
In Datacenter Performance, The Only Constant Is Change

Dmitry Duplyakin*, Alexandru Uta†�, Aleksander Maricq*, Robert Ricci*
*University of Utah, †Vrije Universiteit Amsterdam, �Leiden University

*{dmdu, amaricq, ricci}@cs.utah.edu, †a.uta@vu.nl

Abstract—All computing infrastructure suffers from perfor-
mance variability, be it bare-metal or virtualized. This phe-
nomenon originates from many sources: some transient, such
as noisy neighbors, and others more permanent but sudden,
such as changes or wear in hardware, changes in the underlying
hypervisor stack, or even undocumented interactions between
the policies of the computing resource provider and the active
workloads. Thus, performance measurements obtained on clouds,
HPC facilities, and, more generally, datacenter environments
are almost guaranteed to exhibit performance regimes that
evolve over time, which leads to undesirable nonstationarities in
application performance. In this paper, we present our analysis
of performance of the bare-metal hardware available on the
CloudLab testbed where we focus on quantifying the evolving
performance regimes using changepoint detection. We describe
our findings, backed by a dataset with nearly 6.9M benchmark
results collected from over 1600 machines over a period of
2 years and 9 months. These findings yield a comprehensive
characterization of real-world performance variability patterns in
one computing facility, a methodology for studying such patterns
on other infrastructures, and contribute to a better understanding
of performance variability in general.

Index Terms—Datacenter Performance; Benchmarking; Vari-
ability; Changepoint Detection; Temporal Analysis.

I. INTRODUCTION

The performance of computing infrastructure is variable,
which means multiple runs of the same code on the same
hardware result in slightly different performance results [1],
[2]. Often, this variation is relatively small (within a few
percent) and follows a pattern that can be modeled as random
noise, with samples following a stationary (though potentially
complicated) distribution. Under these conditions, it is possible
to use sound experiment designs [3], [4], [5] and statistical
techniques [2], [6] to achieve meaningful performance results.

Sometimes, however, the performance distribution does not
remain stationary: it exhibits some systematic change such as
the change in the median, variance, tail, or other statistical
properties. Instances of such change are called changepoints,
and the practice of finding them is referred to as Changepoint
Detection (CPD) [7], [8]. In this study, we consider the prob-
lem of detecting performance changepoints in large computing
facilities. We use data collected from CloudLab, a distributed
testbed which supports cloud computing and systems research
by providing raw access to programmable hardware [9]. Using
6.9M measurements collected on more than 1600 bare-metal
machines during a period of 2 years and 9 months (May 2017–
February 2020), we detect between 583 and 2439 changepoints
(depending on the detection sensitivity). In this paper, we
describe our assessment of the magnitude of these performance
changes and the duration of inter-changepoint intervals, as well

as relate groups of changepoints to several major recorded
configuration changes that occurred on CloudLab over the
course of this benchmarking effort.

Understanding changepoints in facility performance is help-
ful to both operators and users. In operation of a large-scale
facility, change over time is a fact of life: our analysis in
Section IV shows that performance change is the norm rather
than the exception. Hardware ages, firmware and software get
updated, security patches [10] are applied, and even changes
in the physical environment affect performance over time [11].
Some of these changes are planned, some are not, and
some changes have unexpected performance consequences.
The level of “noise” in repeated performance measurements
and between different machines in the same facility makes
detecting and characterizing these changes difficult. However,
our work should help operators better understand their own
facilities by giving them insights into the effects of planned
system updates, allowing them to find unexpected changes,
and helping them grasp which metrics change together.

On the user side, changepoints can help users better un-
derstand performance of their own codes and run repeatable
experiments. When one gets unexpected performance results,
a natural question to ask is “Has something on the platform
changed?” Our CPD-based approach helps answer this type
of questions: given some performance measurements collected
between two points in time, we can automatically detect sig-
nificant changepoints that occurred between them and identify
the sets of impacted metrics, as well as the magnitudes of
the observed changes. This is also important for repeatable
and predictable performance research [12]: if the goal is to
compare the performance of two programs where one of them
was originally run months or years ago, it is essential to
understand if the baseline performance of the platform has
evolved since that time, and, if so, in what specific ways and
by how much.

In the face of non-trivial and often unexpected performance
changes, practitioners are often unprepared, especially when
they do not control the underlying infrastructure. We advo-
cate for constantly fingerprinting the underlying resources’
performance as a prerequisite to application performance
explainability. Similar to the recent concept of developing
explainable artificial intelligence algorithms, making sense
of systems’ performance is becoming an extremely complex
yet necessary endeavor, especially at large scale. Therefore,
performance fingerprinting, which includes frequent bench-
marking of individual components of computing infrastructure,
is imperative to the explicable system performance behavior.

As shown in recent studies, performance evaluations in

ar
X

iv
:2

00
3.

04
82

4v
1

 [
cs

.P
F]

 1
0

M
ar

 2
02

0

the literature do not always use experimental practices that
account for variability and change over time [13]. Building
benchmarks that automatically adjust based on performance
variability leads to more trustworthy evaluations [14] and
understanding of the types and frequency of changes that
occur in practice is vital to this adaptation. Additionally, under-
standing changes over time—especially unplanned ones—can
help system designers build systems that are stable and offer
consistent performance guarantees.

Toward persuading the international systems community
that in datacenter performance, stability is usually the excep-
tion rather than the norm [1], and that better experimental
design and practices are needed [13], [15], in this paper we
make the following contributions:

1) We advocate for and describe the power of CPD in
characterizing performance variability (Section IV).

2) We characterize and identify changepoints in the per-
formance of CloudLab. We offer clear-cut examples for
validating our CPD results, such as OS and BIOS patches
(Section V).

3) We offer practitioners and performance engineers guide-
lines toward tuning the sensitivity of CPD and setting
expectations about its performance (Section VI).

4) For promoting reproducibility, we release as open data a
large-scale archive containing several million datapoints
characterizing the CPU, memory, and disk performance
of a heterogeneous pool of hardware resources available
on CloudLab, as well as our analysis tools (Section VII).

To give the aforementioned contributions more context, we
describe the dataset we have collected in Section III and
discuss CPD-related developments with potential high impact
in computer systems research in Section VIII.

II. RELATED WORK / BACKGROUND

Identifying changepoints in datasets is regarded as a useful
technique to pinpointing when certain characteristics of the
recorded data have changed. More precisely, a changepoint is
a temporal moment that separates a given dataset in two sub-
datasets with different statistical characteristics. Such analysis
has proven itself valuable in several types of analyses related
to large-scale systems. In this section, we start by giving a
brief overview of scalable changepoint detection techniques
and continue by describing the applicability domains of CPD.

Changepoint Detection Techniques. There are frequen-
tist [7], [16] and Bayesian [8], [17], [18] approaches to
changepoint detection, and it is shown that both of them
achieve good results in online and offline settings. Although
computationally demanding, there exist scalable algorithms
and efficient software packages for CPD [19], [20], [21].
Such linear or sub-quadratic time algorithms ensure that even
massive datasets can be analyzed quickly, in a scalable way
and in near real-time scenarios.

Changepoint Detection in Large-scale Systems. In large-
scale systems, changepoint detection has been used in a variety
of scenarios, including decentralized sensor networks [22],
performance diagnosis in distributed systems [23], identifying

JVM warmups [24], denial-of-service attacks and intrusion
detection [25], [26], [27]. These techniques prove scalable and
efficient enough to inform real-time decisions in time-critical
applications.

Anomaly Detection in Large-scale Systems. Computer
systems are generally designed with clear (non-)functional
requirements. Engineers and administrators measure such met-
rics to determine when systems deviate from their normal
behavior, i.e., detecting anomalous behavior. Various change-
point detection methods [28], [29], [30], [31] are also success-
fully used for detecting anomalies.

Highly contrasting with our work, all the previously dis-
cussed research considers changepoints or anomalies the ex-
ception rather than the norm. However, in this paper we make
the case for change being the norm in datacenter performance.
Toward understanding this behavior, we show strong empirical
evidence and we advocate for continuously monitoring for
performance changes. By accounting for change, engineers,
datacenter operators, and researchers can design better bench-
marks, easily explain abnormal or seemingly inexplicable per-
formance behavior and build better datacenters and distributed
applications.

III. LARGE-SCALE BENCHMARKING

A. Previous Work

Our initial work in the area of facility-wide hardware
performance analysis started in May 2017 with a study of
hardware available on the CloudLab testbed. CloudLab al-
locates an entire bare-metal machine to one user at a time,
and therefore we can study the variability of the hardware
performance free from the side-effects of “noisy neighbors”
and virtualization [32]. More specifically, we were interested
in (i) how the performance differs between supposedly iden-
tical machines and (ii) how the same machine performs over
time. Over a period of 10 months, we captured nearly 900K
data points from 835 machines by testing subsets of available
machines several times per day. Machines were tested using
network, memory, and disk microbenchmarks suites according
to the least-recently-tested order. Our observations and statis-
tical analysis resulted in a publication where we described
thirteen data-backed findings from this study, spanning both
experimentalists’ and facility operators’ concerns [1].

Since our initial collection period, we expanded the scope
of this performance analysis to include the newest hardware
and additional benchmarks, as well as increased the number of
machines tested per collection period. As of the writing of this
paper, the dataset has grown to include over 4.3M memory
and 664K disk performance measurements from over 1600
machines. We have also gathered over 2.0M CPU test results
and reported initial findings from our high-level assessment of
the observed variability patterns [33].

B. Ongoing Benchmarking and Analysis

Close to our current work in terms of experiment scale are
the studies of Gunawi et al. [11] and Amvrosiadis et al. [34].
The former investigates the symptoms of “fail-slow” hardware

TABLE I: Hardware specs and test coverage.

Type Model Processor Cores Tested / Total # Measurements
CPU / Memory

m400 HPE m400 APM X-GENE 8 311 / 315 151 K / 201 K

m510 HPE m510 Xeon D-1548 8 266 / 270 214 K / 575 K

xl170 HPE xl170r G9 Xeon E5-2640v4 10 196 / 200 152 K / 270 K

c220g1 Cisco c220m4 Xeon E5-2630v3 16 89 / 90 121 K / 375 K

c220g5 Cisco c220m5 Xeon Silver 4114 20 220 / 224 380 K / 675 K

c6220 Dell C6220 Xeon E5-2650v2 16 60 / 64 98 K / 175 K

c6320 Dell C6320 Xeon E5-2683v3 28 84 / 84 156 K / 444 K

c6420 Dell C6420 Xeon Gold 6142 32 71 / 72 59 K / 105 K

and characterize the performance anomalies generated by such
issues. The latter shows that trace-driven experiment designs
can lead to over-fitting of systems software toward certain
behavior in case not enough (varied) traces are used. Much like
those studies, we investigate a rather unexplored path in our
domain, namely performance analysis of cyberinfrastructure
with the focus on CPD. This analysis uncovers non-trivial
behavior in performance measurements and helps characterize
change patterns in datacenter performance. We present the data
and the findings that have potential to inform new research
in the area of adaptive benchmarking, represented by studies
such as [35] and [14], and should promote the development of
CPD-based tools, both for analysis and systems management.

This study expands our previous temporal analysis of
performance data [1] in two important ways. First, we go
beyond simply checking stationarity with the Augmented
Dickey–Fuller test [36], which previously showed that most
of our performance traces cannot be viewed as stationary
with high conference level. We describe an investigation that
involves quantifying individual changepoints and temporary
steady states. Second, we describe the analysis that not
only characterizes individual timeseries but also processes
entire batches of performance timeseries and helps reveal
relationships between different performance manifestations of
the same system events. By relating and grouping different
changepoints we identify, we gain better understanding of the
underlying causes.

C. Collected Performance Data

We measure CPU performance of CloudLab hardware using
NPB, the NAS Parallel Benchmarks [37], version 3.3–OMP.
We run 9 microbenchmarks (BT, CG, EP, FT, IS, LU, MG, SP,
UA) on homogeneous pools of machines of 11 types, turning
on/off dynamic voltage and frequency scaling (DVFS). We
vary the number of running threads—we run tests that use ei-
ther a single thread or all available hardware threads—and also
pin the computations to each of the sockets (for two-socket
machines) using the numactl utility. All these parameters
create an input space with 590 distinct configurations that we
use to answer questions related to performance changepoints
in the current work. Each run produces a record in our dataset
with the runtime (in seconds) accompanied by many metadata
attributes, which include machine specs, OS version, kernel
release, and compiler version, among others.

Similarly, we collect measurements for 1038 memory con-
figurations that correspond to evaluating the same CloudLab
hardware using STREAM [38] tests and the micro-benchmarks
from Alex W. Reece’s suite [39], [40] for testing Intel x86
intrinsics such as SSE and AVX instructions. In Table I, we
detail some of the CloudLab’s hardware types—the ones we
refer to throughout the paper—their specifications, and the
testing coverage. The complete hardware overview can be
found on the CloudLab Hardware documentation page [41].

We include 152 disk configurations in our analysis. We run
fio [42] in different settings on raw I/O devices or their
partitions, eight tests per device: read and write load, random
and sequential tests, low and high iodepth settings. These
configurations include the measurements for HDDs, SSDs, and
NVMe devices, which provides opportunities for comparing
entire classes of I/O devices.

We have made this entire 6.9M-measurement performance
dataset publicly available as described in Section VII.

IV. CHANGEPOINT DETECTION ANALYSIS

A. Overview of CPD

We leverage a recent CPD approach that is explicitly de-
signed to handle data with outliers and heavy-tailed noise [43].
This approach uses an efficient dynamic programming algo-
rithm to produce minimum-cost segmentations of univariate
timeseries. Not only is this approach shown to be robust to
noise in the data, but it operates sequentially on the data that
is given to it for processing, which makes it a great fit for rapid
analysis of multiple streams of performance measurements
coming from large-scale cyberinfrastructure. Robustness to
noise is equally important in this context considering that
outliers occur in performance results even on perfectly fine
hardware due to nondeterminism of computing systems and
integral low-level attributes of their design, such as task
scheduling, interrupts, instruction pipelining, caching, among
others [1], [6]. Therefore, we base our work on the method
for which a handful of outliers, including large ones, would
not result in changepoints being reported unless they provide
sufficient statistical basis for such outcomes. We also explore
how sensitive the detection method we selected is to short-term
fluctuations and report our finding throughout the paper.

We use an implementation of this CPD that is available in
the form of the robseg package in R [44]. We integrate
it with the analysis and visualization tools we develop in
Python using the rpy2 interface [45]. Following one of the
repository’s examples, we run this implementation with the
biweight loss function (i.e., pointwise minimum of an L2 loss
and a constant), which is shown to improve the consistency
and the accuracy of changepoint estimation [43]. The authors
argue that this is a good choice in practice that has no
performance drawbacks comparing to the more common and
yet less outlier-resilient L2 (square error) loss. They also
introduce the penalty/threshold parameter K, which relates the
magnitudes of potential changepoints to the ratio of the signal
to its standard deviation, and use different values with different
loss functions. After our initial experiments with CloudLab

(a) Multi-threaded memory copy results. (b) Runtimes of multi-threaded FFT. (c) Subset from (b) for a single machine.

Fig. 1: Outlier-resilient change-point detection applied to memory and CPU performance measurements collected from 183
homogeneous xl170 machines over the period of 14 months, which started when these machines were first added to CloudLab.

performance traces, we have settled on the [0.3, 1.0] range for
K values, making this hyperparameter easily tunable in the
analysis dashboard we develop, as we discuss in Section VII.
Most of the results we present in this paper are obtained with
K = 0.6, unless noted otherwise. We would also like to note
that while the authors of this CPD method evaluate it on the
data with heavy-tailed but synthetic t-distributed noise and also
empirical data from a well drilling application [46], we apply
this recently developed CPD approach in the area of computer
performance analysis and, to the best of our knowledge, report
on the first large-scale analysis of this kind.

The aforementioned choices allowed us to achieve desired
results in segmentation of CloudLab’s performance data in
various settings, as demonstrated in Figure 1. Both memory (a)
and CPU (b,c) datasets were segmented in the ways that made
perfect sense visually and proved to be outlier-resilient. The
latter can be noticed in the memory plot (a) where some of the
most recent measurements appeared higher than the rest, while
the detection algorithm did not create another changepoint that
represents them; similar instances can be observed in the plot
(b). Either more data is needed to confirm the significance of
this behavior, or we can increase the value of threshold K if
we are indeed interested in capturing such instances.

Another interesting result here is that all three of the shown
segmentations—two for the data from all machines of the
studied hardware type (a,b) and one for a single machine of
this type (c)—agree on the change that occurred just before
“05-01-19”. The agreement between different benchmarks’
changepoints speak for the significance of such changes: the
higher the number of agreeing benchmarks, the more “weight”
these performance changes carry. We search for examples
of cluster-wide performance changes using CPD and discuss
several specific cases in more detail in Section V. In this
study, we focus on the analysis of traces that include large
sets of measurements from batches of homogeneous machines,
like traces (a) and (b). We acknowledge that there is an
alternative approach which involves processing smaller single-
machine traces, similar to (c), one-by-one and then clustering
the detected changepoints for extracting prominent patterns.
This method may provide its own benefits (e.g., resource-

specific CPD that may help expose outliers), yet it falls outside
the scope of our current work.

We run the robseg-based CPD on the data for all CPU,
memory, and disk configurations described in the previous sec-
tion and analyze the properties of the produced segmentations,
defined as follows. The nth segment—the period of testing be-
tween changepoints where performance measurements appear
stationary—can be characterized by the duration dn and the
mean mn of the measurements that fall within it. The first
and the last segments in each time series have the beginning
or the end of the testing period as one of its end points. Thus,
the segmentations shown in Figure 1 include the total of 8
segments (3 in (a), 3 in (b), and 2 in (c)). At each changepoint,
we observe a “step” that we can characterize as a relative
change in the means: cn = (mn+1−mn)/mn×100%. Below
we describe the distributions of empirical cn and dn values
we obtain for different benchmarks.

B. Changepoints and Their Characteristics
All changepoints we detect form three groups, represent-

ing CPU, memory, and disk performance changepoints. The
corresponding cn distributions that characterize the relative
magnitudes of these changes are shown in three histograms in
Figure 2. Roughly speaking, most CPU changes are within the
[−7.5%, 7.5%] range, memory changes—within [−20%, 20%],
and disk changes—almost entirely within [−30%, 30%]. We
also notice that the directions of the heavier tails in these
distributions agree with the directions of typical outliers in
these types of performance measurements. Thus, CPU change-
points have more positive cn values than negative (i.e., the
median is slightly greater than zero), and the abnormal CPU
performance results (measured with test runtimes, in units
of time) appear on the high side of the usual performance
levels. In contrast, for memory and disk bandwidth tests
(measured in MB/s), more cn values have the negative sign
(and medians are below zero), which corresponds to instances
of degradation of such performance metrics—the scenario that
is more common in practice for unexpected changes than
bandwidth improvements. In Section V, we further discuss
several specific multi-benchmark changes that conform with
these patterns and also represent several counterexamples.

Fig. 2: Histograms of cn values, the relative mean changes corresponding to the detected changepoints.

Fig. 3: Histograms of dn values, the durations of segments with stable performance. The set of summarized changepoints is
the same as the set shown in Figure 2, which includes the total of 1632 changepoints.

We also track the numbers of detected changepoints, for
each distribution and the total number. They are directly
proportional to the value of K, and the number of memory
changepoints is greater than the number of CPU changepoints,
which, in turn, is greater that the number of disk changepoints
in our dataset. Considering that we analyze uneven numbers of
configurations across these types, we adjust for their numbers
(nCPU = 590, nMemory = 1038, and nDisk = 152) and,
using the notation rX = |{cXn }|/nX for ratios of changepoints
per configuration, arrive at the following:

rMemory > rDisk > rCPU .

This holds true for all values of K in the range we have stud-
ied. To provide a concrete example, our analysis for K = 0.6
yields rCPU = 0.40, rMemory = 1.22, and rDisk = 0.88.
This suggests that on average in this setting, 4 memory traces
have approximately 5 changepoints, 10 disk traces have 9
changepoints, and 5 CPU traces have 2 detectable change-
points. In combination with the analysis of inter-changepoint
intervals presented below, this fact should provide a reference
point for researchers and practitioners pursuing performance-
focused changepoint detection, especially at large scale.

C. Steady States

The inter-changepoint intervals with stationary performance
regimes can be viewed as steady states (provided there is a
representative set of measurements). With these intervals, we
are interested in the patterns expressed in the distributions
of their durations. If we find them to include many short
intervals, we may consider tuning CPD to produce fewer
changepoints and only characterize more permanent ones.
At the other extreme, with less sensitive CPD we run risk
of not noticing some short-term but important changes. In
Figure 3, we present what we believe are the balanced duration
distributions, which we obtain for K = 0.6 and measure in
days. Specifically, we analyze the heights of the leftmost bars

in these histograms (i.e., characterizing short segments) and
notice that they are comparable to the heights of the bars
representing much longer segments, at several hundred days.
In other words, the short-term changes are neither too abundant
nor lacking, when compared to the changes that occur at
larger timescales. With this summary in mind, we gain more
confidence about viewing the steady states on the shorter end
of this spectrum as being representative of the system’s per-
formance regimes rather than stemming from noise. Moreover,
the tall bars for the segments that are about 500-days long
point to the configurations that did not yield any changepoints.
This is a satisfying observation indicating that there is some
long-term stability in the studied performance metrics, and
therefore, specific types of performance experiments can be
run repeatedly over long periods of time without noticeable
impact on the results caused by infrastructure changes and
transient effects. We further discuss several exemplary cases
in the following section.

V. INVESTIGATING CHANGE PATTERNS

In this section we describe the most noticeable performance
changes that we detect using CPD and investigate them by
looking at the history of CloudLab system changes. The latter
comes in the form of kernel, OS, and compiler version changes
and other attributes we record in our dataset, as well as the
record of maintenance procedures (reconstructed based on
administrators’ recollections and emails sent to testbed users).
The cases where we can attribute the multi-benchmark change-
points to such system changes provide validation, giving us
the concrete context for the observed performance changes. We
present the summary of the instances we have investigated in
Table II and discuss them below.

A. Major Changepoints

xl170 BIOS Updates In Figure 4, we illustrate how
xl170 performance traces show changes that occurred after

TABLE II: Details of Validated CPD Results.

Hardware Change
Direction Time Summary

xl170 CPU ↓, Mem ↑ Nov 1, 2019 BIOS Updates;
(see Fig. 4)

c6320, other hw Mem ↓ August 13, 2018 Upgrade from Ubuntu 16 to 18;
(see Fig. 5)

d430, other hw CPU ↑, Mem ↓ July 25, 2019 Kernel upgrade from
4.15.0-47 to 4.15.0-55

November 1, 2019. The timeline plots (a,c) indicate that the
changes can be considered positive: CPU runtimes decreased,
while memory bandwidth results increased (these changes can
also be seen in Figure 1). Considering that the bars in these
timelines represent individual days, we confirm that the large
spikes in the numbers of affected tests match the dates of
updates to the BIOS conducted administrators by on these
machines. We see that they are followed by several days
with small numbers of related performance changes. This
can be explained by a combination of how we collect our
benchmarking results—we may get only a few machines tested
on a day when the testbed and this particular hardware type
are in high demand—and the fact that some of the tests
might need more measurements than the others to results in
changepoints, depending on the magnitudes of changes. In
this case, however, the detection is quite accurate; it points
us precisely at the performance impact of system changes.

The specific changes that caused this changepoint were
tree BIOS settings according to the HPE’s low-latency tuning
recommendations [47]. By disabling patrol scrubbing (which
scans memory to correct soft errors) and the early warning of
DRAM errors (through the memory pre-failure notification set-
ting), administrators reduced the amount of System Manage-
ment Interrupts (SMIs) sent to the processor. Administrators
also reduced the rate at which the memory controller refreshes
DRAM, from 2x to 1x.

As far the magnitudes of these hardware-specific changes
are concerned, on average, CPU runtimes decreased by 3.1%
(5.9% maximum), and memory bandwidth increased by 6.0%
(6.5% maximum). In Figure 4 (b,d), we show the histograms
for the full ranges of xl170’s cn values—not only for
these BIOS-related changes but also for the changepoints that
occurred at different times—characterizing the entire period
of our benchmarking for xl170 machines.

OS Version Change The performance effects of the testbed-
wide switch from Ubuntu 16.04 as a default operating system
image to Ubuntu 18.04 can be seen in the traces for most
of CloudLab’s hardware types, such as the c6320 hardware
type shown in Figure 5. While our collection of CPU tests only
began shortly after this transition, our memory results reveal
the changepoints that trace back to this OS upgrade. These
performance changes are predominantly negative: they reflect
the security updates many of which mitigate recent specula-
tive execution exploits [48] at the expense of performance.
c6320’s memory bandwidth results decreased by 2.7% on
average (8.4% maximum) following the OS switch, but not
all hardware types experienced this degree of change. The
m510 hardware type, in contrast, showed smaller performance

degradation, with the average of 0.8% (2.9% maximum). In the
most stable case, c220g1 machines showed a single memory
changepoint with bandwidth degradation of only 0.2%.

This helps illustrate the point that we cannot project per-
formance results from one hardware type to another. This
conclusion is typically drawn for high-level applications, yet
here we see the evidence for it in the context of performance
baselines defined by the OS evolution.

Kernel Version Changes Similar to the OS upgrade,
changes in the version of the deployed Linux kernel result
in many performance changepoints. One such update—from
4.15.0-47 to 4.15.0-55—can be seen in the traces for
multiple hardware types, for both CPU and memory measure-
ments. A number of the corresponding negative changepoints
around July 25, 2019, which relate to the continuing mitigation
of security exploits (we have confirmed that the changelogs
for this series of kernel updates describe such improvements),
can be seen in Figure 5. There, CPU runtimes increased by
1.4% on average (2.2% maximum), and memory bandwidth
decreased by 1.7% on average (2.0% maximum). The largest
relative change that we can attribute to this update is the 5.1%
memory bandwidth decrease for read AVX instructions run on
c220g5 machines. It is also worth noting that the discussed
kernel version update coincided with a compiler change, from
GCC 7.3.0 to 7.4.0. To verify the root cause of these
changepoints, we collected measurements in a series of tests
that used a CloudLab machine running the older kernel and the
newer GCC. By comparing these results with the pre- and post-
changepoint distributions, we can claim without doubt that the
kernel is indeed responsible for the performance impacts, not
GCC. Our analysis of other kernel version changes, which took
place before and after the aforementioned update, showed that
they had more limited performance effects.

B. Stable Measurements
In addition to investigating changepoints, we recognize long

steady states present in our performance measurements and
describe several instances below.

Disk Performance The most stationary measurements come
from the disks installed on c6420 and 6220. Both use
Seagate 1TB 7200-RPM 6G SATA HDDs (albeit different
models). Their performance traces showed isolated change-
points for I/O tests with the default setting iodepth = 1. These
are instances of impressive long-term performance stability,
considering that other storage devices, such as Micron M500
120GB SATA3 flash and Toshiba XG3 series 256GB NVMe
disks, showed 15 and 33 changepoints, respectively, on the
same set of eight I/O tests. This summary agrees with what
we have found in our previous work [1] about the performance
of these devices based on empirical coefficients of variance:
increased performance often comes at the expense of increased
variability. We also notice that I/O performance changepoints
mostly do not coincide with the rest of the studied change-
points, comparing to the CPU and memory changepoints that
are in agreement in many cases, as discussed earlier.

Shaded Area: Period of Measurements

Down

Mixed

Up

CPU: changes in RUNTIMES

10/2018 2/2019 6/2019 10/2019

0

5

10

15
#

 o
f c
h
a
n
g
e
p
o
in
ts

(a) Changepoints in CPU traces.

CPU changes in means, %

-6 -5 -4 -3 -2 -1 0

0

0.1

0.2

0.3

0.4

D
e
n
si
ty

(b) Histogram of CPU cn values.

Shaded Area: Period of Measurements

Down

Mixed

Up

MEMORY: changes in BANDWIDTH

10/2018 2/2019 6/2019 10/2019

0

5

10

15

#
 o
f c
h
a
n
g
e
p
o
in
ts

(c) Changepoints in Memory traces.

MEMORY changes in means, %

-2 0 2 4 6

0

0.2

0.4

0.6

0.8

D
e
n
si
ty

(d) Histogram of Memory cn values.

Fig. 4: Changepoint detection for xl170 performance data. Shaded areas in (a) and (c) represent the period of benchmarking.

Shaded Area: Period of Measurements

Down

Mixed

Up

CPU: changes in RUNTIMES

7/2017 3/2018 10/2018 6/2019 1/2020

0

2

4

6

8

#
 o
f c
h
a
n
g
e
p
o
in
ts

(a) Changepoints in CPU traces.
Shaded Area: Period of Measurements

Down

Mixed

Up

MEMORY: changes in BANDWIDTH

7/2017 3/2018 10/2018 6/2019 1/2020

0

2

4

6

8

#
 o
f c
h
a
n
g
e
p
o
in
ts

(b) Changepoints in Memory traces.

Fig. 5: Changepoint detection for c6320 performance data. Shaded areas represent the period of benchmarking.

Most Stable Configurations CPU measurements on m400
machines and memory measurements on c6420 machines
showed no changepoints. Though, it does not mean that there
is no variability or subtle fluctuations: we do find some per-
formance changepoints when we increase K, but their number
is still lower than the numbers of changepoints detected for
other hardware. Based on all our observations, these hardware
types would be the best candidates—not showing the highest
performance but instead delivering the highest stability—for
long-running series of experiments with the emphasis on
CPU and memory performance, among the hardware available
on the CloudLab testbed. In such experiments, application
performance regressions can be studied in isolation from
hardware- and OS-caused transient performance effects, with
greater rigor and depth.

C. Discussion

We anticipate that these findings can be helpful to the com-
munity of CloudLab users in several ways. First, it is worth
noting that some of the factors that caused changes (the OS
and kernel updates) are actually under the users’ control: while
the user may opt to use the images and kernels that are the
default at the time, they also have the option of using specific
(potentially older) software stacks if performance consistency
is a primary goal. Second, as noted above, some hardware

Fig. 6: Time needed for single-timeseries CPD analysis.

types show fewer changepoints than others, underscoring the
fact that the choices the user makes of hardware can affect
how many changes in performance they experience. Third,
it is notable that spinning disks provide the most consistent
performance over time. If this holds for larger set of models
and usage patterns, this suggests that practical performance
fingerprinting for performance explainability should put more
emphasis on benchmarking of CPUs, memory, and other types
of I/O devices comparing to testing spinning disks.

While the analysis in this section necessarily concentrates
on the specific changes that we have observed in CloudLab, the
overall lessons can generalize to other systems. While changes
are common in large, long-lived facilities, techniques such as
CPD can help both administrators and users recognize these
changes and track down their root causes.

VI. TUNING THE DETECTION PROCESS

As part of our evaluation of CPD’s computational require-
ments, we perform two series of experiments: CPD for single
timeseries and for batches of timeseries. In the former, we run
the analysis for samples of measurements of the increasing size
and measure per-invocation CPD analysis time (in seconds).
We start with the 25-point sample shown in Figure 1 (c)
and proceed to larger samples drawn from the data shown
in Figure 1 (b). Each sample is randomly shuffled (so we can
study a variety of segmentations) and passed to the CPD code
100 times. We depict the analysis times we have recorded
using the boxplot in Figure 6. In the latter set of experiments,
which is more representative of the scenarios with multi-
benchmark performance analysis for datacenters, we run CPD
for all CPU timeseries back-to-back, and then repeat it for
all memory data. We study how the analysis times for these
two batches vary as we tune the detection by changing the
value of K threshold. In Figure 7, we show the runtimes,
as well as the numbers of identified changepoints, producing
visualizations that allow us to reflect on the previously used
value of K. All these runtimes are collected and processed on
a machine with two 6-core Xeon X5650 processors and 96 GB
of memory. Below we summarize the key insights revealed by
the performance results we have gathered.

CPD is fast. It processes samples with over 3,000 points
within tiny fractions of a second. The analysis time is linear
with respect to the sample size. Moreover, unlike typical
Machine Learning tools that require large datasets for training,
CPD analyzes each sample independently from the rest of the
data and can achieve good results even on small, 25-point
samples (as we demonstrated in Figure 1 (c)). This makes
CPD and the robseg implementation in particular suitable
for fast, interactive analysis tools connected to live databases
or sources of streaming data.

There is a “sweet spot” in the range of K values. Analysis
time consistently decreases as we increase K, while the
number of detected changepoints increases. This matches what
is highlighted in the study that introduced robseg [43],
where the authors compared two scenarios: “no change”
(K = 0) and “many changes” (K = n/100, where n is the
sample size). Our results complement their brief summary by
demonstrating how CPD behaves over an entire range of K
values that may be considered in practice. Thus, thresholds
around K = 0.6 appear to be good choices for CPU and
memory performance analysis, as confirmed by the trade-off
curves shown in Figure 7. Such values allow finding most of
the changepoints detected with higher values of K without
performance drawbacks of the analysis with lower K. It is
also worth noting that if we are indeed interested in making the
detection more sensitive by increasing K, we would be able to
do that without performance penalties. Then, we would need to
select K based on the desired characteristics of changepoints
and steady states, using the arguments from Section IV.

(a) Properties of CPD for x1l170 data.

(b) Properties of CPD for c220g1 data.

Fig. 7: Results of varying the K threshold.

VII. OPEN ARTIFACTS

CONFIRM is an interactive analysis service running at
https://confirm.fyi/. We developed it to assess the
levels of performance and variability present in our dataset us-
ing scatter plots, per-machine confidence intervals, converging
overall confidence intervals, among other analysis techniques.
It analyzes all performance results we have collected on Cloud-
Lab. It is worth noting that we first encountered performance
changepoints while exploring specific configurations one-by-
one using CONFIRM’s scatter plots, which are similar to the
ones shown in Figure 1 (without CPD segmentations).

Change Over Time is a complementary dashboard we
have developed to examine the results of CPD. It is available
at https://confirm.fyi/change/. It runs alongside
CONFIRM, accesses the same database, and produces visual-
izations like the ones shown in Figures 4 and 5. The dashboard
summarizes the numbers of detected changepoints and their
distributions for CPU, memory, and disk measurements, as
well as depicts the temporal relationships between them. The
dashboard has a slider allowing to experiment with the CPD
threshold K and go from a few (only large) to the larger
numbers (including smaller) of performance changepoints.

All data and the developed analysis code can be found at:
https://gitlab.flux.utah.edu/emulab/
cloudlab-ccgrid20. This repository provides access to
the raw data, the collection of changepoints produced by our
analysis, and the Google Colab notebooks that can be easily
cloned and run.

https://confirm.fyi/
https://confirm.fyi/change/
https://gitlab.flux.utah.edu/emulab/cloudlab-ccgrid20
https://gitlab.flux.utah.edu/emulab/cloudlab-ccgrid20

VIII. IMPACT OF CHANGEPOINT ANALYSIS

With the approach we have laid out and the findings we
have presented, we hope to demonstrate the value of CPD for
comprehensive performance evaluation and operation of large
computing facilities. Not only can such analysis improve facil-
ity studies in cloud computing, HPC, datacenter optimization,
etc., but it can also contribute to a wide range of practical
evolution-over-time studies focused on performance of indi-
vidual components and aspects of modern cyberinfrastructure:
new devices, network and storage systems, compilers and
computing frameworks, QoS policies, resource sharing, among
others. Better understanding of all these systems requires
measuring key performance characteristics across a variety of
operational regimes rather than focusing on a single or handful
of selected states.

A good analysis protocol would prescribe checking station-
arity across the sampled states or time intervals and using
elements of CPD where the stationarity does not persist. The
same logic applies to computing applications used repeatedly
in production settings. We support this protocol and have
shared what we have learned from it when we discussed the
stationarity assessment in our previous work [1] and described
the changepoint investigation in the current study.

In a different capacity, we can also envision the use of CPD
in the systems reproducibility studies, which reuse published
data and code artifacts for validation and further analysis.
CPD can be a part of the toolchains involved in such work,
complementing other temporal analysis techniques.

The confluence of ideas about establishing performance
baselines and studying reproducibility leads us to think about
creating an open archive for performance variability data.
There is plenty of precedent for archives of performance data,
from the Top500 [49] and Green500 [50] efforts, to the data
released by SPEC [51]. What we propose is an archive specif-
ically targeting performance stationarity and variability. This
archive would include fine-grained multi-benchmark datasets,
similar to the dataset we describe in this paper. It would
provide access to complete performance records for repeated
benchmark runs on the same system, as well as runs across
groups of theoretically-identical systems. This would allow
system owners and users better understand what to expect in
their environments and bootstrap statistical calculations and
adaptive techniques needed for robust benchmarking of their
hardware. An organized and documented collection of data
like this is likely to empower a plethora of new studies on
large-scale performance evaluations, analysis of correlations
in performance measurements, outlier detection, prediction of
results in untested configurations, minimization of benchmark-
ing time, among many other avenues within contemporary per-
formance analysis of computer systems. In this context, CPD
techniques running on the archive’s data would strengthen
all analyses that are able to consider individual stationary
segments and their performance characteristics rather than
relying on the coarse estimates obtained for entire time series
(sometimes with nonstationarities). We hope that our dataset

from this study, in addition to the recently published measure-
ments of network performance in several clouds [52] (also
showing many changepoints), will help establish such archive
and stimulate more work on novel and practical CPD.

IX. CONCLUSION AND FUTURE WORK

In the current study, we apply changepoint detection to
a large dataset of measurements we have collected on the
CloudLab testbed, which includes records of CPU, mem-
ory, and disk performance. We present our analysis of the
detected changepoints—their distributions in terms of mag-
nitudes and inter-changepoint intervals—how they relate to
the large recorded system changes, and also reveal which
configurations we have found to be the most stable based
on the lack of changepoints. These results, coupled with the
presented performance experiments and their outcomes, have
convinced us in the viability and usefulness of applying robust
CPD in studying large performance datasets. We expect to
see more work in computer systems research using CPD
techniques in the future and have shared several ideas about
the types of developments that might facilitate this adaptation.

As part of our future work, we plan to include the results of
network bandwidth and latency tests collected on CloudLab.
It will allow us to compare CloudLab’s networks with the net-
works deployed in public clouds [13] from the variability and
evolution-over-time perspectives. On the detection side, we
will experiment with other changepoint detection approaches
and tools, including online Bayesian detection [17] and the
BreakoutDetection package [53], looking for the best choices
and capabilities for datacenter performance analysis. We will
work on a comprehensive comparison study for the available
methods and consider evaluating them on the CloudLab’s
performance dataset.

ACKNOWLEDGMENTS

This material in this paper is based upon work supported
by the National Science Foundation, Grant Number 1743363.

REFERENCES

[1] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman,
and R. Ricci, “Taming performance variability,” in Proceedings
of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct. 2018. [Online]. Available: https:
//www.flux.utah.edu/paper/maricq-osdi18

[2] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley- Interscience, Apr. 1991.

[3] T. J. Santner, B. J. Williams, W. Notz, and B. J. Williams, The design
and analysis of computer experiments. Springer, 2003, vol. 1.

[4] P. Balaprakash, R. B. Gramacy, and S. M. Wild, “Active-learning-based
surrogate models for empirical performance tuning,” in Cluster Com-
puting (CLUSTER), 2013 IEEE International Conference on. IEEE,
2013, pp. 1–8.

[5] D. Duplyakin, J. Brown, and R. Ricci, “Active learning in performance
analysis,” in 2016 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2016, pp. 182–191.

[6] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: Twelve ways to tell the masses when reporting performance
results,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. ACM, 2015.

[7] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

https://www.flux.utah.edu/paper/maricq-osdi18
https://www.flux.utah.edu/paper/maricq-osdi18

[8] A. Smith, “A bayesian approach to inference about a change-point in a
sequence of random variables,” Biometrika, vol. 62, no. 2, pp. 407–416,
1975.

[9] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul. 2019. [Online].
Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[10] Databricks, “Meltdown and Spectres Performance Impact on Big Data
Workloads in the Cloud ,” https://databricks.com/blog/2018/01/13/
meltdown-and-spectre-performance-impact-on-big-data-workloads-in-
the-cloud.html, 2018.

[11] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider,
P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,
P. Alvaro, H. B. Runesha, M. Hao, and H. Li, “Fail-slow at scale:
Evidence of hardware performance faults in large production systems,”
in 16th USENIX Conference on File and Storage Technologies
(FAST 18). USENIX Association, 2018. [Online]. Available: https:
//www.usenix.org/conference/fast18/presentation/gunawi

[12] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: that is the question,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2019, p. 77.

[13] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance repro-
ducible in modern cloud networks?” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Feb. 2020.

[14] M. Kogias, S. Mallon, and E. Bugnion, “Lancet: A self-correcting
latency measuring tool,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019, pp. 881–896.

[15] A. Uta and H. Obaseki, “A performance study of big data workloads
in cloud datacenters with network variability,” in Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing. ACM, 2018, pp. 113–118.

[16] E. Page, “A test for a change in a parameter occurring at an unknown
point,” Biometrika, vol. 42, no. 3/4, pp. 523–527, 1955.

[17] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detec-
tion,” arXiv preprint arXiv:0710.3742, 2007.

[18] D. Stephens, “Bayesian retrospective multiple-changepoint identifica-
tion,” Journal of the Royal Statistical Society: Series C (Applied Statis-
tics), vol. 43, no. 1, pp. 159–178, 1994.

[19] A. J. Scott and M. Knott, “A cluster analysis method for grouping means
in the analysis of variance,” Biometrics, pp. 507–512, 1974.

[20] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” Journal of the American
Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[21] R. Killick and I. Eckley, “changepoint: An r package for changepoint
analysis,” Journal of statistical software, vol. 58, no. 3, pp. 1–19, 2014.

[22] A. G. Tartakovsky and V. V. Veeravalli, “Quickest change detection
in distributed sensor systems,” in Proceedings of the 6th International
Conference on Information Fusion. Australia, 2003, pp. 756–763.

[23] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in IEEE INFOCOM 2014-IEEE Conference
on Computer Communications. IEEE, 2014, pp. 1887–1895.

[24] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt, “Virtual
machine warmup blows hot and cold,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, p. 52, 2017.

[25] Y. Chen, K. Hwang, and W.-S. Ku, “Distributed change-point detection
of ddos attacks: Experimental results on deter testbed.” in DETER, 2007.

[26] R. B. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “A novel
approach to detection of denial-of-service attacks via adaptive sequential
and batch-sequential change-point detection methods,” in Proceedings of
IEEE systems, man and cybernetics information assurance workshop.
Citeseer, 2001, pp. 220–226.

[27] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, and H. Kim, “A novel
approach to detection of intrusions in computer networks via adaptive
sequential and batch-sequential change-point detection methods,” IEEE
Transactions on Signal Processing, vol. 54, no. 9, pp. 3372–3382, 2006.

[28] A. Li, L. Gu, and K. Xu, “Fast anomaly detection for large data centers,”
in 2010 IEEE Global Telecommunications Conference GLOBECOM
2010. IEEE, 2010, pp. 1–6.

[29] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical techniques for online anomaly detection in data
centers,” in 12th IFIP/IEEE International Symposium on Integrated
Network Management and Workshops. IEEE, 2011, pp. 385–392.

[30] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, and J. B. Ingram,
“Spark-based anomaly detection over multi-source vmware performance
data in real-time,” in 2014 IEEE Symposium on Computational Intelli-
gence in Cyber Security (CICS). IEEE, 2014, pp. 1–8.

[31] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[32] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance inter-
ference in virtualized environments,” in 2013 USENIX Annual Technical
Conference (USENIX ATC), 2013, pp. 219–230.

[33] D. Duplyakin, A. Uta, A. Maricq, and R. Ricci, “On studying
CPU performance of CloudLab hardware,” in Proceedings of the
Worksop on Midscale Education and Research Infrastructure and Tools
(MERIT), Oct. 2019. [Online]. Available: https://www.flux.utah.edu/
paper/duplyakin-merit19

[34] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman,
and N. DeBardeleben, “On the diversity of cluster workloads and
its impact on research results,” in 2018 USENIX Annual Technical
Conference (USENIX ATC ’18), 2018, pp. 533–546.

[35] T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable time,”
ACM SIGPLAN Notices, vol. 48, no. 11, pp. 63–74, 2013.

[36] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of the American
Statistical Association, vol. 74, no. 366a, pp. 427–431, 1979.

[37] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS parallel benchmarks 2.0,” Technical Report NAS-
95-020, NASA Ames Research Center, Tech. Rep., 1995.

[38] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, 1995.

[39] A. W. Reece, “Memory bandwidth demo,” https://github.com/awreece/
memory-bandwidth-demo, May 19 2013.

[40] Alex W. Reece, “Achieving maximum memory bandwidth,”
http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-
bandwidth.html, 2013.

[41] The CloudLab Team, “Hardware,” http://docs.cloudlab.us/
hardware.html, 2018.

[42] J. Axboe, “Flexible I/O tester,” https://github.com/axboe/fio, 2006-2018.
[43] P. Fearnhead and G. Rigaill, “Changepoint detection in the presence of

outliers,” Journal of the American Statistical Association, vol. 114, no.
525, pp. 169–183, 2019.

[44] Guillem Rigaill, “Fpop implementation for robust losses,” https://
github.com/guillemr/robust-fpop, 2019.

[45] L. Gautier, “rpy2: A simple and efficient access to r from python,” URL
http://rpy. sourceforge. net/rpy2. html, 2008.

[46] J. J. O. Ruanaidh and W. J. Fitzgerald, Numerical Bayesian methods
applied to signal processing. Springer Science & Business Media,
2012.

[47] Hewlett Packard Enterprise, “Configuring and tuning HP ProLiant
Servers for low-latency applications,” Tech. Rep., Nov. 2014.
[Online]. Available: https://h50146.www5.hpe.com/products/software/
oe/linux/mainstream/support/whitepaper/pdfs/c01804533-2014-nov.pdf

[48] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[49] TOP500.org, “TOP500. The list.” https://www.top500.org/, 2019.
[50] TOP500.org, “The Green 500,” https://www.top500.org/green500/,

2019.
[51] Standard Performance Evaluation Corporation, “SPEC Members’

Archive,” https://pro.spec.org/, 2019.
[52] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Reller-

meyer, C. Maltzahn, R. Ricci, and A. Iosup, “alexandru-
uta/cloud network variability data: Cloud Network Variability Data,”
Dec. 2019. [Online]. Available: https://doi.org/10.5281/zenodo.3576604

[53] Twitter, “BreakoutDetection R package,” https://github.com/twitter/
BreakoutDetection, 2019.

https://www.flux.utah.edu/paper/duplyakin-atc19
https://databricks.com/blog/2018/01/13/meltdown-and-spectre-performance-impact-on-big-data-workloads-in-the-cloud.html
https://databricks.com/blog/2018/01/13/meltdown-and-spectre-performance-impact-on-big-data-workloads-in-the-cloud.html
https://databricks.com/blog/2018/01/13/meltdown-and-spectre-performance-impact-on-big-data-workloads-in-the-cloud.html
https://www.usenix.org/conference/fast18/presentation/gunawi
https://www.usenix.org/conference/fast18/presentation/gunawi
https://www.flux.utah.edu/paper/duplyakin-merit19
https://www.flux.utah.edu/paper/duplyakin-merit19
https://github.com/awreece/memory-bandwidth-demo
https://github.com/awreece/memory-bandwidth-demo
http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html
http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html
http://docs.cloudlab.us/hardware.html
http://docs.cloudlab.us/hardware.html
https://github.com/axboe/fio
https://github.com/guillemr/robust-fpop
https://github.com/guillemr/robust-fpop
https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/pdfs/c01804533-2014-nov.pdf
https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/pdfs/c01804533-2014-nov.pdf
https://www.top500.org/
https://www.top500.org/green500/
https://pro.spec.org/
https://doi.org/10.5281/zenodo.3576604
https://github.com/twitter/BreakoutDetection
https://github.com/twitter/BreakoutDetection

