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BBOS: Efficient HPC Storage Management via
Burst Buffer Over-Subscription
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�Department of Computer Science and Engineering, Seoul National University
†Lawrence Berkeley National Laboratory
�Data Science, Seoul National University

Abstract—To avoid access to PFS, dedicated BB allocation
is preferred despite of severe BB underutilization. Recently,
new all-flash HPC storage systems with integrated BB and
PFS are proposed, which speed up access to PFS. For this
reason, we adopt BB over-subscription allocation method by
allowing HPC applications to use BB only for I/O phase for
improving BB utilization. Unfortunately, BB over-subscription
aggravates I/O interference and demotion overhead from BB
to PFS, resulting in degraded performance. To minimize the
performance degradation, we develop an I/O scheduler to prevent
I/O congestion and a new transparent data management system
based on checkpoint/restart characteristics of HPC applications.
With the proposed approach, not only the BB utilization can be
improved, but also high performance of applications is achieved.
In our experiments, we find that BB utilization is improved at
least 2.2x, and more stable and higher checkpoint performance
is guaranteed compared to other approaches. Besides, we achieve
up to 96.4% hit ratio of restart requests on BB and up to 3.1x
higher restart performance than others.

Index Terms—Burst Buffer, PFS, Over-subscription, Check-
point, Restart, Demotion

I. INTRODUCTION

Parallel File System (PFS), comprised of many HDDs,

has been a foundation of storage tier of High-Performance

Computing (HPC) systems. As computational capability has

grown over one petaflop, a large number of system components

have been used in HPC systems, thereby causing increased

overall system failures [1]–[3]. For a fail-safety purpose, HPC

applications aggressively utilize checkpoint/restart, the most

common fault tolerance mechanism. This causes the check-

point to dominate 75%∼80% of I/O traffic of HPC system [2],

[4] and significantly generates bursty I/O, which is difficult

for PFS to handle. To alleviate the issue, Burst Buffer (BB)

which is composed of high-end flash SSDs (e.g., 3D XPoint

SSD and NVMe SSD) [5], [6] and a high-speed network has

been introduced as a new storage tier between compute nodes

and PFS. Because of the substantial performance differences

offered by BB and PFS, HPC users prefer dedicated BB

allocation for a whole lifetime of their HPC applications to

avoid access to PFS as much as possible. But, this allocation

style causes severe underutilization of expensive BB for two

reasons. First, some users eagerly request BB resources (e.g.,

up to six times [7]) for I/O errors prevention, performance
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scalability, and complicated data movement between BB and

PFS, even when they actually utilize only little portion (e.g.,

5% of BB per hour is used according to the logs from NERSC

Cori). Second, since HPC applications use BB only for I/O

phases, BB stays idle for the rest of the time except for the I/O

phases. Checkpoint that dominates I/O traffic of HPC system

is requested scarcely such as once per hour or some minutes

and thereby resources of BB are wasted most of the time.

Recently, there have been many efforts into merging BB

with PFS [8], [9]. As the cost-per-bit of flash is falling,

it becomes possible to replace HDDs with low-end TLC

SSDs [10]. NERSC announced that the next supercomputer

with an all-flash storage system, called PERLMUTTER, will

be delivered in 2020. Therefore, it is expected that a new all-

flash HPC storage system with integrated BB and PFS will

be widely adopted in the near future. We believe that the new

system has high-end SSDs (e.g., 3D XPoint SSD and NVMe

SSD) for BB (performance) and low-end SSDs (TLC SATA

SSD) for PFS (capacity) placed on the same node. PFS in

the new system consists of a high-speed network and low-end

SSDs, which significantly reduces the overhead of PFS access.

So it is not worthwhile to use dedicated BB allocation method

with penalty of BB underutilization. For this reason, instead

of the dedicated BB allocation method, we adopt BB over-

subscription allocation method for improving BB utilization.

The method allocates BB capacity only to the I/O phase, not

for the entire lifetime of HPC applications, resulting in reduced

waste of BB resources. But, this method may affects the

performance of checkpoint/restart, since a larger BB capacity

is allocated to HPC applications than the total capacity of BB.

Data management approach between BB and PFS is required

to handle this problem, but studies for this have received

relatively less attention until now.

In this paper, we propose an efficient HPC storage man-

agement approach, called BBOS, with a BB over-subscription

allocation method. To support the BB over-subscription in

the new HPC storage systems, we transparently manage data

movement between BB and PFS and schedule I/O jobs,

resulting in high BB utilization and high checkpoint/restart

performance. The key idea behind BBOS is to utilize the char-

acteristics of checkpoint/restart that occupy most I/O traffic in

HPC storage systems. Because checkpoint/restart has specific

characteristics, existing primitive data management approach



(e.g., a kernel data management approach between memory

layer and storage layer and commonly used approaches for

tiers in PFS) results in low checkpoint/restart performance. For

this reason, we analyze characteristics of checkpoint/restart

and decide data placement between BB and PFS based on the

characteristics. To illustrate the effectiveness of BBOS, we

evaluate our approach compared to Datawarp, a representative

of the current HPC schedulers which uses the dedicated BB

allocation method, and Harmonia [11], which is the only ap-

proach in consideration of BB over-subscription. Compared to

Datawarp, we improve BB utilization considerably while pro-

viding high checkpoint performance. Besides, we provide high

checkpoint performance and perform up to 96.4% of restart

on BB by utilizing the characteristics of checkpoint/restart.

Our contributions are as follows:

• We adopt the over-subscription BB allocation method

to handle BB underutilization problem caused by the

dedicated BB allocation method.

• We analyze the checkpoint/restart characteristics of HPC

applications. We observe that each application has its

own checkpoint period and failure rate. In addition, there

is no data locality across checkpoint files unlike normal

data. We find the characteristics of HPC applications is

highly related to low checkpoint/restart performance with

existing data management approach.

• We propose BBOS, a novel HPC management approach

based on the characteristics of checkpoint/restart to pro-

vide high BB utilization as well as high checkpoint/restart

performance. BBOS schedules I/O jobs, adjusts demotion

threshold and speeds of checkpoint and demotion adap-

tively and manages data placement between BB and PFS.

• We have implemented a BBOS prototype by adding some

modules and modifying GlusterFS, one of the most pop-

ular distributed file system. BBOS shows increased BB

utilization and improved checkpoint/restart performance

than prior works.

II. BACKGROUND AND MOTIVATION

A. Burst Buffer underutilization

Burst buffer is introduced for absorbing bursty I/O in HPC

systems. Most of the supercomputers, including Cori [12]

from NERSC, allocate BB by using a dedicated BB alloca-

tion method. The users specify the desired capacity for the

applications and the specified space is provided by a HPC

scheduler [13], [14] for the whole lifetime of the applications.

But, this allocation method causes severe underutilization of

BB which is composed of expensive hardware resources, such

as high-speed storage media and high-speed network. Gener-

ally, the users request more than the actual necessary capacity

because the application jobs fail due to I/O error when the

allocated capacity is not enough. To avoid failure, the users are

recommended by a supercomputer provider to request surplus

BB capacity [7]. Not only for the failure, but the users may

also require a bountiful capacity for higher performance as

well. Since the scheduler decides the number of dedicated BB

nodes in proportion to the requested capacity, the users request

larger capacity so that they can experience higher performance

with more BB nodes and higher parallelism. Along with

the performance scalability, another reason for overabundant

requests arises from complicated data management in multi-

tier HPC storage systems (i.e., local storage of a compute

node, BB and PFS). Since current supercomputers manage BB

and PFS separately, the users are challenged with redundant

and complicated management. For example, if the users have

a limited BB capacity for only one checkpoint, they should

copy data manually from BB to PFS every end of the I/O

phase to make BB space for the next I/O phase. Furthermore,

if a workflow of the application is complicated, manual data

movement can be a difficult job for the users [15].

BB underutilization is also caused by the characteristics of

the checkpoint/restart. HPC applications perform checkpoint

with a fixed period [16]–[18], called checkpoint period, by

repeating compute phase and I/O phase periodically. Un-

fortunately, as the checkpoint period ranges from tens of

minutes to tens of hours, expensive BB resources keep idle for

long compute phases. Moreover, each application requires BB

capacity larger than actual checkpoint size in order to preserve

the consistency of checkpoints. BB capacity is needed for at

least twice as much the capacity for the checkpoints as old

checkpoint should be kept until a new checkpoint is all written

safely. HPC users also store multiple versions of checkpoint

in BB for data durability of checkpoint. Since only the latest

version of checkpoint is needed in case of a failure, the rest

of the old versions do not actually need to be stored in BB.

These problems caused by the dedicated BB allocation

method motivate our HPC storage management approach

based on over-subscribing BB.

B. Checkpoint/Restart Characteristics

HPC applications have checkpoint/restart related charac-

teristics unlike other applications. For the new HPC storage

system with BB over-subscription method, a novel data man-

agement needs to be developed based on the characteristics.

First of all, HPC applications run for a long time to solve

computationally intensive problems and perform checkpoint at

a particular cycle to avoid re-computations from scratch. For

this reason, the total amount of the checkpoint written to BB

by the applications for a certain period, called Data Write Per

Period (DWPP) in this paper, is kept quite steady. As so, it is

possible to predict future DWPP with previous DWPP values.

Second, each application has its own checkpoint period.

Thus, each application accesses the BB differently during a

certain period. HPC applications with short checkpoint period

access BB more frequently than ones with long checkpoint

period.

Third, HPC applications keep multiple versions of check-

point for data durability. HPC users have a tendency to keep

the old versions of checkpoint without deleting them even

though only the most recent version of the checkpoint file is

required for restart. According to the paper, multiple versions

of checkpoint (three to seventeen) are beneficial for acceptable



Fig. 1: Checkpoint performance depends on DWPP

error coverage [19]. Since each user requires different relia-

bility, each application has the different number of checkpoint

versions.

Fourth characteristic is that HPC applications have different

failure rates. Failure is caused by individual components, such

as processors, disk, memory, power supplies, network, cooling

systems, and the physical connections between them [20].

Since failures of a single component are rare, the large number

of the components unavoidably leads to frequent failures [21],

[22]. Many prior works have mentioned that the mean time

between failure (MTBF) in a single node is about thousands

hours, but MTBF of a large-scale cluster with hundreds of

node is dozens of hours. Soft errors are also more likely

to occur in complicated processing. Therefore, failure rates

increase linearly with the number of nodes used by HPC

applications [23], [24].

Lastly, there is no locality across the checkpoint files of

HPC applications unlike normal data. Temporal locality does

not exist across checkpoint files, because the checkpoint file is

requested only when in failures. Since a new checkpoint file

is created in every checkpoint period, the same checkpoint

file is not constantly used unless the application has multiple

failures within a single checkpoint period. Also, spatial locality

does not exist across checkpoint files. The failure of an

application does not affect the failures of the others because

each application has different failure rates. So checkpoint files

of other applications will not be requested, even if they are

stored around a checkpoint file which is accessed due to a

failure.

C. Problem Analysis

Unlike the dedicated BB allocation method, the BB over-

subscription method allocates more space to applications than

the total capacity of BB by allowing the applications to use

only in the I/O phase, not the whole lifetime. So applications

in the computation phase should yield BB to other applications

in the I/O phase via demotion from BB to PFS. Therefore, a

data management approach between BB and PFS is required.

There are many proposed approaches for multi-tiered sys-

tem [7], [11], [25], [26], such as an approach between cache,

memory and storage and an approach for multi-tier storage of

distributed file system. But for the following reasons, these

approaches are not suitable for the new HPC storage system

where checkpoint dominates most of the I/O traffic.

For the first reason, the existing approaches use static

demotion threshold without considering the amount of data

to be moved between storage tiers. With the prior approaches,

demotion, the process of copying checkpoint files from BB

to PFS, is only operated when BB is idle before reaching

the threshold. When the used capacity of BB reaches the

threshold, demotion is operated concurrently with checkpoint.

If the number of users using BB increases, the amount of

checkpoint also increases, resulting in increased DWPP .

The increased DWPP causes a decrease in BB idle time,

which reduces the amount of demotion without interrupting the

checkpoint. Especially, since the speed of data being stored in

BB (write B/W of high-end SSDs) may overwhelm the speed

of demotion to PFS (write B/W of low-end SSDs), the BB

fills up when there is not enough BB idle time. With the filled

BB, applications have to wait until BB has available capacity,

leading to significantly low checkpoint performance and high

latency. Figure 1 shows checkpoint performance results with

different DWPP s after setting the same demotion threshold

to 90% of total BB capacity. Since S is the capacity of BB,

1.3S, 1.6S and 1.9S write 1.3 times, 1.6 times and 1.9 times

the size of BB in a certain period, respectively. With 1.3S,

it shows slightly lower performance after 1000 seconds. But,

with 1.6S, sometimes the BB is full in the middle of I/O

jobs for checkpoint, so performance begins to drop over time.

In 1.9S, almost half of the applications get four times lower

performance, because they have to be stopped or perform

checkpoint with demotion to make available BB capacity.

Another reason is that the existing approaches do not

consider the distribution of the I/O jobs for checkpoint. Specif-

ically, even with the same DWPP , I/O jobs of applications for

checkpoint come in crowds or evenly arrive within the period.

When the I/O jobs arrive evenly, there is BB idle time between

the job arrivals. So the files are demoted in BB idle time,

making enough space in BB for next I/O jobs. However, if

the I/O jobs arrive in crowds, lack of BB idle time in between

I/O jobs causes little demotion, which leads to BB capacity

depletion. As shown in Figure 2, checkpoint performance is

highly related to I/O job congestion under the same DWPP .

There are three I/O job congestion patterns (Low, Med and

High) with 1.9S, which represent the rate of how crowded I/O

jobs arrived. Low always shows high performance since there

is enough idle time between the I/O jobs. On the contrary,

when the I/O jobs become to arrive in crowds in Med and

High, it results in low checkpoint performance.

Lastly, the existing approaches identify hot and cold check-

point files using basic algorithms based on data locality, such

as FIFO, LRU, and Hotness-aware. (Hot checkpoint files are

left in BB, but cold checkpoint files stay in PFS.) However,

as mentioned in the section II-B, since checkpoint files across

applications do not have the data locality, it is inappropriate

to apply the basic algorithms for selecting cold checkpoint

files. HPC applications have their own checkpoint period and

keep multiple versions of checkpoints. With FIFO algorithm,

although old version checkpoints for an application with low

checkpoint period are stored in BB, the latest checkpoint with



Fig. 2: Checkpoint performance depends on I/O jobs arrival

pattern (I/O job congestion)

high checkpoint period can be chosen as the cold data. This

makes BB inefficient and leads to low restart performance.

Also, a checkpoint file is needed only in case of failure. Since

a new checkpoint file is created every checkpoint period, it is

very unlikely that the same file will be reused multiple times.

Therefore, LRU or Hotness-aware algorithm leads to the low

efficiency of BB. Moreover, since there is no spatial locality

between checkpoint files, checkpoint files near a failed file

do not need to be prefetched or left in BB. The failure rates

also need to be considered since HPC applications have their

own failure rates. Without taking the failure rates into account,

checkpoint files with high failure rate might be chosen as cold

data, not checkpoint files with low failure rate.

III. DATA MANAGEMENT

As mentioned before in the section II-C, because check-

point/restart characteristics are not fully considered, some

applications may suffer from severe performance degradation.

To address this problem, we first set the demotion threshold

and adjust the speed of checkpoint and demotion depending

on DWPP . Also we develop data placement policy for

the new HPC storage system to improve BB efficiency and

restart performance. With our data management approach,

checkpoint and demotion are managed for each specific period

for expediency. We demote all the data written in this period

(DWPP ) for easy management in the next period.

A. Adaptive Demotion Adjustment

To prevent BB from overflowing, we determine a demotion

threshold in consideration of DWPP and I/O job congestion.

As shown in the figure 1, since DWPP affects the amount

of data to be demoted in a period, the demotion threshold is

decided smaller for larger DWPP . Even if DWPP is the

same, BB may fills up depending on the I/O job congestion

shown in the figure 2. At worst, I/O jobs arrive without any

idle time for BB. To prepare for the worst, we need to demote

data as much as DWPP minus the capacity of BB (S),

called C, along with checkpoint execution. In addition, speeds

of checkpoint and demotion(Bwmax, Bwmin, Brmax and

Brmin) also affects the demotion threshold to demote as

much as C with checkpoint. Throughput of checkpoint and

demotion are is influenced by concurrent execution of write

and read operations. When checkpoint and demotion are oper-

ated together for C, write and read operations compete for BB

resources. Unfortunately, this competition leads to an inverse

Fig. 3: BBOS demotion management

relationship between write and read bandwidth. As a result,

the minimum demotion throughput(Brmin) is determined

by the maximum checkpoint throughput(Bwmax: maximum

write throughput provided by BB). The minimum checkpoint

throughput(Bwmin) is determined by the maximum demotion

throughput(Brmax: maximum write throughput provided by

PFS) as shown in equation (1). (m and b values may be

different according to various devices.) So, we adjust speed of

checkpoint from Bwmax to Bwmin, and speed of demotion

from Brmin to Brmax after demotion threshold.

BWw = m × BWr + b (m < 0) (1)

To calculate the demotion threshold with easy explanation,

we show our demotion management by categorizing the pat-

terns of the demotion into three according to DWPP in

Figure 3. S is the capacity of BB and DWSF is the amount

of data written so far within the period. Within one period,

the time given to execute checkpoint at Bwmax without any

demotion is tc, and td is the time required to demote C while

the checkpoint is going on. td is composed of tdd and tds:

the prior is the time where the demotion throughput gradually

changes from Brmin to Brmax, and the latter is the time

when the demotion throughput is Brmax without changing.

1) Pattern 1: Demotion is only performed when BB is idle:
As shown in the figure 3, when DWPP is 1.0S, BB does

not overflow within the period because DWPP is the same

as the capacity of BB. Thus, checkpoint is possible with the

Bwmax without concurrent execution of any demotion.

2) Pattern 2: Demotion is performed with checkpoint for
some time: As with 1.2S in the figure, DWPP is larger than

the capacity of BB(S), resulting in a positive value of C for

demotion with checkpoint execution. However, C is not so

large, so demotion needs to be performed just for some time

with checkpoint. The threshold depends on C. The larger C
is, the demotion should start earlier. In the case of 1.2S of

DWPP , the threshold is 0.7S of DWSF . That means that

demotion is executed even if checkpoint is performed when

DWSF reaches 0.7S. Checkpoint throughput is adjusted in

between Bwmax and Bwmin for the demotion. With the

checkpoint throughput change, demotion throughput is also

adjusted in between Brmin and Brmax.

3) Pattern 3: Demotion is always performed with check-
point: As DWPP increases, C grows large enough that

demotion shall be started at the same as the checkpoint.

The demotion throughput increases from Brmin to Brmax



and the larger C, the faster the demotion throughput reaches

Brmax. With 1.4S, the threshold for demotion start is 0

and the threshold for demotion with Brmax is 0.6S. If the

demotion is performed with Brmax from the beginning with

the checkpoint like 1.6S, we can handle the greatest capacity.

Therefore, DWPP from this scenario becomes the maximum

of DWPP .

With the following equation (2), the thresholds to start

demotion and to demote with Brmax are also determined

according to C. Since it is mandatory to demote all data on

BB within the period for the next period, the period is decided

as in equation (3).

tc > 0, ∫ tc+tdd

0

BWw(t) dt

= Bwmax × tc + Bwmax+Bwmin
2 × tdd = DWPP∫ tc+tdd

0

BWr(t) dt

= Brmin × tc + Brmax+Brmin
2 × tdd = C

tc = 0, ∫ tdd+tds

0

BWw(t) dt

= Bwmax+Bwmin
2 × tdd + Bwmin × tds = DWPP∫ tdd+tds

0

BWr(t) dt

= Brmax+Brmin
2 × tdd + Brmax × tds = C

(2)

(period − (tc + td)) × Bdmax ≥ S (3)

B. Data Placement Policy

To handle the limitations with existing data placement, we

develop a data placement policy based on the characteristics

of checkpoint/restart. In our data placement policy, promotion

is not required. Because there is no spatial locality across

checkpoint files, there is no need to prefetch files around the

file which is requested for restart. For high restart performance,

we select cold files by considering checkpoint version and

failure rates. Old version checkpoint files do not need to be

in BB, so they have the highest priority to be cold files. If

there is no old version checkpoint files in BB, we identify

the cold files based on failure rates. In this paper, we decide

failure rates of applications depending on the number of used

nodes. But as many prior works have mentioned about causes

of failures, the failure rates can be decided using the causes.

C. Direct Checkpoint on PFS

We expect a change of HPC storage system in the future

that Brmax be close to the Bwmin since BB and PFS can

be placed on the same node. Since cold data from BB are

destined to be in PFS, these cold data do not need to be written

on BB first, wasting the resource of BB. For this reason, we

optimize the data management approach by bypassing BB.

Since we know failure rates of the incoming checkpoint, we

can classify in advance whether the checkpoint is hot or cold

by comparing failure rates with the ones of other checkpoints

on BB. If the incoming checkpoint is determined to be cold,

the checkpoint is directed to be written on PFS. The optimized
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Fig. 4: Architecture of BBOS

approach reduces the amount of demotion, which diminishes

the concurrent execution of checkpoint and demotion. Thus

we can provide higher checkpoint performance.

IV. ARCHITECTURE OF BBOS

Figure 4 shows the overall architecture of BBOS. BBOS is

composed of two engines, I/O engine and Data management
engine, and an in-memory key-value store for efficient engine

process.

A. Engines

1) I/O Engine: In this paper, we provide an I/O sched-

uler for mitigating I/O interference across applications. If

we do not schedule the I/O jobs, multiple jobs may arrive

simultaneously to BB. This causes resource competition and

interferes optimized access pattern of each I/O jobs [27].

In addition, interleaved data from the multiple I/O jobs is

saved in the same SSD block, which causes garbage collection

overhead [28]. For these reasons, the I/O interference degrades

the performance of the applications. The over-subscription

method increases the number of the I/O jobs using BB, which

may cause I/O congestion more serious. Thus, we schedule

I/O jobs so that they do not overlap in I/O scheduler of I/O
engine. We place multiple I/O queues for each BB and assign

an individual queue to each application. Then the I/O jobs

are transferred to their own queue as shown in Figure 4. Our

scheduler operates I/O jobs in the order of the I/O queues

so that the I/O jobs across applications do not overlap each

other. I/O engine also has I/O workers to execute I/O jobs for

checkpoint and restart. They determine which storage tier the

scheduled I/O jobs should access, either BB or PFS, with the

help of the in-memory key-value store.

2) Data Management Engine: Data management engine
consists of four modules: throttler, demoters, deleters and

replicators. Throttler is responsible for dynamically con-

trolling the speed of checkpoint and the demotion. Demoters
demote data from BB to PFS by considering checkpoint

versions and failure rates. In our management system, demoted

data remains in BB like a cache unless there is no space left

for a new checkpoint in order to provide high restart perfor-

mance. Whenever space for new checkpoints is not sufficient,

Deleters remove the demote-finish data that still exists in BB.

Replicators transfer checkpoint files from storage devices of



local PFS node to ones of remote storage nodes within the

same replication group.

V. IMPLEMENTATION OF BBOS

A. In-memory Key-value Store

We utilize Redis [29], an open source in-memory key-value

store to help the processing of the engines. BBOS stores the

location of the checkpoint files and important information

needed for data management in the key-value store. One of the

key-value pairs is used for providing the location of the files.

After the checkpoint is completed, I/O engine saves the file

path for each file name in key-value pair. At the moment, the

names of the files are stored in sorted key-value list to identify

cold data depends on version number and failure rates. Based

on the key-value list, Demoters demote the oldest checkpoint

files first, and if there are not any old version checkpoint files,

then start to demote the file with the highest failure rates.

We also store DWPP and DWSF to decide the demotion

threshold and throttle the speed of checkpoint and demotion.

Since BBOS does not use page cache for checkpoint and

restart, in-memory store is used to utilize unused memory and

to facilitate the engine execution.

B. Stable Checkpoint and Demotion Performance

To provide stable checkpoint/restart and demotion perfor-

mance, data management approach is optimized with new

techniques. Checkpoint and demotion speeds are regulated

as mentioned in III-A. However, it is difficult to accurately

throttle write and read speed for them. Because the number

of I/O requests per second from each application varies, the

speed of checkpoint and demotion is different even if we send

the same number of read requests per second for demotion.

The system may not be able to provide stable checkpoint

performance due to the inability to demote as much data as

it should. For this reason, we use blkio [30] of the cgroup to

throttle the speed of checkpoint and restart precisely. In addi-

tion, we utilize send file() system call [31] to maintain stable

demotion performance. For demotion, data must be read from

BB and written to PFS. That causes context switching and data

copying overhead between user and kernel level, resulting in

low and unstable demotion performance. Since send file()
system call supports zero-copy, we can eliminate the demotion

overhead. Furthermore, checkpoint/restart performance may

be degraded due to garbage collection. To avoid the garbage

collection overhead, we periodically request TRIM after

deleting the files. Also, TRIM throughput is managed with

blkio in order to minimize performance degradation.

VI. EVALUATION

A. Experimental Environment

We evaluate our HPC storage management approach with

eight compute nodes and a single storage node for BB and

PFS. Four of the compute nodes consist of Intel Xeon Phi

CPU 7290 processor with 72 physical cores and others are of

Intel Xeon Phi CPU 7250 with 68 physical cores. The storage

node consists of dual 12-core Intel Xeon Silver CPU 4115 and

32GB memory. For BB, we use four 800GB FADU NVMe

SSDs provided by a semiconductor start-up company [32],

with the sequential write and read performance up to 920MB/s

and 3200MB/s. For PFS, four 4TB Samsung 860 EVO SATA

SSDs with are installed. The compute nodes and the storage

node are connected with a 100GbE Mellanox SN2100 switch.

We use Gluster file system (GlusterFS) [33] version 5.6

for both BB and PFS and configuration is tuned for high

performance. Also, BBOS is implemented by modifying Glus-

terFS and adding some developed modules. In addition, each

variable is determined as following: Bwmax as 3.56GB/s,

Bwmin as 3GB/s, Brmax as 1.6GB/s, Brmin as 0.08GB/s

and period as 3800 seconds. For experiments, we execute

large sequential writes to simulate checkpoint by applying a

microbenchmark FIO [34] and the failure rates are decided

based on the number of nodes each application uses. Accord-

ing to this paper [35], failure rates and Mean Time Between

Failures (MTBF ) have an inverse relationship. So, to express

failure rates of applications simply for experiments, we utilize

Mean Time Between Failures (MTBF ).

To validate our system, we compare BB utilization and

checkpoint/restart performance with Datawarp, one of the

current HPC schedulers which use the dedicated BB allocation,

and two policies of Harmonia [11] which is the only scheduler

that uses the BB over-subscription method. Since Harmonia is

not an open-source, we make an emulation based on the paper.

Datawarp does not perform I/O scheduling, while Harmonia

schedules I/O jobs for preventing them from overlapping each

other. MaxEff, one of Harmonia’s policies, aims to optimize

the BB system efficiency by maximizing the BB utilization.

Because the policy wants to maintain high capacity of avail-

able BB, it always demotes data at full speed (Brmax) even

when the checkpoint is performed concurrently. On the other

hand, MaxBW from Harmonia aims to provide maximum

checkpoint bandwidth to applications. With this policy, the

checkpoint and the demotion are not performed at the same

time. To describe the demotion threshold of two policies as

shown in the figure 3, the demotion threshold of MaxEff is

0S of DWSF and one of MaxBW is 1S of DWSF .

B. Burst Buffer Utilization

To compare BB utilization with each approach, we as-

sume that each application requests 80GB checkpoint once

a period. Then we count how many applications can finish

the checkpoint within the period, which indicates the maxi-

mum DWPP each scheduler can provide. Datawarp shows

0∼100% of BB utilization since it allocates BB capacity as

much as the users desire with a dedicated allocation method. In

the best scenario, if all users demand BB allocation as much as

they need, the total BB capacity is used up within the period,

resulting in 100% of BB utilization. In most cases, however,

BB utilization is low due to overabundant BB capacity re-

quest and the checkpoint/restart characteristics. On the other

hand, since Harmonia and BBOS use an over-subscription BB

allocation method, they can accommodate more applications

within the period than Datawarp. MaxBW needs to ensure
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Fig. 5: Checkpoint throughput and latency depending on DWPP

maximum checkpoint throughput of the applications, so the

demotion cannot be performed together with the checkpoint.

As a result, it shows up to 190% of BB utilization. MaxEff

shows 210% of BB utilization because it always performs

the demotion at maximum demotion throughput, Brmax. To

provide maximum DWPP , BBOS is performed like MaxEff,

which also achieves BB utilization up to 210%.

C. Checkpoint Performance

To validate BBOS, we execute experiments in various

situations with different scenarios for I/O job congestion and

DWPP . Since the maximum DWPP of Datawarp equals the

total capacity of BB, we only evaluate Datawarp with DWPP
at 1S and others with DWPP at 1.3S, 1.6S, and 1.9S. We

make different I/O job congestion patterns on following three

scenarios: 1) Low: Time interval of each I/O job is equal and

evenly distributed throughout the period. 2) Med: Time interval

of each I/O job is halved of 1). 3) High: Time interval of

each I/O job is shortened in tenth of 1). (e.g., If I/O jobs are

requested every 50 seconds under the Low, I/O jobs arrive

every 25 seconds and every 5 seconds under the Med and

High.) And as in the section VI-B, all applications require

80GB checkpoint once per period.

Figure 5 shows the checkpoint throughput and I/O latency

which is the time interval between the time of I/O request

and the time of response under various DWPP and I/O job

congestion. I/O latency contains 1)the wait time until the end

of the previous job to prevent concurrent execution of I/O

jobs, 2)the stop time to make available BB space due to full

BB and 3)the execution time of I/O job. In Datawarp, since

all demotion is possible within enough BB idle time between

the I/O jobs, it provides high checkpoint throughput under

the Low I/O job congestion. On the contrary, in the High

congestion, the checkpoint throughput of each application

remains very low due to concurrent execution of the I/O jobs

because the jobs arrive even when the previous jobs are not

finished. As a result, Datawarp provides the lowest checkpoint

throughput and similar average latency even with DWPP at

1.0S compared to BBOS.

Unlike Datawarp, Harmonia and BBOS provide I/O

scheduling to mitigate I/O interference across applications.

Since MaxBW does not execute demotion and checkpoint at

the same time, it always gives high checkpoint throughput.

But some I/O jobs have to stop for available BB capacity

before the execution. With the Low congestion, none of the

applications wait to avoid I/O interference or to make space

in BB, regardless of DWPP , because of sufficient idle time

between the I/O jobs. With the Med, as DWPP exceeds

1.6S, some applications begin to have high latency. The

larger DWPP , the smaller the idle time within a period,

so the latency of 1.9S is larger than that of 1.6S. With the

High congestion, applications have to wait to prevent I/O

interference and to stop for making space in BB, since there

is not enough idle time between the jobs, which results in the

highest latency. In addition, MaxBW has extreme performance

variance across applications because the maximum latency

is too high compared to the average. Figure 6 shows the

time excluding execution time in latency of first to 45th

I/O jobs with Med I/O congestion at 1.9S. With MaxBW,

no I/O job waits or stops until #36 I/O job, but I/O jobs

arriving after #36 have to stop for enough space in BB before

execution. Unfortunately, stop time of all the previous I/O jobs

is accumulated. Therefore, the later arrived I/O jobs have a

longer wait time, resulting in severe performance fluctuation.

Unlike MaxBW, BBOS does not stop for making BB capacity

because BBOS demotes data in advance so that BB is not

full. So the execution time of I/O jobs gets longer, which

makes the next I/O jobs to wait. As a result, BBOS shows

the wait time gradually increasing from the beginning, but

the wait time of I/O jobs does not explode. In conclusion,

MaxBW provides higher performance than BBOS when there

is no wait time, such as Low and Med of 1.3S and Low

of 1.6S and 1.9S. But, if there is not enough BB idle time

per period or idle time between I/O jobs, MaxBW shows the



Fig. 6: Wait time of I/O jobs with MaxBW

higher latency and higher performance variance than BBOS,

because BBOS prepare for situations where I/O jobs come in

crowds by adjusting checkpoint performance.

On the other hand, since MaxEff and BBOS perform

demotion in advance for BB not to overflow, they do not stop

I/O jobs to make BB capacity before I/O execution. MaxEff

shows the lowest checkpoint throughput because this method

always demotes data at the highest demotion speed. In this

way, they maintain relatively large space in BB, but provides

lower checkpoint latency compared to MaxBW. BBOS adjusts

checkpoint throughput between Bwmax and Bwmin depend-

ing on DWPP . The smaller DWPP , the higher checkpoint

throughput we achieve by avoiding unnecessary concurrent

execution of checkpoint and demotion unlike MaxEff. In

the absence of wait time for making BB capacity, only the

checkpoint throughput determines the latency, so BBOS shows

lower latency than MaxEff (But, the latencies are too small to

be seen in the figure 5(b)). When DWPP is large, MaxEff

shows higher latency than BBOS, even though they perform

demotion more aggressively than we do. This is because

MaxEff always demotes data at full demotion speed and it

takes longer to process the checkpoint, which makes the next

I/O jobs to wait longer. In our experiments, the difference in

latency of MaxEff and BBOS seems small (about tens of secs)

because the difference between Bwmax and Bwmin is not

large. If the difference gets greater, BBOS can expect lower

I/O latency than MaxEff.

Consequently, BBOS is the novel approach that takes ad-

vantage of and complements the shortcomings of MaxBW

and MAXEff. By adjusting checkpoint and demotion speed

depending on DWPP and I/O job congestion, BBOS always

provides relatively high checkpoint throughput and low latency

than other approaches.

1) Direct checkpoint on PFS: When the maximum demo-

tion throughput (Brmax) is greater than minimum checkpoint

throughput (Bwmin), we can reduce unnecessary demotion

overhead by bypassing BB. We conduct experiments with three

different DWPP : 1.3S, 1.6S, and 1.9S. Each application

requests a 80GB checkpoint with one hour as checkpoint

period. MTBF of all I/O applications are set randomly from

0 to 100 minutes, respectively. As shown in Figure 7, the

method decreases the amount of demoted data up to 38% by

applying the bypassing BB method. Since checkpoints can be

written directly on PFS after DWSF becomes larger than

BB capacity, the larger the DWPP , the longer the time that

this method can be applied. Hence, as DWPP gets higher,

0 0.2 0.4 0.6 0.8 1
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1.3S
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Fig. 7: Direct checkpoint on PFS by bypassing BB

Fig. 8: Hit ratio of restart requests on BB

more checkpoint files that are cold data can be written directly

on PFS. As a result, since less demotion is operated with

checkpoints concurrently, more applications can experience

higher checkpoint throughput.

D. Restart Performance

In this section, we measure the hit ratio of restart on BB

in order to compare restart performance. We compare LRU

and FIFO algorithms used in most HPC data management

with BBOS. Since the ratio of the remaining amount to BB

of the total data is different according to DWPP , we use

three different DWPP for the experiments as follows: 1.7S,

1.9S, and 2.1S. Besides, we use three different variances of

MTBF sets. We choose MTBF randomly between the range

as following: 0 to 20 minutes(low), 0 to 50 minutes (med), and

0 to 100 minutes (high). We choose the applications which

need restart based on the expected MTBF . For the sake of

simplicity, all the checkpoint periods are fixed to be equal and

the checkpoint size is set to 80GB. As shown in Figure 8,

BBOS shows the highest hit ratio on BB, which is up to 3.4

times higher in comparison. In all of three methods, the hit

ratio increases as DWPP decreases since the checkpoint files

have a higher chance of staying on BB. In the case of LRU

and FIFO algorithms, however, cold data is chosen based only

on the order of written time. As so, the hit ratio for each

experiment is largely different and unrelated to the variance

of MTBF . In contrast, BBOS shows increased hit ratio as

the variance gets higher. With low variance, the effectiveness

of our system is relatively lower than other scenarios since

failure rates of the applications are similar due to low variance

of MTBF . On the other hand, in case of high variance, the

checkpoint files are distributed well on BB and PFS according

to the failure rates. As a result, BBOS provides up to 3.1 times

higher hit ratio of restart on BB compared to others.

1) Version-aware Data Placement: In order to keep the

hit ratio high on BB, BBOS uses the version-aware data

placement method by identifying outdated checkpoint files

as cold data with the highest priority. To demonstrate the

effectiveness of the method, a few assumptions are made for
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the following experiment. We choose three checkpoint periods

for HPC applications as following: 60 minutes, 30 minutes,

and 20 minutes. Each user requests 80GB checkpoint and

MTBF is selected randomly from 0 to 100. We assume that

the applications maintain three or more versions of checkpoint.

Thus, the applications with 60-minute period have one check-

point version within a period, two versions for a 30-minute

period and three versions for a 20-minute period. Lastly, we

arrange the portions of the three periods as 1:1:1 and 5:2:1 with

DWPP of 1.9S. Figure 9 shows the comparison of restart

hit ratio on BB between the availability of version-aware

method. In case of 1:1:1, all of the restart requests can be

handled in BB with version-aware method in an ideal situation,

because the BB capacity is larger than the total amount of new

version checkpoints. However, if we have to make available

capacity while there are no old version checkpoints, a single

version checkpoint with high MTBF can be selected as cold

data. Therefore, on average, 96.4% of the restart requests are

performed on BB in actual experiments with the version-aware

method. On the contrary, without the version-aware method,

selecting cold data is based on only MTBF . Fresh checkpoint

files with high MTBF exist on PFS and old version files with

low MTBF stay on BB. As a result, 80.1% of restart requests

are given high restart performance from BB. In case of 5:2:1,

as there is large number of applications with low checkpoint

period, all new-version checkpoint files cannot be placed in

BB. Thus, with the version-aware method, we handle 92.5%

restart requests in BB which is slightly less than 1:1:1. Without

the method, 71.7% restart requests are performed in BB, which

is also lower than 1:1:1. Consequentially, the version-aware

method increases the restart requests up to 29.5% which are

performed in BB.

VII. RELATED WORK

Many studies related to multi-tiered HPC storage system

include BB which consists of expensive resources. Since

the emergence of BB, researchers have actively focused on

improving checkpoint performance in various ways. To reduce

checkpoint overhead on PFS, [1], [25] have developed the

multi-level checkpointing mechanism considering the different

degree of reliability and the checkpoint cost of each tier

in the HPC storage system. [36] has tried to transfer data

asynchronously for checkpoint. [28] has observed that BB

performance is excessively reduced due to garbage collec-

tion when multiple HPC users simultaneously use BB. To

mitigate performance reduction, they have assigned isolated

blocks to each user using multi-stream SSD. However, these

papers do not consider I/O interference across applications

which is one of the most important considerations for HPC

system. To mitigate the I/O interference, with reference to

existing I/O schedulers for PFS [27], some researches [37]–

[39] have provided I/O scheduling techniques for BB. [38] has

dynamically coordinated I/O jobs based on past I/O behavior

of the application and system characteristics. [2] has developed

an I/O scheduling technique by reshaping I/O traffic from BB

to PFS.

Recently, researchers have started to take an interest in

BB utilization as well as checkpoint performance. Some data

management solutions [40] have been proposed for HPC multi-

tiered storage system to capitalize on the benefits of BB. [15]

has suggested a goal-driven data management that automat-

ically manages data as required by applications. The users

do not have to move data manually but need to understand

application workflow to command data movement. [7], [41]

have claimed that HPC applications can have some frequently

accessed data. Through I/O profiling, hot data is identified and

placed on BB. [42] has regulated I/O traffic by write access

pattern of the applications. They have detected randomness

in the write traffic and only random writes are stored in BB

and sequential writes are propagated to PFS directly. But,

checkpoint, occupying most of I/O traffic of the HPC system,

does not have hotness and the random access pattern, since

entire data of checkpoint is requested sequentially for recovery.

Since the mentioned papers still use the dedicated allocation

method, BB cannot be fully utilized. To solve this problem,

[26] uses BB over-subscription method. It has proposed five

I/O scheduling policies with different aims, but these policies

have several limitations because the aims are too narrowly

focused. Also it does not care about demotion policy, such as

a demotion threshold and demotion speed, and data placement

method between BB and PFS for the HPC storage system

with BB over-subscription allocation. Therefore, this leads to

checkpoint performance fluctuation and low checkpoint/restart

performance.

VIII. CONCLUSION

We proposed BBOS for the new all-flash HPC storage

system. Specifically, we over-subscribed BB by allocating BB

only during I/O phases, not an entire lifetime for higher BB

utilization. In order to mitigate performance reduction caused

by over-subscription, we provided the I/O scheduler and the

data management module. The I/O scheduler resolved I/O in-

terference across the HPC applications by coordinating the I/O

jobs. For data management in the new HPC storage system, we

analyzed and utilized the characteristics of checkpoint/restart.

Based on the characteristics, we transferred data from BB to

PFS transparently by adjusting the thresholds and the speed

of the demotion according to DWPP . We also identified

the cold data by considering different versions and failure

rates.As a result, we improved BB utilization at least 2.2

times compared to the dedicated BB allocation method. Also,

we guaranteed higher checkpoint throughput without sudden

performance reduction and handled 96.4% of restart requests



in BB and provided up to 3.1x higher restart performance than

others.

Future Work: Since HPC applications have a consistent

checkpoint period, we can predict precisely when the next

checkpoint request of the application will arrive. This ex-

pectation enhances checkpoint throughput without extravagant

demotion beforehand. In addition, we predict failure rates of

applications only with the number of nodes they use. The exact

causes of the failure can be used to determine the failure rates

in the future.
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