
Bitwise Reproducible task execution on unstructured mesh applications

Bálint Siklósi
3in Research Group,

Faculty of Information Technology
and Bionics

Pazmany Peter Catholic University
Esztergom, Hungary

Email: siklosi.balint@itk.ppke.hu

István Z Reguly
Faculty of Information Technology

and Bionics
Pazmany Peter Catholic University

Budapest, Hungary
Email: reguly.istvan@itk.ppke.hu

Gihan R Mudalige
Department of Computer Science

University of Warwick
Coventry, United Kingdom

Email: g.mudalige@warwick.ac.uk

Abstract—Many mesh applications use floating point arith-
metic which do not necessarily hold the associative laws of
algebra. This could cause the application to become unrepro-
ducible. In this paper we present some work on generating a
method for unstructured mesh applications to provide bitwise
reproducibility between separate runs, even if they are started
with different number of MPI processes. We implement our
work in the OP2 domain-specific library, which provides an
API that abstracts the solution of unstructured mesh compu-
tations. We carry out a performance analysis of our method
applied on two applications: a simple airfoil application, and
a more complex Aero application which uses a finite element
method and a conjugate-gradient algorithm. We show a 2.37×
to 1.49× slowdown on this applications as a price for full
bitwise reproducibility.

I. INTRODUCTION

In the field of high performance computing, there is a
need for tools or methods to achieve reproducibility [1].
We might need reproducibility for many cases. When we
have an error during a program execution, we might want
to reproduce the problem exactly. We might have some
contractual obligations, for example in applications from
human sciences or financial fields. There might be some
really rare random events that we want to study, then we
would use a system where we can reproduce the results to
the last bit. Comparing the output of a trustworthy sequential
run to the output of a parallel run is very common method
to determine the correctness of the parallel method. Without
reproducibility we might have trouble to determine whether
we have some error from the representation or we have a
bug in the parallel code.

Many scientific simulations use floating point arithmetic.
The floating point arithmetic is non-associative since we
need to use roundings, because of the representation limits.
The basic standard for floating point representation is the
IEEE-754, most of the applications use this format. The
standard provides the correct behaviour for all operations,
and the necessary roundings too. Since the IEEE floating
point standard defines a finite representation size, we need
to round the results between the steps of the operations, for
example between multiple summations.

It is straightforward that reproducibility comes with a
price. This price depends on the application area of which
is addressed. The ReproBLAS project [2] uses a different
representation, they introduce a binned method. With their
method a 5n to 9n floating point operations overhead is
produced when summing n floating point numbers. And also
to use this, we would need to rewrite our algorithm, and we
would also introduce a dependency on a new library. Lulesh
[3] present some work on achieving reproducibility, but only
between runs of the same number of MPI processes.

In this paper, we present work to address this problem
in the field of unstructured mesh computations, commonly
used for the discretized solution of partial differential equa-
tions. In section II we introduce the OP2 domain specific
language where we implemented our work. In section III we
present our approach about how we achieved reproducibility
between multiple runs or using different number of MPI
processes. In section IV we present the effectiveness on
two mini-applications, we summarise our progress and we
introduce some further tasks with this topic. All of our work
is open source, and can be found at [4].

II. THE OP2 DOMAIN SPECIFIC LANGUAGE

The OP2 DSL is the second version of the Oxford Paral-
lel Library for Unstructured mesh Solvers (OPlus), aimed
at expressing and automatically parallelising unstructured
mesh computations. While the first version was a classical
software library, facilitating MPI parallelisation, OP2 can be
called an “active” library, or an embedded DSL.

OP2’s key components consists of (1) a mesh made up of a
number of sets (such as edges and vertices), (2) connections
between sets (e.g an edge is connected to two vertices),
(3) data defined on sets (such as coordinates on vertices,
pressure/velocity on a cell centre) and (4) Computations over
a given set in the mesh.

A user initially sets up a mesh and hands all the data
and metadata to the library using the OP2 API. The API
appears as a classical software API embedded in C/C++ or
Fortran. Any access to the data handed to OP2 can only be
accessed subsequently via these API calls. Essentially, OP2



1 /* ----- elemental kernel function in res.h ------*/
2 void res(const double *edge,
3 double *cell0, double *cell1 ){
4 //Computations, such as:
5 cell0 += *edge; *cell1 += *edge;
6 }
7 /* ---------- in the main program file -----------*/
8 // Declaring the mesh with OP2 sets
9 op_set edges = op_decl_set(numedge, "edges");

10 op_set cells = op_decl_set(numcell, "cells");
11 // mppings -connectivity between sets
12 op_map edge2cell = op_decl_map(edges, cells,
13 2, etoc_mapdata,"edge2cell");
14 // data on sets
15 op_dat p_edge = op_decl_dat(edges,
16 1,"double",edata,"p_edge");
17 op_dat p_cell = op_decl_dat(cells,
18 4,"double",cdata,"p_cell");
19 // OP2 parallel loop declaration
20 op_par_loop(res,"res", edges,
21 op_arg_dat(p_edge,-1,OP_ID ,4,"double",OP_READ),
22 op_arg_dat(p_cell, 0,edge2cell,4,"double",OP_INC ),
23 op_arg_dat(p_cell, 1,edge2cell,4,"double",OP_INC));

Figure 1. Specification of an OP2 parallel loop

makes a private copy of the data internally and restructures
its layout in any way that it sees fit to obtain the best
performance for the target platform. Once the mesh is set
up, computations are expressed as a parallel loop over a
given set, applying a “computational kernel” at each set
element that uses data that is accessed either directly on
the iteration set, or via at most one level of indirection. The
type of access is also described - read, write, read-write or
associative increment. Additionally, users may pass mesh-
invariant data to the elemental computational kernel and also
carry out reductions.

The various parallelisation and performance of production
applications using OP2 has been published previously in [5],
[6] demonstrating near-optimal performance on a wide range
of architectures including multi-core CPUs, GPUs, clusters
of CPUs and GPUs. The generated parallelisation makes
use of an even larger range of programming models such
as OpenMP, OpenMP4.0, CUDA, OpenACC, their com-
binations with MPI and even simultaneous heterogeneous
execution.

Figure 1 shows the declaration of the mesh and subsequent
definition of an OP2 parallel loop. In this example, the
loop is over the set of edges in a mesh carrying out
the computation per edge defined in the function res,
accessing the data on edges p_edge directly and updating
the data held on the two cells, p_cell, adjacent to an edge,
indirectly via the mapping edge2cell. The op_arg_dat
provides all the details of how an op_dat’s data is accessed
in the loop. Its first argument is the op_dat, followed by its
indirection index, op_map used to access the data indirectly,
arity of the data in the op_dat and the type of the data.
The final argument is the access mode of the data, read only,
increment and others (such as read/write and write only not
shown here).

In a direct loop all iterations are independent from each

other and as such the parallelization of such a loop does
not have to worry about data races. However in indirect
loops there is at least one op_dat that is accessed using
an indirection, i.e via an op_map. Such indirections occur
when the op_dat is not declared on the set over which
the loop is iterating over. In which case an op_map that
provides the connectivity information between the iteration
set and the set on which the op_dat is declared over is used
to access (read or write depending on the access mode) the
data. This essentially leads to an indirect access.

We test and measure our methods on two OP2 applications
(1) Airfoil, a standard finite volume CFD benchmark code
and (2) Aero, a finite element 2D nonlinear steady potential
flow simulation.

Airfoil [7] is an industrially representative CFD code,
written using OP2’s C/C++ API. It is a non-linear 2D
inviscid airfoil code that uses an unstructured grid. It is a
finite volume application that solves the 2D Euler equations
using a scalar numerical dissipation.

Aero [8] is a 2D non-linear steady potential flow simu-
lation of air moving around an airfoil developed based on
standard finite element methods. It uses a quadrilateral grid
similar to that used by the Airfoil application but uses a
Newton iteration to solve the non-linear equations defined
by a finite element approximation. Each Newton iteration
requires the solution of a linear system of equations. The
assembly algorithm is based on quadrilateral elements and
uses transformations from the reference square to calculate
the derivatives of the first-order basis functions. Dirichlet
type boundary conditions are applied on the far-field, and the
symmetric sparse linear system is solved with the standard
conjugate-gradient (CG) algorithm.

III. REPRODUCIBLE INDIRECT INCREMENTS

To achieve reproducibility, we had to introduce a fixed
execution order, which is used every time with any settings.
On figure 2. two example incrementing orders can be seen
on a single cell, by executing through the edges by using an
edge_to_cells mapping. Since the associative laws of
algebra do not necessarily hold for floating-point numbers,
cell0 = e0 + e1 + e2 + e3 6= cell0 = e1 + e3 + e0 + e2.
In OP2 we can have the different orders, if we run the
application two times and the edges are listed with different
IDs. This can happen for example over MPI, when the
library partition the whole mesh into parts, and then it
renumbers all members for other performance reasons.

Our solution for these issues needs two parts: (1) OP2
needs to prepare the backend to use a specific order, (2) the
code automatically generated for the application needs to
use this order. A brief pseudocode of the first part can be
seen on Figure 4 and the second part can be seen on Figure
5.

To achieve reproduciblity, practically we swap the struc-
ture of execution for those arrays, where the order of



Figure 2. Example orders of incrementing a cell in airfoil.

Figure 3. Swapped structure of execution

summation does matter. We still calculate for the rest of
the arrays on the original way, but for the sensitive ones we
just temporarily store the increments. Then from iterating
through edges and increment cells, we iterate through cells
and ask for increments from each edges with a fixed global
order and apply those on the cell. This swap can be seen on
figure 3.

To achieve this swap, a few preparations must be done
in the backend. If there are more MPI processes, then the
global IDs of each elements must be communicated between
the processes. If an element is owned by the given process,
then its global ID can be looked up from OP2’s g_index
array. If an element is not owned, then its global ID must be
imported from that MPI process, which owns it. This global
ID list will be the common seed in every process, which will
produce the fixed execution order. After the IDs are shared,
the next step is to create a reversed mapping for every map.
The reversed mapping is needed, so we can iterate through
on the cells and in each iteration we can access the edges
connected to the given cell. This reversed map uses local
indices which might be in different order in different MPI
ranks. That is why we need to reorder them by using their
previously shared global indices. Another modification done
on the reversed map, that it actually stores indices of a
temporary array where the increments from the edges are
stored for a cell. With other words: if the kth element in
line n (kth edge connection of cell n) of the reversed map
is x, then it means that in the temporary increments array at
location x can be found the increment for cell n from edge
k.

After the reversed map with the correct order is created,
then the generated op_par_loop code must be modified to
use this twisted method. The main change ideas can be seen
on figure 5. After some initialisation part, all elements of a
temporary array must be set to zero, for the storage of the
separate increments. Then we can call the kernel function
for all edges to access elements defined on the cells. If a

exchange global IDs
for m = 0 to OP map index do

create reversed mapping for map m
for i = 0 to set to size do

sort the reversed connections of i by global IDs
end for

end for

Figure 4. Algorithm of generating incrementing order

for n = 0 to set from size do
tmp incs[n]← 0

end for
for n = 0 to set from size do

prepare regular access indices for OP READ and
OP WRITE parameters
call kernel function, using the tmp incs array for
OP INC parameters

end for
for n = 0 to set to size do

for all connection i of n do
execute the temporary increments on the final loca-
tion of the data

end for
end for

Figure 5. Algorithm for applying the order of increments

parameter is accessed through an OP_READ or OP_WRITE
method, then the execution order does not matter, so we can
use the original method of directly storing the new state on
the data. If the parameter is incremented (OP_INC), then
we need to store each increment values in the tmp_incs
array. After all increments are calculated, we need to apply
those on the actual data. For that, we start a new loop on
the cells and by using the reversed mapping with the fixed
ordering the cell can collect and apply the increments on
itself. This method works with other type of mappings, not
just with edges_to_cells.

Another difficulty of combining reproducibility with MPI
is reducing into a single variable. If we use different number
of MPI processes, then we could sum different number of
elements which again can produce different results. To solve
this issue, we introduced another temporary storage. If a
kernel’s input parameter is one for reducing, then we give a
temporary storage point to store the increment for the result.
Then in each MPI process, we reduce these increments
reproducibly by using the ReproBLAS library. First we
create a local ReproBLAS’s double_binned variable for
every MPI process, then we use binnedBLAS_dbdsum
to collect those into the local_sum. After that, we use
reproBLAS’s method to call an MPI_Allreduce with
binnedMPI_DBDBADD function. After that we convert
back the final result to normal double and we store it at
its original location.



0

20

40

60

80

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

To
ta

l r
un

tim
e 

(s
)

Reproducible Airfoil Original Airfoil

(a)

0

20

40

60

80

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

To
ta

l r
un

tim
e 

(s
)

Reproducible Aero Original Aero

(b)
Figure 6. Measured full runtimes of the (a) Airfoil and the (b) Aero applications

0

1

2

3

4

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

M
PI

 ti
m

e 
(s

)

Reproducible Airfoil Original Airfoil

(a)

0
0.5

1
1.5

2

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192
procs

M
PI

 ti
m

e 
(s

)

Reproducible Aero Original Aero

(b)
Figure 7. Measured MPI runtimes of the (a) Airfoil and the (b) Aero applications

IV. RESULTS

We have tested our result on ARCHER, the UK’s na-
tional HPC facility which is a Cray XC30 supercomputer.
ARCHER compute nodes contain two 2.7 GHz, 12-core
E5-2697 v2 (Ivy Bridge) series processors. We used strong
scaling on 1, 2, 4 and 8 nodes to check the performance on
different levels. Each time the size of the Airfoil and Aero
meshes are 2880000 nodes and 5757200 edges.

On figure 6 we can see the performance difference of
the reproducible method compared to the original version
on the Airfoil and Aero applications. On the Airfoil, there
is an average of 2.37× slowdown, and a 1.49× on the
Aero. As it was expected, reproducibility comes with a
significant slowdown effect, although if the application is
computationally more intensive then the runtime difference
decrease. On the side of the bandwidth, there is only a 1.4×
decrease measured on the Airfoil application. On figure 7 we
can see the effect of the modified MPI gather method. On the
Airfoil, there is an average of 2.14× slowdown, and a 1.37×
on the Aero. Future works consit of extending this method
to OpenMP and Cuda. Also during this progress, a new type
of problem came up. If a kernel is not just incrementing a
variable, but reads and rewrites it, then the kernel call from
one edge must be executed, not just temporarily stored. This
problem needs a solution to be able to really execute the
kernel calls in a predefined fixed order.

ACKNOWLEDGMENTS

Project no. PD 124905 has been implemented with the
support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the
PD 17 funding scheme. The research has been supported

by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental
Research Collaborations Grounding Innovation in Informat-
ics and Infocommunications).

REFERENCES

[1] “Sc’15 bof on ”reproducibility of high performance codes and
simulations: tools, techniques, debugging”,” 2015.

[2] J. Demmel, P. Ahrens, and H. D. Nguyen, “Efficient re-
producible floating point summation and blas,” Tech. Rep.
UCB/EECS-2016-121, EECS Department, University of Cali-
fornia, Berkeley, Jun 2016.

[3] “Hydrodynamics Challenge Problem, Lawrence Livermore Na-
tional Laboratory,” Tech. Rep. LLNL-TR-490254.

[4] “OP-DSL: The Oxford Parallel Domain Specific Languages,”
2015. https://op-dsl.github.io.

[5] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts,
P. H. Kelly, and D. Radford, “Acceleration of a full-scale
industrial cfd application with op2,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 5, pp. 1265–
1278, 2016.

[6] I. Z. Reguly, D. Gopinathan, J. H. Beck, M. B. Giles, S. Guil-
las, and F. Dias, “The volna-op2 tsunami code (version 1.0),”
Geoscientific Model Development Discussions, 2018.

[7] M. Giles, D. Ghate, and M. Duta, “Using automatic difierenti-
ation for adjoint cfd code development,” Computational Fluid
Dynamics Journal, vol. 16, 01 2008.

[8] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element
Method: its Basis and Fundamentals (Seventh Edition). Ox-
ford: Butterworth-Heinemann, seventh edition ed., 2013.


