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Abstract

The public cloud offers a myriad of services which allows its ten-
ants to process large scale big data in a flexible, easy and cost effective
manner. Tenants generally use large scale data processing frameworks
such as MapReduce, Tez, Spark etc. to process their data. Tenants
can configure their frameworks to run individual tasks by the frame-
work itself or have a middleware cluster manager like YARN or Mesos
to arbitrate resource scheduling in their public-cloud cluster. Cluster
managers need to be cognizant about the workload requirement along
with the state of the individual resource such as CPU and disk in the
cluster. Cloud providers use a token bucket mechanism for their indi-
vidual hardware resources as an indicator of the quality-of-service that
individual hardware resource can provide. In this paper, through our
changes in YARN, Hadoop and Tez, we show how middleware cluster
managers can be made cognizant about the expected quality-of-service
of individual hardware resources in the cluster. Our optimized cluster
manager with a coarse grained knowledge of task requirement and fine
grained knowledge of expected quality-of-service of hardware resources
in the cluster performs highly optimal task placements. Our experi-
ments with our optimizations show CPU credit based instances like the
Amazon T3 instances as a viable cost effective option for running big
data workloads. We also show that streaming SQL queries on a Hive
warehouse can be accelerated by up to 31% leading to public cloud
billing cost savings of up to 22%.
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1 Introduction

Big data workloads are processed using a compute cluster wherein the data set
to be processed is either distributed over a large number of storage volumes or is
resident in a storage service offering capacity in the order of at least a few TBs.
These large data sets typically require a large amount of compute resources to be
processed which is easily made available in a cloud setup. This work focuses on
running big data workloads on a public cloud setup in a cost effective manner.

Public cloud computing has become a ubiquitous part of every big data pro-
cessing entity owing to its flexibility and cost savings over private data centers.
Public cloud offerings include enterprise services spanning compute, storage and
networking. Public cloud providers allow users to lease hardware and software ser-
vices of desired capacity over fixed or variable time periods. So, tenants can lease
only the amount of resources required to meet their workload demands. In a tra-
ditional private data center, tenants pay the total cost of ownership (CapEx and
OpEx) of the data center for its entire lifetime. Any unused capacity at any given
point of time translates to losses for a tenant. On the flip side, workloads requiring
more resources than the current capacity of the private data center may lead to
violations of Service-Level Objectives (SLOs). While a tenant may not need the
peak capacity needed to meet a given SLO, they nonetheless may need to maintain
hardware resources at peak capacities to honor all SLOs. This can be avoided in a
public cloud as tenants can dynamically choose the scale of their resources based on
their workload demands at a given point in time leading to significant cost savings.

The other major contributor to the rise in popularity of the public cloud is low
cost storage solutions provided by the public cloud. Services such as Amazon S3 [1]
and Azure blob storage [2] are highly reliable and accessible storage solutions for
an enterprise. Tenants can store any arbitrary volume of data on these storage
services and be billed for the exact volume of data resident on these services at any
given point in time, without the need for pre-provisioning of any storage volume.
This leads to flexibility in storage planning and cost savings owing to being billed
on the granularity of data volume rather than the underlying storage hardware.
However, most cloud providers bill their tenants for outgoing data transfer from
their storage services, with cost being dependent on the destination of the transfer.
These data transfer costs are typically significantly more when the data transfer
destination is outside of the cloud provider’s premises than when it is within. As
an example, the cost of transferring data from Amazon S3 to the internet is given
in Figure 1. Compared to this, S3 charges between $0.00–$0.02 per GB when the
destination is within AWS premises. Since the cost of transferring a few TBs of big
data out of AWS S3 can be quite high, tenants generally prefer processing their big
data workloads within their public cloud provider premises.

MapReduce [3], Spark [4], Flink [5] and Tez [6] are some of the popular frame-
works for processing large-scale big data. These frameworks work by slicing a
particular job into various small microtasks [7] which may be grouped together
for execution based on common characteristics. The framework then creates an
execution plan for performing the given job which is basically an ordering of the
execution of its various tasks. The framework can execute tasks by itself using a job
scheduler built into it or submit the task for execution to an external job scheduler.

A middleware cluster manager, e.g., Kubernetes [8], Mesos [9] or YARN [10,
11], serves as a resource arbitrator, i.e., it offers resources to a framework for its
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Figure 1: S3 Pricing: (a) Cost per GB for different sizes of data transfer;
(b) Total cost of transferring data

task execution. The scheduling algorithms employed in cluster managers typically
consider every hardware resource in the cluster in an (often crude) attempt to
provide a fixed service rate. However, the public cloud offers a variable service
rate because its hardware resources may be shared. Typically, memory and CPU
resources are considered for scheduling decisions with the assumption that a “CPU
core” is constant. With variable service-rate CPU cores in the public cloud, a “core”
in the cluster will deliver variable service rate of up to 100%. This variability along
with other variable service rate resources like disk I/O and network I/O leads
to sub-optimal scheduling decisions. While disk and network I/O resources are
typically not taken into consideration for making scheduling decisions, tasks may
be allocated on a critical (for it) hardware resource whose service rate is throttled.

Public cloud providers expose variability in service rate through Service-level-
agreements(SLAs). Providers such as AWS [12] and Google cloud [13] quantify
their variable rate hardware offerings and tenants can use this quantification to
determine the expected service rate of resources in these instances. In case of
AWS, token-buckets is used to regulate the availability of a resource (and hence
the service rate it is expected to provide). Tenants can actively look-up the state
of the tokens associated with a particular IT resource to determine the expected
service rate. For example, CPU resources belonging to AWS T3 [14] burstable
instances1 and disk volumes belonging to AWS Elastic Block Storage (EBS) [15]2

have token buckets associated with them whose states can be dynamically queried
using publicly available APIs.

We propose a novel credit aware scheduler – CASH for a cluster manager that
considers both token-bucket state information associated with its VMs and the
(only roughly disclosed) critical resource needs of the tasks it is scheduling. We
prototype CASH on YARN, i.e., it queries the cloud provider for token-bucket
state of its nodes and receives additional task information from its Tez and Hadoop
application frameworks. As examples, we run both batch workloads and streaming
SQL queries which are CPU and disk I/O intensive, respectively.

1a.k.a. bursting, credit based or token based instances
2EBS tokens are used even for non-bursable AWS instances.

3



In summary, CASH makes the following key contributions:

• The efficacy of using token bucket information associated with hardware re-
sources in task placement decisions leading to cost savings and task acceler-
ation.

• Empirically proving T3 burstable instances to be a viable and economical
solution to running batch based big data workload.

• Accelerating streaming SQL queries running over in-memory DAG based
frameworks and reducing their job completion time by an average of 31%
which translates to an overall workload completion time shortening of 22%.

This paper is organized as follows. In section 2, we provide some background
discussion. In section 3, we motivate our problem in detail, including through
experimental case studies. Our scheduling scheme is described in section 4 and
how it was prototyped on Tez/Hadoop-over-YARN is described in section 5. The
results of our experimental performance evaluations are given in section 6. In
section 7 we discuss related work. Finally, we summarize in section 8 and discuss
future work.

2 Background

In this section, we discuss some service offerings by the world’s largest public cloud
provider – AWS, which are relevant to this paper. Other large public cloud providers
(particularly Microsoft Azure and Google Cloud) offer similar services.

2.1 AWS T3 burstable instances

AWS T3s are CPU credit based instances that have a guaranteed baseline CPU
service rate which is a percentage of an actual VM CPU core of a comparable
general purpose type. The VM acquires CPU credits when operating below the
“baseline” service rate up to the maximum size of the associated token bucket.
Each credit can be used to “burst” to 100% CPU for one minute or 50% CPU for
2 minutes. The amount of credits an instance acquires is at millisecond granularity
and can be tracked using APIs provided by Amazon. The rate of credit earned
is dependent on the instance size. Table 1 provides a few T3 instance sizes, their
configurations and their CPU credit properties from the AWS website [14]. T3 also
supports an unlimited credit option which prevents tenants from being throttled to
baseline performance if they run out of credits. The credit balance is calculated as
an average over 24 hours, or the instance lifetime, whichever is shorter, and tenants
are billed for the excess credits they use.

2.2 AWS Elastic Block Storage (EBS)

AWS EBS is a block storage service which can be attached to any EC2 instance.
EBS storage volumes are persistent volumes and their lifetime is independent of
the AWS instance they are attached to. The size of EBS volumes is specified by
its user upon creation and can range from a single GB to 16 TB. EBS volumes
fall into two main categories – SSD backed and HDD backed. The performance
of the volume increases with the size of the volume provisioned, with SSD backed
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Type vCPUs
Memory
(GiB)

Baseline
Performance/vCPU

CPU credits
earned / hr

t3.large 2 8 30% 36

t3.xlarge 4 16 40% 96

t3.2xlarge 8 32 40% 192

Table 1: AWS T3 CPU credits

Figure 2: EBS token bucket

volumes delivering significantly higher IOPS than HDD backed volume for a little
more than double the price per GB. However, performance and service rate of
EBS volumes is variable like other public cloud offerings with EBS using a similar
token bucket mechanism as T3 instances. EBS SSD backed volumes have a baseline
Input/Output per second (IOPS) credit rate of three times their size in GB. When
the volume uses less IOPS than its baseline credit arrival rate, credits are conserved
in the corresponding token bucket. Volumes can use their accumulated I/O credits
to burst to a maximum performance of 3000 IOPS. A screen capture from AWS [16]
describing the EBS token bucket is given in Figure 2.

2.3 Amazon Elastic MapReduce (EMR)

Amazon EMR [17] is essentially a big data processing SaaS offering from AWS
which allows tenants to run application frameworks like Hadoop, Spark, Tez etc.
along with databases such as Hive [18] to process big data. EMR can be provisioned
within minutes and tenants can have a running data processing cluster to run their
workloads. EMR comes with the YARN capacity scheduler as the cluster manager.
Users choose the type of hardware they want to use to create their cluster. Users
specify the instance type and the type of storage that needs to be attached. A key
restriction of EMR however, is that it does not allow users to create their cluster
with low cost credit based T3 burstable instances [19].
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Figure 3: CPU utilization in EMR: (a) Average utilization per VM, (b)
CPU utilization timeline

2.4 Amazon S3

Amazon S3 [1] is an object based storage service offering by Amazon which offers
cheap and reliable storage service. Tenants of S3 can expect to receive 99.999999999%
durability for their data [1] along with flexibility to store data of any size and ac-
cess it from anywhere over the internet. Tenants running large-scale big data batch
workloads on the public cloud prefer using object stores such as AWS S3 as their
data storage for reasons explained in section 1. A Nasdaq case study [20] further
explains this preference. Most importantly, object stores provides the cheapest
storage option in the public cloud. On AWS, while SSD backed volume costs $0.10
per GB and a HDD backed volume costs $0.045 per GB, S3 costs only $0.023 per
GB for the first 50 TB with a $0.0004-$0.005 per API call charge to data objects.

3 Motivation

3.1 CPU Utilization in Compute Clusters

Large compute clusters commonly face low resource utilization and efficiency even
after collocating online services and batch workloads. Analysis [21–23] done on
recently released Alibaba production traces [24] shows that average CPU utilization
remains below 40% for about 60% of the machines and below 50% for 75% of the
machines in their cluster. However, the CPU usage follows a bursty pattern with
CPU utilization going above 60% for only about an hour in a 24 hour window for
majority of the machines. This should prevent Alibaba from using fewer CPUs
to run their workloads as it would violate their SLAs due to transient increases
in CPU demands. Analysis of the Taoboa Hadoop cluster [25] also found CPU
utilization to not exceed 40%. Even the Google trace analysis [26] reveals that
CPU utilization doesn’t exceed 60%, where the trace comprised of a mix of long
running services, MapReduce and HPC. An additional factor which contributes to
low CPU utilization in a public cloud is a preference to use cheap object based
external storage over traditional locally available distributed storage system like
HDFS as already discussed.
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Instance Size
T3
per hour

M5
per hour

M5 with EMR
per hour

xlarge $0.1664 $0.192 $0.24

2xlarge $0.3328 $0.384 $0.48

Table 2: T3 Price comparison

3.1.1 CPU utilization on EMR

We tested MapReduce performance on EMR using the same workloads we use later
for evaluation. We found a low CPU utilization with the average of about 30%
per node as given in Figure 3(a). This is due to high object read/write latency
of S3 [27]. The timeline of CPU utilization on EMR is given in Figure 3(b). One
might be tempted to reduce the number of instances to improve CPU utilization,
but this will further degrade I/O performance as there will be less parallelism during
read/write to S3.

3.1.2 The case for CPU credit based Instances

Big data batch workloads that have low average CPU utilization can benefit from
the low cost offering of burstable instances. Table 2 compares the pricing of AWS T3
with equivalent general purpose AWS M5 instances and AWS EMR. As we can see,
(regular) M5 instances are more than 15% more expensive than T3 instances and
EMR on M5 is more than 44% more expensive than on (burstable) T3. Tenants
can obtain significant cost savings by using T3 (including for MapReduce work-
loads) over regular VMs with the same peak IT resource allocations. For example,
MapReduce workloads are often low CPU utilization workloads and they can par-
ticularly benefit from low cost, low CPU throughput instances like T3. This said,
running Hadoop naively on T3 resulted in as much as 40% degradation in elapsed
task time with our workloads and hence is not the most optimal solution. This is
captured in our evaluation.

3.2 I/O Utilization in Compute Clusters

An analysis of TPC-DS workloads in [28] shows very high I/O utilization (up to
100%) for their big-data systems based on HDFS. Anecdotal evidence suggests that
the disk is typically a significant bottleneck in I/O intensive workloads and although
earlier work such as [29] observe that CPU may also be a significant bottleneck, they
also note that this is due to CPU time spent in compression/decompression of data
to/from disk and serialization/de-serialization of java objects from/to byte buffer.
Since the experiments done in [29] were with three generations older architecture
and newer results show high I/O utilization in current production clusters, we can
assume that disk I/O may again be a bottleneck for running I/O intensive SQL
queries.

Public cloud providers maintain a credit based service rate for their network
attached volume offerings as explained in section 2. Hence, it is consequential to use
disk burst credits while running heavy I/O workloads. However, cluster managers
like YARN choose nodes for scheduling tasks in random order. A cluster manager

7



88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
u

rs
t 

B
al

an
ce

 %

Normalized 5 minute Intervals

Node0 Node1
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will not differentiate between nodes which have burst credit balance and nodes
which have been throttled for either CPU or disk (or network) access. Hence, they
cannot exploit the “burst” performance available to them in the cluster. This is
further illustrated by a two node experiment with TPC-DS workload and observing
the changes in disk burst credit in Figure 4. We observe a significant difference in
consumption of burst credits between the two volumes attached to the two nodes
in the cluster. While this does not cause any slowdown as both the disk volumes
in the cluster have a full burst credit balance, we notice the uneven consumption
in burst credits which has the potential for slowing down tasks if the disk volumes
were running low on burst credits.

4 Proposed Scheme

We propose a novel scheme containing two techniques to be used together. We
annotate the task requests in the application frameworks to indicate the tasks for
which burst credits are needed. We also change the cluster manager to periodi-
cally collect burst credit information from the public cloud (CPU or Disk) and use
this information to match the needs of the annotated tasks. The details of this
scheduling scheme are discussed below.

4.1 Task Annotation

In general, CASH supports user annotations of tasks as being intensive with respect
to particular IT resources, e.g., CPU, network I/O3 and disk I/O. Users are free to
experiment with associating tasks to any annotation of their choice.

3AWS’s unorthodox dual token-bucket mechanism for network I/O of its burstable
instances was reverse engineered in [30].
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However, the preliminary CASH implementation described herein relieves the
user of any manual effort of annotation for the workloads considered herein. This
scheme can either use CPU burst credits or disk burst credits but not both (i.e.,
one will be more of a bottleneck than the other). These “automated” annotations
happen through the framework based on the characteristics of the task’s associated
DAG vertex. Specifically, DAG vertices corresponding to map-like tasks (including
“lambda” and “tokenize”) involve the bulk of the workload processing and so utilize
resources intensively. Hence, these tasks can benefit the most from burst credits.
Conversely, assigning these tasks to VMs which are throttled (token state is de-
pleted) can severely affect performance. E.g., a workload which is I/O intensive
such as database queries will need to read a large amount of data during its map-
like phase and hence its map-like tasks should be assigned on VMs with high disk
burst-credits. Similarly, workloads running on lower cost T3 burstable instances
will need CPU burst credits to avoid slowdown (and heightened possibility of being
deemed stragglers).

The vertices of reduce-like tasks (e.g., “reduce”, “shuffle” and “collate”) are
typically less resource hungry and can be assigned on VMs where CPU/disk has
been throttled. However, the reduce phase is generally network intensive and the
framework attaches a “network” annotation for reduce-like tasks. This leads to load
balancing of network tasks in the cluster. The network annotation is attached along
with “CPU” or “disk” annotation. We observe marked improvement in reduce task
execution time with MapReduce as reduce tasks are heavily network intensive. We
provide implementation-specific details on task annotation in section 5.

4.2 Credit based scheduling

We modify the cluster-manager’s (YARN’s) scheduler to make scheduling decisions
based on burst credit balance of either the CPU or the disk volume. Figure 5
shows the main components of the proposed scheduler CASH. The optimizations
are described below for two cases: scheduling burstables (AWS T3) based on CPU
credits and scheduling regular instances (AWS M5) based on disk I/O credits. In
both cases, different types of tasks of a job stream are considered. In an ongoing
work we are assessing a similar scheduler which jointly considers different burst
credits for different types of resources and different types of tasks (as, e.g, rPS-
DSF [31]), c.f. Section 7 for discussion of related work. Each node has a number of
slots (each corresponding to a pre-configured vCPU or virtual core) so that a node
can simultaneously execute more than one task, i.e., one task per slot. We assume
the cluster manager pools all pending (annotated) tasks from all of its application
frameworks into a single task queue. Note that new tasks are continually generated
by the streaming workloads handled by the application frameworks and placed in
task queues and slots are freed when their tasks complete service.

At a long (one minute) time scale, nodes are ordered in decreasing order of VM
CPU/disk burst credit balance (node sorting thread). At a short (milliseconds)
time-scale, the cluster manager’s scheduler (scheduler thread) first visits each node
in descending order of burst credits and assigns to it as many burst (CPU or
disk) intensive tasks as possible given its current number of free slots (with default
optimizations like delay scheduling [32] active), before proceeding to the next node.
This phase ends when either free node slots or burst intensive tasks in the task
queue are exhausted. In the second phase, non-burst intensive tasks which are
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Figure 5: A schematic diagram of the proposed scheduler

annotated as network are considered by the scheduling thread. Starting from the
node with the least burst credits, in each round at most a single free slot per node is
allocated to such tasks in an effort to load balance such tasks among the VMs and
reduce the risk of network congestion. Again, this phase ends either when there
are no more network annotated tasks nor free slots available. In the final phase,
any remaining (non-annotated) tasks are assigned to available free slots (if any) in
arbitrary node-order. Algorithm 1 describes our credit based scheduling logic.

One pass of the scheduling thread is at the milliseconds time scale during which
new tasks may be generated by the application frameworks and slots may become
freed up. These new tasks are scheduled in the next iteration of the scheduling
thread.

5 Implementation

We have created a prototype of our credit based task scheduler within the YARN
capacity scheduler, and conducted experiments with Tez and Hadoop applications
over YARN. We also made changes to Apache Tez to annotate tasks and communi-
cate those annotations to YARN. We did not have to change Hadoop as we lever-
aged the existing node label feature of Hadoop to pass on annotations to YARN.
All changes were made in java. We discuss our implementation in the sequel.

5.1 YARN

We extract the burst credit balance of each VM from Amazon Cloudwatch [33]
every 5 minutes and update the internal YARN node data structure for making
scheduling decisions. Cloudwatch populates burst credit balances at the smallest

10



Algorithm 1: Schedule Thread

while True do
nodeList = sorted list of all nodes in descending order of burst
credit balance
for node in nodeList do

scheduleBurstIntensiveTask(node)
end
nodeList = sorted list of nodes in ascending order of burst credit
balance
while request in queue and slot available in nodeList do

for node in nodeList do
AssignOneNetworkTask(node)

end

end
nodeList = list of nodes in random order
for node in nodeList do

scheduleRemainingTask(node)
end
sleep(interval between scheduling)

end

interval of 5 minutes. Since we do not want YARN to make scheduling decisions
based on stale burst credit balance information, we also pull CPU utilization, disk
read/write operations for each VM from Amazon Cloudwatch every 1 minute and
predict the burst balance. Prediction is made easy by the fact that Amazon exposes
the exact formula to calculate burst credits at any given point of time based on
the instance/disk size and its CPU/disk utilization. We update the internal YARN
node data structure with predicted burst credit every 1 minute and actual burst
credit every 5 minutes. This is done in a separate asynchronous thread inside
the YARN capacity scheduler. The process of burst credit update is described in
algorithm 2 and is part of our design Figure 5.

5.2 Tez

Tez provides its users with the abstraction of “VertexManager” for dynamically
adapting the execution of its tasks. Tez comes with built-in vertex managers which
are associated with vertices by Tez based on the individual vertex characteristics.
We modify two such vertex managers – “RootInputVertexManager” and “Shuf-
fleVertexManager” – to implement our burst credit logic. The “RootInputVertex-
Manager” is associated with vertices that are the source of input data in the DAG
and hence they need disk and/or CPU burst credits. Similarly, “ShuffleVertexMan-
ager” is associated with vertices that shuffle network data and can benefit from
better network load balancing. These vertex managers annotate the task requests
to YARN for their associated vertices. We provide a portion of an actual Hive query
execution DAG with their associated vertex managers and annotations in Figure 6.
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Algorithm 2: Burst Credit Fetch Thread

while True do
if timeInterval() == 5 minutes then

if Annotation == CPU credit then
getCPUBurstCreditsFromCloudWatch()

end
else

getDiskBurstCreditsFromCloudWatch()
end
setBurstCreditsOnAllNodes()

end
if timeInterval() == 1 minute then

if Annotation == CPU credit then
getCPUUsageFromCloudWatch()

end
else

getDiskIOUsageFromCloudWatch()
end
setCalculatedBurstCreditsOnAllNodes()

end

end

ship_mode time_dim date_dim warehouse

Map Map Map Map

Map

Reduce

Managed by
RootInputVertexManager

Annotation: “Disk”

Managed by
ShuffleVertexManager
Annotation: “Network”

Figure 6: A Hive query DAG portion
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Figure 7: Cumulative elapsed time: (a) Map, (b) Reduce, (c) Shuffle
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Tez allows its users to create their own vertex managers and associate them
explicitly with the vertices of the DAG they create (unlike Spark, Tez program-
mers can create their own DAG). We have added the annotation feature to the
base level class of vertex manager in Tez source code allowing users to associate
annotation with their user defined vertex managers. This allows users to associate
any annotation with any vertex of their choice in their execution DAG.

5.3 Hadoop

Every Hadoop job can be expressed as a DAG with two vertices - “Map” and
“Reduce”. We associate burst annotation (CPU or disk based on user configuration)
with map vertex and network annotation to reduce vertex. This allows resource
hungry map tasks to be assigned burst credits and (generally) network heavy reduce
tasks to be well-balanced.

6 Evaluation

6.1 Workloads – CPU Burst

We use Intel HiBench [34] to run batch workloads for CPU burst evaluation. It
provides several workloads, including machine learning, graph processing and Hive
SQL queries, among others. We use the workloads PageRank, K-means clustering
and Hive SQL aggregation for our evaluation. We choose these workloads as they

13



are representative of popular Hadoop batch workloads. We generate the input
data for these workloads synthetically through HiBench itself. The generated data
is written to S3 and is used as the input data for all experimental runs. Each
HiBench workload comprises of several jobs. These jobs are submitted sequentially,
with the input of a job being dependent on the output of the job prior to it. All jobs
read their input data from S3 and write their output data to S3. A job submitted to
YARN is broken down into smaller tasks which have their own dependency graph
and use the local VM storage(EBS) as temporary scratch space.

6.2 CPU Burst: Experiment Design and Setup

We generate our experimental baseline using Amazon EMR. EMR comes pre-
configured with Hadoop and is highly optimized to work with S3. We do not
change any configuration in EMR and run the workloads sequentially. Using EMR
to create our baseline removes any biases that we might inadvertently introduce
into it. We use EMR version 5.28 which is based on open source Hadoop 2.8.5.

To run CASH, we install Hadoop 2.8.5 over 10 EC2 T3.2xlarge instances which
has a baseline CPU throughput of 40%. We copy most of the compatible Hadoop
configuration (such as slot size, map memory, reduce memory, node manager mem-
ory, compression algorithm, etc.) from EMR to our T3 installation so as to keep
the configurations similar. Again, our proposed scheduler is prototyped on the
YARN capacity scheduler, with most configurations retained from EMR. Details of
experiment are in sequel.

6.2.1 CPU Burst Experiment-1: Naive workload submission

We run SQL aggregation, which has an average CPU requirement greater than the
baseline CPU throughput of the AWS instance as our first workload. The CPU is
throttled to 40% as the instances have not accumulated any burst credits to support
higher than 40% CPU. We run PageRank and K-means after SQL aggregation.

6.2.2 CPU Burst Experiment-2: Reordered workload submission

We run workloads in the order PageRank, K-means and SQL aggregation. This al-
lows credits to be accumulated in the beginning through the first two workloads that
operate at lower than baseline CPU throughput. Accumulating credits in the be-
ginning allows SQL aggregation to be executed without being throttled due to lack
of CPU credits. This effort can be easily automated by pulling job CPU utilization
metrics from a historical metric server of choice, such as Amazon Cloudwatch [33]
or the Hadoop history server [35]. Tenants who do not have any workloads that
have CPU needs above the baseline CPU utilization may submit their workloads
in any order of their choice.

6.2.3 CPU Burst Experiment-3: T3 unlimited

In this experiment, we run workloads with T3 unlimited mode ON. With T3 un-
limited, an instance is never throttled when it uses up all its burst credits. The
CPU credits are averaged over a period of 24 hours and a tenant is billed for the
burst credits they use above the baseline rate. A T3 unlimited instance using 52.5%
average CPU over 24 hours will be billed the same as an equivalent general purpose

14



0

500

1000

1500

2000

Query 37 Query 49 Query 66

Se
co

n
d

s

Stock YARN CASH

(a)

0

200

400

600

800

1000

1200

1400

1600

Query 37 Query 49 Query 66

Se
co

n
d

s

Stock YARN CASH

(b)

0

200

400

600

800

1000

1200

Query 37 Query 49 Query 66

Se
co

n
d

s

Stock YARN CASH

(c)

Figure 9: Query Completion Time Comparison (a) 2 VMs, (b) 10 VMs, (c)
20 VMs

instance (regular VM), and a T3 instance using 100% CPU over 24 hours will be
billed close to 50% more than a comparable general purpose instance. This option
is exclusive to AWS and tenants of providers like Azure do not yet have this option.

6.2.4 CPU Burst Experiment-4: Workload submission with CASH

We change YARN capacity scheduler to account for CPU burst credits and network
intensive tasks while scheduling. With the CPU burst credit and network aware
YARN (a.k.a. CASH), workloads are submitted so that CPU-intensive workloads
are submitted last.

6.3 Results – CPU Burst

We report our results through a cumulative elapsed time comparison of the three
phases a job goes through in Hadoop namely – map, shuffle and reduce. We do not
report the overall makespan of our workloads as access to AWS S3 storage varies
widely over time [27]. This may be due to dynamic demand or due to an undoc-
umented token-bucket mechanism or both. For this reason, in the experimental
results that follow, we report component task execution-times rather than overall
workload wall-clock (makespan) execution times. Also, considering EMR is SaaS,
we expect that generally, S3 variation will be larger for non-SaaS implementations
proposed herein.

Figure 7 provides the results observed. Running workloads over T3 naively
resulted in a 40% degradation in elapsed time resulting in T3 being more expensive
than EMR. CASH performs better than naive and reordered workload submission
in all phases and degrades by about 13% in cumulative task elapsed time compared
to EMR. However, running T3 is about 30.7% cheaper than running EMR and
hence tenants will save cost by running their workloads on T3 using CASH. A
13% degradation in cumulative elapsed task time doesn’t translate to equivalent
degradation in makespan time as the phases map, reduce and shuffle overlap with
each other. Particularly, the reduce stage starts as early as when 5% of the mapper
output is available by starting to shuffle the map task outputs. Running workloads
over T3 by simple reordering of workloads leads to a degradation of about 19%
compared to EMR which doesn’t translate to as much cash savings as CASH. T3
instances running CASH also show better CPU utilization than simple reordering
and EMR pointing to better load balancing as shown in Figure 8(a).

Running workloads on T3 with unlimited option ON yields about the same
elapsed time as CASH but the former has caveats. T3 unlimited averages CPU
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utilization on a per instance basis. Tasks can be scheduled on VMs which have
zero credit balance causing them to be billed for additional credits. This is possible
while there are other VMs present in the cluster with surplus credits. Hence, tenants
will be billed for additional credits while there are surplus credits available in the
cluster. This phenomenon can be ascertained by observing the standard deviation
of CPU credit balance across all VMs of the cluster in Figure 8(b). With the high
standard deviation of T3 unlimited, tenants are billed extra for excess CPU credits
which could have been avoided. Hence, CASH delivers more cash compared to T3
unlimited.

6.4 Workloads – Disk Burst

We use hive-testbench [36] to run streaming queries for disk burst evaluation. Hive-
testbench is a benchmark suite based on industry standard TPC-DS queries to test
database systems. We use three TPC-DS queries to be run over Hive database using
Tez – query 66, query 49 and query 37. We choose the queries which read a high
amount of data from disk to create scenarios where disk credits are significantly
depleted. Input data is generated by hive-testbench and is stored in HDFS as a
hive warehouse. We use Hive-2.3.6 with Tez-0.9.2 over YARN-2.8.5, the equivalent
versions used in EMR.

6.5 Disk Burst: Experiment Design and setup

We run all three TPC-DS queries in parallel. To avoid bias due to data caching,
we have disabled query caching in Hive. We restart the instances of the cluster
between consecutive experiments and write random data on the disk volumes so
as to invalidate the disk cache. We test our optimization gains by comparing
execution time and wall-clock completion time against running the same queries on
stock YARN keeping the same cluster and the database.

At the beginning of each experiment, we wipe out the disk credits and start
with zero burst credits. We do this for two reasons: (i) Amazon SSD volumes come
with 5.4 million startup burst credits which is not a realistic burst credit balance to
expect at a typical point in time in a long running cluster. (ii) We want to explore
the scenario in which instance volumes run out of burst credits, potentially leading
to task slowdown, and how this threat can be addressed.

6.5.1 Disk Burst: Experiment-1 Two VMs

We run our experiment on two EC2 M5.2xlarge instances with hive database size
of 280 GB and EBS volume size of 200 GB per instance.

6.5.2 Disk Burst: Experiment-2 Ten VMs

We run our experiment on ten EC2 M5.2xlarge instances with hive database size
of 1.2 TB and EBS volume size of 170 GB per instance.

6.5.3 Disk Burst: Experiment-3 Twenty VMs

We run our experiment on twenty EC2 M5.2xlarge instances with hive database
size of 2.5 TB and EBS volume size of 200 GB per instance.
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6.6 Results – Disk Burst

We calculate the wall-clock time (makespan) as the time it takes for all three queries
to have returned their output, while we consider query completion time as the
time taken for a particular query to return its output. We observe an average
improvement of about 5% in query completion time and overall wall-clock time
improvement of 4.85% in our two VM experiment with 280 GB input database.
The results are in Figure 9(a). The improvements are modest as the query IOPS
requirement on a 280 GB database is low. The tasks spawned for query execution
needed few burst credits.

In the experiment with 10 VMs and an input database of 1.2 TB, the IOPS
requirement of the queries were much higher even with a 5 times increase in compute
capacity. The cluster running CASH showed much higher average IOPS and a lower
standard deviation of disk burst credit balance across the volumes of the cluster
compared to stock YARN as shown in Figure 10. High average IOPS leads to
less I/O wait time in task execution. A lower standard deviation of burst credit
balance points to better load balancing of I/O tasks in the cluster. CASH was able
to opportunistically schedule I/O bound tasks on VMs with higher disk burst credit
balance leading to peaks in I/O. CASH running on a 1.2 TB database improved
average query completion time by about 10.7% and overall wall-clock time by about
13% compared to stock YARN. Results in Figure 9(b).

We hypothesize, the more I/O-intensive a workload is, the more speedup CASH
can provide. In order to test this hypothesis, we ran several experiments with larger
database sizes and we report one such experiment as experiment three. With an
increased scale of 2.5 TB database, CASH improved average query completion time
by 31% and wall-clock time by 22%. Results are in Figure 9(c).

Any improvement in end-to-end wall-clock time directly translates to cost sav-
ings of equal valuation in terms of public cloud billing. Hence, our wall clock time
improvement of upto 22% directly translates to a costs savings of equal amount for
tenants of the public cloud using CASH. We summarize our cost savings in Figure
11.
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7 Related Work

Prior work such as [37] show that burstable instances can be used as a passive
backup system which is also highly available. [30] characterizes the unorthodox
dual token-bucket mechanism used by AWS burstables and proposes some use cases.
However, this work was done in conjunction with spot instances over memcached
workloads. [38] gives an empirical study on burstable instances and two use cases.
They suggest that burstable instances be used for applications with low or irregular
CPU loads, hosting non critical I/O or network bound jobs or to simply restart the
instances to reclaim the launch credits. [39] create a theoretical model to maximize
revenue from burstable instances from a provider perspective. Tenants can also use
their model to choose the instance size of their burstable instances for minimizing
costs. More recently, [40] dynamically resizes task slots for burstable instances
based on their current CPU token state and finally [41] shows how to autoscale
using burstables.

None of these works except [40], look at a variable service rate VM like the
burstables for running large scale data processing frameworks and even [40] looks
at only CPU credits for their optimizations. To the best of our knowledge, this is
the first such work in this field which considers the variable service rate of hardware
resources and looks at burst credit balance of CPU and disk (separately) for making
optimal placement decisions.

This said, the scheduling problems considered in this paper are not unrelated to
rPS-DSF [31], based on PS-DSF [42], which generalizes scheduling based on Domi-
nant Resource Fairness (DRF) criteria [43]. Papers related to DRF typically assume
statically available resources (as would not be the case for burstable instances) and
that more detailed resource needs of each task are known. A completely different
approach to large scale data processing [44] is well suited for running workloads on
a credit based public cloud scheduler such as CASH. This approach breaks a job
into tasks s.t. each task uses a single hardware resource.
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8 Summary and Future Work

We propose a novel scheduler for cluster VMs, particularly burstable VMs, of a
public cloud which relies on the knowledge of the burst credit/token states of the IT
resources of each VM and, only roughly, the resource needs of the tasks. The basic
idea is to avoid assigning tasks which employ a particular IT resource intensively
(e.g., CPU or disk I/O) to VMs which are currently low on tokens for that resource.
Token state is obtained from the public cloud, while such resource needs of tasks are
communicated by the application (or application framework). The scheduler was
prototyped on YARN and experiments were conducted on Tez and Hadoop over
YARN with different workloads. We were able to run low CPU-intensive Hadoop
workloads over T3 burstable instances while lowering costs. We were also able to
accelerate streaming hive queries through our optimization and save costs by 22%.
In on-going work, we are experimenting with joint scheduling of plural credit-based
resources (CPU, disk I/O and network I/O).
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