containers depending on their activity.

3

D. Monitoring Power States & HWPC Events

As previously introduced, the accuracy of a power model
Mf

res strongly depends on i) the selection of relevant input
features (HWPC events en) and ii) the acquisition of input
values that are evenly distributed along the reference power
consumption range. This is one of the reasons why the input
workloads used in standard calibration phases are often critical
to capture an accurate power model that reflects the power
consumption of a host for a given class of applications.
SMARTWATTS rather promotes a self-calibrating approach that
does not impose the choice of a specific benchmark or work-
load, but exploits the ongoing activity variations of the host
machine to continuously adjust its power models. To achieve
this, SMARTWATTS monitors selected sets of HWPC events
and stores the associated samples in memory. To better deal
with the power features of hardware components, we group the
input samples per operating frequency. This allows to calibrate
frequency-specific power models when an estimation arises,
with the goal to converge automatically to a stable and precise
power model over the time.

By balancing the samples along the range of frequencies
operated by the processor, SMARTWATTS ensures that the
power model learning phase does not overfit the current
context of execution, which may lead to the generation of
unstable power models, thus impacting the accuracy of the
power measurements. The sampling tuples Sf

k are grouped
into memory as frequency layers Lf

res = [Sf
0 , ..., S

f
n], which

are the raw features we maintain to build Mf
res.

To store the samples in the layer corresponding to the
current frequency of the processor, SMARTWATTS compute
the average running frequency as follows:

Favg = Fbase ∗
∆ APERF

∆ MPERF
(3)

where Fbase is the processor base frequency constant extracted
from the Model Specific Registers (MSR) PLATFORM_INFO.
APERF and MPERF are MSR-based counters that increment
at the current and maximum frequencies, respectively. These
counters are continuously updated, hence they report on a pre-
cise average frequency without consuming the limited HWPC
slots. Interestingly, the performance power states, such as P-
states and Turbo Boost, will be accounted by these counters
as they act mainly on the frequency of the core in order to
boost the performance. The idle optimization states (C-states)
will also be accounted as they mainly reduce of the average
frequency of the core towards its Max Efficiency Frequency
before being powered-down.

E. Selecting the Correlated HWPC Events

The second challenge of SMARTWATTS consists in selecting
at runtime the relevant HWPC events that can be exploited
to accurately estimate the power consumption. To do so, we
list the available events exposed by the host’s Performance
Monitoring Units (PMU) and we evaluate their correlation
with the power consumption reported by RAPL. Instead of
testing each available HWPC events, we narrow the search

using the PMU associated to the modelled component—i.e.,
we consider the HWPC events from the core PMU to model
the PKG power consumption. As reference events, we consider
unhalted-cycles for the package and llc-misses for
the DRAM, which are the standard HWPC events available
across many processor architectures, and have been widely
used by the state of the art to design power models [3]–[5].
To elect a HWPC event as a candidate for the power model,
we first compute the Pearson coefficient re,p for n values
reported by each monitored HWPC event e and the base power
consumption p reported by RAPL:

re,p =

n∑
i=1

(ei − e) (pi − p)√
n∑

i=1

(ei − e)2
√

n∑
i=1

(pi − p)2
(4)

Then, SMARTWATTS stores the list of HWPC events that
exhibit a better correlation coefficient r than the baseline event
for DRAM and PKG. This list of elected HWPC events is
further used as input features to implement the PKG and
DRAM power models exploited by SMARTWATTS.

F. Estimating the Container Power Consumption

Given that we learn the power model Mf
res from aggregated

events, Ef
res =

∑
c∈C E

f
res(c), we can predict the power

consumption of any container c by applying the inferred power
model Mf

res at the scale of the container’s events Ef
res(c):

∃f ∈ F, ∀c ∈ C, p̂dynres (c) = Mf
res · Ef

res(c) (5)

In theory, one can expect that p̂dynres
!
= pdynres if the model

perfectly estimates the dynamic power consumption but, in
practice, the predicted value may introduce an error εres =|
pdynres − p̂dynres |. Therefore, we cap the power consumption of
any container c as:

∀c ∈ C, dp̂dynres (c)e =
pdynres × p̂dynres (c)

p̂dynres

(6)

to ensure that pdynres =
∑

c∈Cdp̂dynres (c)e, thus avoiding potential
outliers. Thanks to this approach, we can also report on the
confidence interval of the power consumption of containers by
scaling down the observed global error:

∀c ∈ C, εres(c) =
p̂dynres (c)

p̂dynres

× εres (7)

In the following sections, we derive and implement the
above formula to report on the power consumption of pkg
and dram resources. Our empirical evaluations report on
the capped power consumptions for pkg (dp̂dynpkg e) and dram

(dp̂dyndrame), as well as the associated errors εpkg and εdram,
respectively.

4

cluster

nodenodenodenode (master)

OS

sensor

process

process

OS

sensor

mongodb

power meter

OS OS

sensor

container

container

VM

VM

...

...

sensor

samples

power estimations

Fig. 2. Deployment of SMARTWATTS

IV. IMPLEMENTATION OF SMARTWATTS

We implemented SMARTWATTS as a modular software
system that can run atop a wide diversity of production
environments. As depicted in Figure 2, our open source
implementation of SMARTWATTS mostly rely on 2 software
components—a sensor and a power meter—which are con-
nected with a MONGODB database.2 MONGODB offers a
flexible and persistent buffer to store input metrics and power
estimations. The sensor is designed as a lightweight process
that is intended to run on target nodes with a limited impact.
The power meter is a remote service that can be deployed
whenever needed. SMARTWATTS uses this feature to support
both online and post mortem power estimations, depending on
use cases.

A. Client-side Sensor

The component sensor consists in a lightweight software
daemon deployed on all the nodes that need to be monitored.

Static power isolation: When the node boots, the sensor
starts the idle consumption isolation phase (cf. Section III-C)
by monitoring the PKG and DRAM power consumptions re-
ported by RAPL along the global idle CPU time and the fork,
exec and exit process control activities provided by Linux
process information pseudo-filesystem (procfs). Whenever a
process control activity or the global idle CPU time exceed
99 % during this phase, the power samples are discarded to
prevent the impact of background activities on the static power
isolation process. As stated in III-C, this phase is only required
when the idle attribution policy consider the idle consumption
as a power leakage. It is not needed to run this phase as long
as there is no change in the hardware configuration of the
machine (specifically CPU or DRAM changes).

Event selection: Once completed, the sensor switches
to the event selection phase (cf. Section III-E). To select the
most accurate Hardware performances counters to estimate
the power of a given node, SMARTWATTS need to identify
the HWPC statistically correlated with the power consump-
tion of the components. For that, the sensor monitors the
power consumption reported by RAPL and the maximum
simultaneous HWPC events possible without multiplexing, as
it can a significant noise and distort the correlation coefficient
of the events, over a (configurable) period of 30 ticks. The

2https://www.mongodb.com

maximal amount of simultaneous HWPC events depends of the
micro-architecture of the CPU and will be detected at runtime
using the PMU detection feature of the libpfm4 library.3 We
then correlate the power consumption with the values of the
monitored HWPC events and rank them by highest correlation
with RAPL and lowest correlation across the other HWPC.
Whenever possible, fixed HWPC event counters are selected
in priority to avoid consuming a programmable counter.

Control groups: SMARTWATTS leverages the control
groups (Cgroups) implemented by Linux to support a wide
range of monitoring granularities, from single processes, to
software containers (DOCKER),4 to virtual machines (using
LIBVIRT).5 The sensor also implement a kernel module that
is in charge of configuring the Cgroups to monitor the power
consumption of kernel and system activities, which is not
supported by default. To do so, this module defines 2 dedicated
Cgroups for the roots of the system and the kernel process
hierarchy.

Event monitoring: Once done with the above preliminary
phases, the sensor automatically starts to monitor the selected
HWPC events together with RAPL measurements for the
DRAM and CPU components at a given frequency and it
reports these samples to the MONGODB backend (cf. Sec-
tion III-D). The sensor monitors the selected HWPC events
for the host and all the Cgroups synchronously to ensure that
all the reported samples are consistent when computing the
power models.

B. Server-side Power Meter

The power meter is implemented as a software service
that requires to be deployed on a single node (e.g., the
master of a cluster). The power meter can be used online
to produce real-time power estimations or offline to conduct
post mortem analysis. This component consumes the input
samples stored in the MONGODB database and produces
power estimations accordingly. SMARTWATTS adopts a modu-
lar architecture based on the actor programming model, which
we use to integrate a wide range of input/output data storage
technologies (MongoDB, InfluxDB, etc.) and to implement
power estimations at scale by devoting one actor per power
model.

Power modelling: The power meter provides an abstrac-
tion to build power models. In this paper, the power model
we report on is handled by Scikit-Learn, which is the de facto
standard Python library for general-purpose machine learning.6

We embed the Ridge regression of Scikit-Learn in an actor,
which is in charge of delivering a power estimation whenever
a new sample is fetched from the database.

Model calibration: When the error reported by the
power model exceeds the threshold defined by the user, the
power meter triggers a new calibration of the power model
to take into account the latest samples. This new power model

3http://perfmon2.sourceforge.net
4https://docker.com
5https://libvirt.org
6https://scikit-learn.org

5

https://www.mongodb.com
http://perfmon2.sourceforge.net
https://docker.com
https://libvirt.org
https://scikit-learn.org

is checked against the last sample to estimate its accuracy.
If it estimates the power consumption below the configured
threshold, then the actor is updated accordingly.

Power estimation: Power estimations are delivered at the
scale of a node and for the Cgroups of interest. These scope
of these Cgroups can reflect the activity of nodes’ kernel and
system, as well as any job or service running in the monitored
environment. These power estimations can then be aggregated
by owner, service identifier or any other key, depending on
use cases. They can also be aggregated along time to report
on the energy footprint of a given software system.

V. VALIDATION OF SMARTWATTS

This section assesses the efficiency and the accuracy of
SMARTWATTS to evaluate the power consumption of running
software containers.

A. Evaluation Methodology

We follow the experimental guidelines reported by [27] to
enforce the quality of our results.

Testbeds & workloads: While our production-scale de-
ployments of SMARTWATTS cover both KUBERNETES and
OPENSTACK clusters, for the purpose of this paper, we chose
to report on more standard benchmarks, like STRESS NG7 and
NASA’s NAS Parallel Benchmarks (NPB) [28] to highlight the
benefits of our approach.

Our setups are reproduced on the GRID5000 testbed in-
frastructure,8 which provides multiple clusters composed of
powerful nodes. In this evaluation, we use a Dell PowerEdge
C6420 server having two Intel Xeon Gold 6130 Processors
(Skylake) and 192 GB of memory (12 slots of 16 GB DDR4
2666MT/s RDIMMs). We are using the Ubuntu 18.04.3 LTS
Linux distribution running with the 4.15.0-55-generic Kernel
version, where only a minimal set of daemons are running in
background. As stated in IV-A, we are using the Cgroups to
monitor the activity of the running processes independently.
In the case of the system services managed by systemd
and the services running in Docker containers, their Cgroups
membership is automatically handled as part of their lifetime
management.

For this host, the reported TDP for the CPU is 125 Watts and
26 Watts for the DRAM. Theses values were obtained from the
PKG_POWER_INFO and DRAM_POWER_INFO Model Spe-
cific Registers (MSR). The energy and performance optimiza-
tion features of the CPU—i.e., Hardware P-States (HWP),
Hyper-Threading (HT), Turbo Boost (TB) and C-states, are
fully enabled and use the default configuration of the distri-
bution. The default CPU scaling driver and governor for the
distribution are intel pstate and powersave.

In all our experiments, we configure SMARTWATTS to
report power measurements twice a second (2Hz) with an
error threshold of 5 Watts for the PKG and 1 Watt for the
DRAM.

7https://launchpad.net/stress-ng
8https://www.grid5000.fr

Objectives: We evaluate SMARTWATTS with the follow-
ing criteria:

• The quality of the power estimations when running se-
quential and parallel workloads;

• The accuracy and stability of the power models across
different workloads;

• The overhead of the SMARTWATTS sensor component
on the monitored host.

Reproducibility: For the sake of reproducible research,
SMARTWATTS, the necessary tools, deployment scripts and
resulting datasets are open-source and publicly available on
GitHub.9

B. Experimental Results

Quality of estimations: Figure 3 first reports on the
PKG and DRAM power consumptions we obtained with
SMARTWATTS. The first line (rapl) refers to the ground
truth power measurements we sample for the PKG and
the DRAM via the HWPC events RAPL_ENERGY_PKG
and RAPL_ENERGY_DRAM, respectively. The second line
(global) refers to the power measurements estimated
by SMARTWATTS for the PKG and the DRAM
components from CPU_CLK_THREAD_UNHALTED:REF_P,
CPU_CLK_THREAD_UNHALTED:THREAD_P,
INSTRUCTIONS_RETIRED (fixed counters), and
LLC_MISSES (programmable counter). The list of events
has been automatically selected by the sensor component
as presenting the best correlation with RAPL samples, as
described in Section III-E. The error for each of the power
models are further discussed in Figures 5 and 6.

The lines kernel and system isolates the power con-
sumption induced by all kernel and system activities. Kernel
activities include devices specific background operations, such
as Network interface controller (NIC) and disks I/O processing
queues, while system activities covers the different services,
like the SSH server and Docker daemon, running on the node.

The remaining lines reports on individual power consump-
tions of a set of NPB benchmarks, which are executed in
sequence (lu, ep, ft) or concurrently (ft, cg, ep, lu, mg)
with variable number of cores (ranging from 8 to 32 cores).
One can observe that SMARTWATTS supports the isolation
of power consumptions at process-level by leveraging Linux
Cgroups. This granularity allows SMARTWATTS to monitor
indifferently processes, containers or virtual machines.

We also run stress-ng to observe potential side effects
on the kernel activity by starting 32 workers that attempt to
flood the host with UDP packets to random ports (cf. Figure 4).
While it remains negligible compared to the power consump-
tion of the UDP flood process (2.971 W vs. 120.322 W on
average), one can observe that this stress induces a lot of
activity at the kernel to handle IO, while the rest system is
not severely impacted.

9https://github.com/powerapi-ng/smartwatts-formula

6

https://launchpad.net/stress-ng
https://www.grid5000.fr
https://github.com/powerapi-ng/smartwatts-formula

100
200
300

rapl

100
200
300

global

0
25 kernel

0

100 system

100
150 npb-s-lu.C.8

0

250
npb-s-ep.D.32

100
200 npb-s-ft.D.16

100
200 stress-ng-udpflood32

0

200 npb-p-ft.D.16

0

200
npb-p-cg.D.16

0
100 npb-p-ep.D.16

0
100 npb-p-lu.C.8

15 22:55
15 23:00

15 23:05
15 23:10

15 23:15
15 23:20

15 23:25

Timestamp

0

100 npb-p-mg.C.8

Fig. 3. Evolution of the PKG & DRAM power consumption along time and containers

0

5
kernel

0

20 system

0.1

0.2 powerapi-sensor

15 23:06
15 23:07

15 23:08
15 23:09

15 23:10

Timestamp

100

200

stress-ng-udpflood32

Fig. 4. Illustrating the activity of the kernel when flooding UDP

One can also observe that our sensor induces a negligible
overhead (less than 0.2 Watts) with regards to the consumption
of surrounding activities.

Estimation accuracy: Figures 5 and 6 reports on the
distribution of estimation errors we observed per frequency
and globally (right part of the plots) for the above scenario.
We also report on the number of estimations produced for

each of the frequency (upper part of the plots). While the error
threshold for CPU and DRAM is set to 5 Watts and 1 Watts,
one can observe that SMARTWATTS succeeds to estimate the
power consumption with less than 4 Watts and 0.5 Watt of
error for the PKG and DRAM components, respectively. The
only case where estimation error grows beyond this threshold
refers to the frequency 1000 Hz of the CPU (cf. Figures 5).The
frequency 1000 Hz refers to the idle frequency of the node and
the sporadic triggering of activities in this frequency induces
a chaotic workload which is more difficult to capture for
SMARTWATTS given the limited number of samples acquired
in this frequency (102 samples against 2868 samples for the
frequency 2700 Hz).

The DRAM component, however, provides a more straight-
forward behavior to model with the selected HWPC events and
therefore reports an excellent accuracy, no matter the operating
frequency of the CPU package (cf. Figure 6).

The accuracy of the power models generated by SMART-
WATTS are further detailed in Table I. While our approach suc-
ceeds to deliver accurate estimations of the power consumption
for both CPU and DRAM components, the maximum error
refers to the bootstrapping phase of the sensor that requires
to acquire a sufficiently representative number of samples in
order to build a stable and accurate power model.

7

1000 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 All
Frequency layer of the model (in MHz)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Er

ro
r o

f t
he

 m
od

el
 c

om
pa

re
d

to
 th

e
re

fe
re

nc
e

(in
 W

)
102 241 415 623 2868 1024 201 613 165 269 319 47 6887

Fig. 5. Global & per-frequency error rate of the PKG power models

1000 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 All
Frequency layer of the model (in MHz)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r o
f t

he
 m

od
el

 c
om

pa
re

d
to

 th
e

re
fe

re
nc

e
(in

 W
)

102 241 421 636 2880 1025 190 601 163 261 309 47 6876

Fig. 6. Global & per-frequency error rate of the DRAM power models

TABLE I
PER-SOCKET PKG & DRAM POWER MODELS ACCURACY

Resource Socket εmin εmax εmean εstd

PKG 0 0.000 W 123.888 W 3.337 W 5.071 W
1 0.002 W 103.893 W 3.278 W 4.459 W

DRAM 0 0.000 W 89.600 W 0.577 W 2.403 W
1 0.000 W 39.702 W 0.600 W 1.270 W

Model stability: Beyond the capability to accurately
estimate the power consumption of software containers, we
are also interested in assessing the capability of SMARTWATTS
to generate stable power models over time. Tables II and III
therefore reports, for each frequency, on metrics about the
stability of power models. In particular, we look at the number
of correct estimations produced by the power models in a given
frequency. Given our input workloads, we can observe that
SMARTWATTS succeeds to reuse a given power model up to
592 estimations, depending on frequencies. While we observed
that the stability of our power models strongly depends on the
sampling frequency, the error threshold, as well as the input
workloads, one should note that the overhead for calibrating a

power model in a given frequency does not take more than
a couple milliseconds, which is perfectly acceptable when
monitoring software systems in production.

TABLE II
PKG POWER MODELS STABILITY PER FREQUENCY

Frequency models total min max mean std

1000 86 102 1 24 1.545 2.899
2400 38 241 1 30 5.738 7.404
2500 63 415 1 50 4.414 6.778
2600 59 623 1 62 5.417 9.881
2700 392 2868 1 592 4.961 26.175
2800 47 1024 1 271 14.840 44.907
2900 21 201 1 107 7.730 20.535
3000 132 613 1 171 4.347 15.030
3100 27 165 1 72 6.600 13.898
3200 43 269 1 126 6.255 19.509
3300 35 319 1 90 8.861 19.585
3400 8 47 1 22 5.875 7.180

TABLE III
DRAM POWER MODELS STABILITY PER FREQUENCY

Frequency models total min max mean std

1000 27 102 2 38 11.333 12.103
2400 17 241 1 44 11.476 11.470
2500 34 421 1 87 6.682 12.068
2600 67 636 1 95 6.913 13.754
2700 280 2880 1 538 9.260 37.811
2800 19 1025 1 349 29.285 83.863
2900 21 190 1 35 7.037 9.146
3000 46 601 1 85 10.732 15.487
3100 20 163 1 48 8.150 12.533
3200 27 261 1 42 9.666 11.187
3300 27 309 1 78 11.444 16.158
3400 11 47 1 10 4.272 3.635

Monitoring overhead: Regarding the runtime overhead
of SMARTWATTS, one can observe in Figure 4 that the power
consumption of SMARTWATTS is negligible compared to the
hosted software containers. To estimate this overhead, we
leverage the fact that the sensor component is running inside
a software container, thus enabling SMARTWATTS to esti-
mate its own power consumption. In particular, one can note
in Table IV that the sensor power consumption represents
1.2 Watts for the PKG and 0.06 Watts for the DRAM, on
average, when running at a frequency of 2Hz. The usage of
the Hardware Performance Counters (HwPC) is well known
for its very low impact on the observed system, hence it
does not induce runtime performance penalties [5], [19], [29],
[30]. Additionally, we carefully took care of the cost of
sampling these HwPC events and executing as little as possible
instructions on the monitored nodes.

By proposing a lightweight and packaged software solu-
tion that can be easily deployed across monitored hosts, we
facilitate the integration of power monitoring in large-scale
computing infrastructures. Futhermore, the modular architec-
ture of SMARTWATTS can accommodate existing monitoring

8

TABLE IV
PER-COMPONENT POWER CONSUMPTION OF THE SENSOR

Power min max mean std

PKG 0.0 W 52.078 W 1.241 W 6.559 W
DRAM 0.0 W 29.966 W 0.065 W 0.566 W

cluster

slave 5
slave 2slave 1

master

OS
sensor

Zookeeper
Kafka

OS
sensor

mongodb
power meter

OS OS
sensor

...
sensor

Cassandra
Consumerproducer

Zookeeper
Kafka

Cassandra
Consumer

Kafka

Cassandra
Consumer

Fig. 7. Deployment of Kubernetes IoT backend services across 6 nodes

infrastructures, like KUBERNETES METRICS or OPENSTACK
CEILOMETER, to report on the power consumption of ap-
plications. The following section therefore demonstrates this
capability by deploying a distributed case study atop of a
KUBERNETES cluster.

C. Tracking the Energy Consumption of Distributed Systems

To further illustrate the capabilities of SMARTWATTS, we
take inspiration from [31] to deploy a distributed software
systems that processes messages forwarded by IoT devices
to a pipeline of processors connected by a KAFKA cluster
to a CASSANDRA storage backend. Figure 7 depicts the
deployment of this distributed system on a KUBERNETES
cluster composed of 1 master and 5 slave nodes. The input
workload consists in a producer injecting messages in the
cluster with a throughput ranging from 10 to 100 MB/s.

Figure 8 reports on the evolution of the power consumption
per service while injecting the workload from the master node.
One can observe that, when increasing the message through-
put, the most impacted service is the Consumer, which
requires extensive energy to process all the messages enqueued
by the Kafka service. This saturation of the Consumer service
seems to represent a core bottleneck in the application.

To further dive into this problem, we consider another
perspective on the deployment in order to investigate the
source of this efficiency limitation. While the execution of
this workload requires 1.32 MJoules of energy to process the
whole dataset, Figure 9 further dives inside the distribution of
the energy consumption of individual pods along the PKG and
DRAM components as a Sankey diagram [32]. This diagram
builds on the capability of SMARTWATTS to aggregate power
estimations along time to report on the energy consumption, as
well as its capacity to track power consumption from software
processes (on left-hand side) down to hardware components
(on the right-hand side). This diagram can therefore be used
to better understand how a distributed software system takes
advantage of the underlying hardware components to execute
a given workload. In particular, one can observe that 91 %

02:0001:40 01:45 01:50 01:55 02:05 02:10
Timestamp

0

2000

4000

6000

8000

10000
Kernel
System
Zookeeper
Kafka
Consumer
Cassandra

Fig. 8. Monitoring of service-level power consumptions

of the energy is spent by the CPU package, while the Con-
sumer service drains 65 % of the energy consumption of
the monitored scenario. Interestingly, one can observe that
this energy consumption is evenly distributed across the 5
slaves, thus fully benefiting from the pod replication support
of KUBERNETES. The observed energy overhead is not due
to the saturation of a single node, but rather seems to be
distributed across the nodes, therefore highlighting an issue
in the code of the Consumer service. This issue is related to
the acknowledgement of write requests by the CASSANDRA
service, which prevents the CONSUMER service to process
pending messages.

We believe that, thanks to SMARTWATTS, system admin-
istrators and developers can collaborate on identifying energy
hotspots in their deployment and adjusting the configuration
accordingly.

VI. CONCLUSION

Power consumption is critical concern in modern computing
infrastructures, from clusters to data centers. While the state
of practice offers tools to monitor the power consumption at a
coarse granularity (e.g., nodes, sockets), the literature fails to
propose generic power models, which can be used to estimate
the power consumption of software artefacts.

In this paper, we therefore reported on a novel approach,
named SMARTWATTS, to deliver per-container power esti-
mations for PKG and DRAM components. In particular, we
propose to support self-calibrating power models to estimate
the PKG and DRAM power consumption of software contain-
ers. Unlike static power models that are trained for a specific
workload, our power models leverage sequential learning
principles to be adjusted online in order to match unexpected
workload evolutions and thus maximize the accuracy of power
estimations.

While we demonstrate this approach using Intel RAPL and
the Linux’s perf events interface, we strongly believe that
it can be used as a solid basis and generalized to other
architectures and system components. In particular, we are

9

Fig. 9. Distribution of the energy consumption across nodes and resources

working on the validation of our approach with AMD Ryzen
architecture (including a support for RAPL).

Thanks to SMARTWATTS, system administrators and de-
velopers can monitor the power consumption of individual
containers and identify potential optimizations to apply in
the distributed system they manage. Instead of addressing
performance issues by adding more resources, we believe that
SMARTWATTS can favorably contribute to increase the energy
efficiency of distributed software systems at large.

ACKNOWLEDGEMENT

The authors would like to thank Joël Penhoat for his
insightful feedbacks on this version of the paper.

REFERENCES

[1] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software - Energy profiling of software code,” Autom. Softw.
Eng., 2015.

[2] D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser, “Koala: a
platform for OS-level power management,” in EuroSys. ACM, 2009,
pp. 289–302.

[3] M. Colmant, R. Rouvoy, M. Kurpicz, A. Sobe, P. Felber, and
L. Seinturier, “The Next 700 CPU Power Models,” Journal of Systems
and Software, 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121218301377

[4] M. LeBeane, J. H. Ryoo, R. Panda, and L. K. John, “Wattwatcher:
Fine-grained power estimation for emerging workloads,” in Computer
Architecture and High Performance Computing (SBAC-PAD), 2015 27th
International Symposium on, 2015.

[5] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe,
“Process-level Power Estimation in VM-based Systems,” in Proceedings
of the 10th European Conference on Computer Systems, 2015.

[6] M. Rashti, G. Sabin, D. Vansickle, and B. Norris, “WattProf: A Flex-
ible Platform for Fine-Grained HPC Power Profiling,” in 2015 IEEE
International Conference on Cluster Computing, 2015.

[7] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “Power-
Pack: Energy Profiling and Analysis of High-Performance Systems and
Applications,” IEEE Transactions on Parallel and Distributed Systems,
2010.

[8] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan, “Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge,” IEEE Micro, 2012.

[9] S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of DRAM
RAPL power measurements,” in Proceedings of the Second International
Symposium on Memory Systems, MEMSYS 2016, Alexandria, VA, USA,
October 3-6, 2016, B. Jacob, Ed. ACM, 2016, pp. 455–470. [Online].
Available: http://doi.acm.org/10.1145/2989081.2989088

[10] F. Bellosa, “The Benefits of Event: Driven Energy Accounting in Power-
sensitive Systems,” in Proceedings of the 9th Workshop on ACM SIGOPS
European Workshop: Beyond the PC: New Challenges for the Operating
System, 2000.

[11] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
Machine Power Metering and Provisioning,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, 2010.

[12] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta, “Evaluating the Effectiveness of Model-
based Power Characterization,” in Proceedings of the USENIX Annual
Technical Conference, 2011.

[13] D. Versick, I. Wassmann, and D. Tavangarian, “Power Consumption
Estimation of CPU and Peripheral Components in Virtual Machines,”
SIGAPP Appl. Comput. Rev., 2013.

[14] W. Bircher and L. John, “Complete System Power Estimation: A Trickle-
Down Approach Based on Performance Events,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
Software, ser. ISPASS ’07, 2007.

[15] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A Comparison of High-
level Full-system Power Models,” in Proceedings of the Conference on
Power Aware Computing and Systems, 2008.

[16] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and Responsive Power Models for Multicore Proces-
sors Using Performance Counters,” in Proceedings of the 24th ACM
International Conference on Supercomputing, 2010.

[17] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “HaPPy:
Hyperthread-aware Power Profiling Dynamically,” in Proceedings of the
USENIX Annual Technical Conference, 2014.

[18] R. Zamani and A. Afsahi, “A Study of Hardware Performance Moni-
toring Counter Selection in Power Modeling of Computing Systems,”
in Proceedings of the 2012 International Green Computing Conference,
2012.

[19] M. F. Dolz, J. Kunkel, K. Chasapis, and S. Catalán, “An analytical
methodology to derive power models based on hardware and software
metrics,” Computer Science - Research and Development, 2015.

[20] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data,” in Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003.

[21] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime identifi-
cation of microprocessor energy saving opportunities,” in Proceedings
of the International Symposium on Low Power Electronics and Design,
2005.

[22] G. Contreras and M. Martonosi, “Power Prediction for Intel XScale®
Processors Using Performance Monitoring Unit Events,” in Proceedings
of the International Symposium on Low Power Electronics and Design,
2005.

[23] T. Li and L. K. John, “Run-time Modeling and Estimation of Operating
System Power Consumption,” SIGMETRICS Perform. Eval. Rev., 2003.

[24] H. Yang, Q. Zhao, Z. Luan, and D. Qian, “iMeter: An integrated
{VM} power model based on performance profiling,” Future Generation
Computer Systems, 2014.

[25] M. Y. Lim, A. Porterfield, and R. Fowler, “SoftPower: Fine-grain
Power Estimations Using Performance Counters,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, 2010.

[26] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen,
“Power containers: An os facility for fine-grained power and
energy management on multicore servers,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13.
New York, NY, USA: ACM, 2013, pp. 65–76. [Online]. Available:
http://doi.acm.org/10.1145/2451116.2451124

[27] E. van der Kouwe, D. Andriesse, H. Bos, C. Giuffrida, and G. Heiser,
“Benchmarking Crimes: An Emerging Threat in Systems Security,”
CoRR, vol. abs/1801.02381, 2018.

10

http://www.sciencedirect.com/science/article/pii/S0164121218301377
http://www.sciencedirect.com/science/article/pii/S0164121218301377
http://doi.acm.org/10.1145/2989081.2989088
http://doi.acm.org/10.1145/2451116.2451124

[28] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks,” International Journal
of High Performance Computing Applications, 1991.

[29] M. Kurpicz, A. Orgerie, and A. Sobe, “How much does a vm cost?
energy-proportional accounting in vm-based environments,” in 2016
24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), Feb 2016, pp. 651–658.

[30] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy Proportionality and Workload Consolidation for Latency-critical
Applications,” in Proceedings of the Sixth ACM Symposium on Cloud
Computing, 2015.

[31] M. Colmant, P. Felber, R. Rouvoy, and L. Seinturier, “WattsKit:
Software-Defined Power Monitoring of Distributed Systems,” in CC-
Grid. IEEE Computer Society / ACM, 2017, pp. 514–523.

[32] R. Lupton and J. Allwood, “Hybrid sankey diagrams: Visual analysis
of multidimensional data for understanding resource use,” Resources,
Conservation and Recycling, vol. 124, pp. 141 – 151, 2017.

11

	I Introduction
	II Related Work
	II-A Hardware Power Meters
	II-B Software-Defined Power Meters
	II-C Limitations & Opportunities

	III SmartWatts Power Monitoring
	III-A Overview of SmartWatts
	III-B Modelling the Host Power Consumption
	III-C Isolating the Static Power Consumption
	III-D Monitoring Power States & HwPC Events
	III-E Selecting the Correlated HwPC Events
	III-F Estimating the Container Power Consumption

	IV Implementation of SmartWatts
	IV-A Client-side Sensor
	IV-B Server-side Power Meter

	V Validation of SmartWatts
	V-A Evaluation Methodology
	V-B Experimental Results
	V-C Tracking the Energy Consumption of Distributed Systems

	VI Conclusion
	References

