
27 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

IoTwins: Design and implementation of a platform for the management of digital twins in industrial scenarios

Published:
DOI: http://doi.org/10.1109/CCGrid51090.2021.00075

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/837123 since: 2021-11-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/CCGrid51090.2021.00075
https://hdl.handle.net/11585/837123

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Borghesi et al., "IoTwins: Design and Implementation of a Platform for the
Management of Digital Twins in Industrial Scenarios," 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2021,
pp. 625-633.

The final published version is available online at:
https://doi.org/10.1109/CCGrid51090.2021.00075

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/CCGrid51090.2021.00075

IoTwins: Design and Implementation of a Platform for the
Management of Digital Twins in Industrial Scenarios

Andrea Borghesia, Giuseppe Di Modicaa, Paolo Bellavistaa, Varun Gowthamb,
Alexander Willnerb, Florian Kintzlerc, Stephan Cejkac, Simone Rossi Tisbenid,

Alessandro Costantinid, Matteo Gallettid, Marica Antonaccie, Jean Christian Ahouangonouf
aDISI, University of Bologna, bFraunhofer FOKUS / TU Berlin, cSiemens AG Austria, Vienna

dINFN-CNAF, Bologna, eINFN, Bari, fESI GROUP, Rungis

Abstract—With the increase of the volume of data produced
by IoT devices, there is a growing demand of applications
capable of elaborating data anywhere along the IoT-to-Cloud
path (Edge/Fog). In industrial environments, strict real-time
constraints require computation to run as close to the data
origin as possible (e.g., IoT Gateway or Edge nodes), whilst
batch-wise tasks such as Big Data analytics and Machine
Learning model training are advised to run on the Cloud,
where computing resources are abundant. The H2020 IoTwins
project leverages the digital twin concept to implement virtual
representation of physical assets (e.g., machine parts, machines,
production/control processes) and deliver a software platform
that will help enterprises, and in particular SMEs, to build
highly innovative, AI-based services that exploit the potential
of IoT/Edge/Cloud computing paradigms. In this paper, we
discuss the design principles of the IoTwins reference archi-
tecture, delving into technical details of its components and
offered functionalities, and propose an exemplary software
implementation.

1. Introduction

Big data has become a fundamental game changer in
the industrial and service sector over the last few years,
but only recently there has been a significant shift of focus
from the hype surrounding it to finding real value in its
use. Modern data analytics, artificial intelligence (AI) and
machine learning (ML) techniques have an unprecedented
chance to bring companies of products and services into the
world of digital business, but a number of barriers have to
be reduced.

Developing intelligent systems requires mastering com-
plex and rapidly evolving tools and techniques, introduc-
ing substantial delays and costs in product/process design,
deployment, test, and refinement. Recent advances based
on deep learning require access to very large sources of
curated data, as well as significant computational resources
for training. The runtime execution and online refinement
of learned models, in particular in industrial environments,
often need to be at the premises of the systems generating
the big data, e.g., to locally monitor, control, and adapt
the components of a manufacturing production line under

tight latency and reliability requirements, while preserving
an adequate degree of data privacy. Deployment and ex-
ploitation of new forms of systems and services require
substantial investments in infrastructure at the server side
(where relevant cloud resources are often needed for model
learning and simulation), at the edge side (e.g., to extend
manufacturing machinery and their gateways on the industry
plant premises with edge computing functionality), and also
in terms of integration efforts.

The above investments, which could be perceived as
cost-prohibitive, are now becoming a business necessity for
innovative companies, in both the manufacturing and facility
management domains, with particular attention to the rich
ecosystem of EU small and medium enterprises (SMEs).
The H2020 IoTwins project aims to lower the barriers for
building edge-enabled and cloud-assisted intelligent systems
and services based on big data for the domains of manufac-
turing and facility management, by harmonising standards
to enable interoperability, and by developing an easy-to-
use service layer that facilitates and decreases the cost of
integration and deployment.

IoTwins aims to design a framework for a seamless,
straightforward and loose integration of already developed
and deployed industrial software components running in
typical long-lived industrial test-beds. IoTwins proposes a
reference architecture that offers common tools (data shift,
code migration, software components pipelining) to consol-
idated industrial testbeds that need to evolve over time. The
design of the IoTwins architecture envisioned the partici-
pation and active collaboration of project partners running
industrial manufacturing and facility management business,
and wishing to enhance and evolve their industrial testbeds
in a sustainable manner. They contributed by providing
needs and technological requirements that eventually guided
the definition of a distributed, digital-twins based platform
leveraging both the cloud and the edge.

In this paper, we discuss the design principles of the
IoTwins reference architecture. In particular, we delve into
the details of the requirements elicitation process and the
functionalities provided by the layered architecture. Finally,
we present an exemplary software platform that adheres the
architecture’s design principles. The paper is structured as
follows. In Section 2, a survey of related word is presented.

In Section 3, the design principles of the IoTwins reference
architecture are thoroughly discussed. Section 4 concludes
the work and touches on future work.

2. Related work

In the transition to Industry 4.0 based systems, it is
by design necessary to switch to digital approaches such
that the operational technology of manufacturing industries
embrace software defined approaches [4]. A key concept
that aids this transition is digital twins, which are virtual
representations of physical assets [5, 10]. Digital twins not
only facilitate administration of physical assets but also aid
in modelling the physical characteristics of the asset, so that
the digital representation can be transferred or replicated on
computing nodes [11]. In a software system, it is important
to enable deployment and maintenance of digital twins [6,
8, 14]. The edge computing paradigm has further closed the
gap of application of digital twin concepts in manufacturing
industries [2, 3, 12, 15].

The European Commission has funded several
project/activities under the umbrella of H2020. Some
of the most relevant are listed: eXtreme-DataCloud1

envisions the development of cloud technologies which
are open and inter-operable. deep-Hybrid-DataCloud2 aims
at bridging cloud and intensive computing resources to
explore large datasets for artificial intelligence, deep, and
machine learning. Collaborative environments and efforts
to streamline the application of digital twins are focus for
bodies such as, SPARTA3 in field of cybersecurity, AI4EU4

unifying the European Union infrastructure and framework
for AI advances and Fortissimo5, a collaborative project
that enabled European SMEs to be more competitive
globally through the use of advanced modelling. Edge
and fog computing was the focus of projects such as
AUTOWARE6 bringing fog technlogy into manufacturing
industry, BEinCPPS7 enables real-time machine to machine
communication and Boost 4.08 is a European initiative
that applies big data in manufacturing applications through
fog/edge technology. The LarGo! project9, funded outside
the EU network, is a cooperative transnational research
project focusing on the large scale rollout of smart grid
applications [7].

Orchestration is a key element in the the context of dig-
ital twins. Several standardization bodies are responsible in
drafting standards to facilitate interoperability and accelerate
the incorporation of orchestration and management of digital
twins into practice. Some of the notable bodies are listed:

1. eXtreme-DataCloud: http://www.extreme-datacloud.eu/
2. deep-Hybrid-DataCloud: https://deep-hybrid-datacloud.eu/
3. SPARTA: https://www.sparta.eu
4. AI4EU: https://www.ai4eu.eu/
5. Fortissimo: https://www.fortissimo-project.eu/
6. AUTOWARE: https://www.autoware-eu.org/
7. BEinCPPS: http://www.beincpps.eu/
8. Bosst4.0: https://boost40.eu/
9. http://www.largo-project.eu/

The MEC is often seen as the key enabler for offering ultra-
low latency and high-bandwidth in edge solutions. ETSI
Management and Orchestration (MANO)10 serves as a stan-
dard for management and orchestration of virtual network
functions. The Industrial Internet Consortium and OpenFog
incorporate orchestration in their reference architectures.

Digital twins have also been addressed by the major
cloud providers, e.g., Amazon Web Services (AWS)11, Mi-
crosoft Azure12 and Google Cloud Platform (GCP)13 in-
cluded in their IoT solutions. For example, within AWS
IoT, JSON representations of the real ”thing” are used as
devices shadows, which basically contain a desired and a
reported state. Whenever the device reconnects to the cloud,
the reported state is updated with the current state of the
device and the delta between the reported and the desired
state is propagated to the device to be handled accordingly
[1]. Cloud service can work with the most recent reported
state and can update the desired state if necessary.

Cloud-edge architectures can be created by using AWS
IoT Greengrass14. Smaller devices may not connect directly
to the cloud, but to a dedicated Greengrass Core (GGC)
device located on the edge, able to act locally on the sensed
data [1]. In this architecture, the GGC is the only device
that needs a connection to the cloud. AWS IoT SiteWise15

is a managed service provided to collect, store, organize,
and monitor data from industrial facilities at large scale.
Models of the physical assets, processes and facilities are
used to provide metrics, e.g., for the prediction of mainte-
nance issues. Specialized SaaS offerings for Digital Twin
functionalities are currently available only on Azure with
the Azure Digital Twins16 that have just recently reached its
general availability.

The IoTwins project propose a highly distributed and
hybrid digital twin model, which provides for an integration
of simulative and data-driven models to feed AI services. To
the best of our knowledge, very few papers in the literature
have adopted this approach.

3. The IoTwins Platform

Digital twins are models to represent a system (infras-
tructure/process/machine) along with its performance. In the
scope of IoTwins, these models enable the description of the
system itself and its dynamics (descriptive or interpretative
models), the prediction of its evolution (predictive models),
and the optimization of its operation, management and main-
tenance (prescriptive models). They are used to detect and
diagnose anomalies, to determine an optimal set of actions
that maximize key performance metrics, to effectively and
efficiently enforce on-line quality management of production

10. MANO: https://www.etsi.org/technologies/open-source-mano
11. AWS: https://aws.amazon.com/iot/
12. Microsoft Azure: https://azure.microsoft.com/overview/iot/
13. GCP: https://cloud.google.com/solutions/iot
14. AWS IoT: https://aws.amazon.com/greengrass/
15. AWS IoT SiteWise: https://aws.amazon.com/iot-sitewise/
16. Azure Digital Twins: https://azure.microsoft.com/services/

digital-twins/

http://www.extreme-datacloud.eu/
https://deep-hybrid-datacloud.eu/
https://www.sparta.eu
https://www.ai4eu.eu/
https://www.fortissimo-project.eu/
https://www.autoware-eu.org/
http://www.beincpps.eu/
https://boost40.eu/
http://www.largo-project.eu/
https://www.etsi.org/technologies/open-source-mano
https://aws.amazon.com/iot/
https://azure.microsoft.com/overview/iot/
https://cloud.google.com/solutions/iot
https://aws.amazon.com/greengrass/
https://aws.amazon.com/iot-sitewise/
https://azure.microsoft.com/services/digital-twins/
https://azure.microsoft.com/services/digital-twins/

processes under latency and reliability constraints, and to
provide predictions for strategic planning to help companies,
especially SMEs, to significantly improve their profitability
through digitalization, as well as to open up new opportuni-
ties for them for the creation of new services and business
models.

IoTwins proposes a hierarchical organization and inter-
working of digital twins modelling manufacturing produc-
tion plants and facility management deployment environ-
ments. In particular, such a hierarchy is composed of three
digital twins layers:

• IoT twins feature lightweight models of specific
components and performing big-data processing and
local control for quality management operations (low
latency and high reliability).

• Edge twins deployed at plant gateways and/or
at emerging ETSI Multi-access Edge Computing
(MEC) nodes, providing higher level control knobs
and orchestrating Internet of Things (IoT) sensors
and actuators in a production locality, fostering local
optimizations and interoperability.

• Cloud twins perform time-consuming and typically
off-line parallel simulation and deep-learning, feed-
ing the Edge twin with pre-elaborated predictive
models to be efficiently executed at the premises
of production plants for monitoring/control/tuning
purposes.

The main principles that drive the design of the IoTwins
platform are openness and software reusability. The plat-
form proposes itself as an open framework that manages
digital twins in the Cloud-to-Things continuum, built on
top of open-source software and tools, and allowing third-
party software to integrate by utilizing open application
programming interfaces (API). In the following, we report
on the requirements collected from the industrial partners,
the formal definition of the platform’s use cases and the
components structure of the IoTwins architecture.

3.1. Requirements elicitation

The first step towards the creation of the IoTwins plat-
form consisted in gathering functional and non-functional
requirements from the project’s industrial partners and prop-
erly defining the distributed twin features needed by each
of them. To collect these requirements, a questionnaire
had been prepared and given to each testbed leader to be
answered. Afterward, interviews were conducted to clarify
points not entirely covered by the questionnaires and to treat
testbed specific issues in more detail. The collected require-
ments spanned both infrastructural-related issues (ranging
over all layers covered by the platform: IoT, edge, and cloud)
and the services to develop digital twins (e.g., ML models,
optimization, and simulation models).

The key observation concerns the heterogeneity of the
involved partners, as some testbed already possess partial
solutions and components while others are starting from
scratch; there is as well a significant variety in terms of

desired services, based on the nature and scope of the testbed
activity. This observation imposes the proposed platform to
be open and flexible to accommodate the different needs
and to adapt to already existing environments. Concerning
IoT and Edge levels, infrastructure solutions were either
available or clearly identified for all testbeds. Often, they
are based on custom platforms but composed of common
building blocks; for instance, the usage of the MQTT pro-
tocol for data transfer at the lower layer of the infrastructure
is common to various partners.

Moving up to edge and edge-cloud interface, confiden-
tiality is a critical element – all data should be treated as
confidential and should thus be transferred encrypted only.
Data rates are in the order of tens of GBs per day (raw,
uncompressed), which does not impose a huge concern
in terms of storage capacity but underlines the need of
reliable (possibly wired) network connectivity – buffering
strategies on the edge should be considered to cope with
possible network interruptions. At the cloud level (REST)
APIs are needed to instantiate resources (which should be
accessed through Virtual Private Networks) and interact
with services offered; cloud resources should be provided
for both Infrastructure as a Service (IaaS) and Platform
as a Service (PaaS) paradigms (e.g., PaaS is requested to
instantiate ML frameworks, SQL and NoSQL databases,
and batch clusters creation on the fly). Hardware resources
(CPUs, GPUs, storage, etc.) should not present challenges
on cloud level but particular care should given to services
requiring graphical access and 3D rendering, as the network
bandwidth could become a bottleneck.

With respect to the services, the testbeds have very dif-
ferent needs. However there is a potential commonly shared
interest in anomaly detection and fault prediction (model
introspection is also welcomed). Due to the heterogeneity of
the requested services, the IoTwins platform should provide
flexible services which can be composed on more complex
pipelines; furthermore, it must be possible to tailor the
services to specific testbed needs – clear instructions and
support must be granted for this scope. In all testbeds, the
edge offers sufficient computing capability to execute simple
computations (e.g., inference on live data) but the heavy
lifting (e.g., simulation and training of ML models) will
necessarily be performed on cloud resources.

3.2. Use cases

The definition of the use cases presented in this section
aims to meet the requirements elicited from the testbeds.
According to such needs, the IoTwins platform will exhibit
functionalities to:

• support data transfer between the three infrastructure
levels adhering constraints imposed by the specific
computation needs (real-time, non-real-time);

• support several data types and diverse data storage
needs (short- and long-term storage);

• support data elaboration both on the fly (streamed-
data) and at rest (batch-wise)

Figure 1: IoTwins platform: Use case diagram

In addition to the administrative services that support de-
ploying, configuring and running services on each comput-
ing infrastructure levels (IoT, Edge and Cloud), the platform
provides them with services to configure and transparently
deploy complete computing chains, i.e., chains of software
libraries/tools/services that implement the above-mentioned
functionalities along the IoT-Edge-Cloud computing contin-
uum.

The IoTwins User is the main stakeholder who will
benefit from the services offered by the IoTwins platform.
In the scope of the project, the IoTwins User role is played
by the TBs. Out of the project scope, potential users will
be players of manufacturing and facility/infrastructure man-
agement sectors that wish to take advantage of the IoTwins
platform services to implement digital twin-based business
processes. In Figure 1, a UML use case diagram of the
IoTwins User cases is depicted.

The IoTwins platform enables users to configure, deploy
and run data processing tasks on IoT, Edge and Cloud level
respectively. These tasks cover all data analytics activities
including data filtering, data polishing, data integration,
data elaboration, data visualization, and data monitoring. In
Figure 1, four specific cases are depicted as specialization
of the generic level specific deploy data processing task
case in each computing level: Deploy Data filtering task
on IoT level, Deploy ML model running task on Edge level
and Deploy ML model training task and Deploy Simulation
task on Cloud level respectively. The first one refers to the

deployment of a typical light-weight computing task that can
be carried out on resource-constrained devices such as the
IoT; the second one refers to the deployment of medium-
weight computing task to be run on the edge devices; the
third and the fourth ones concern the deployment of heavy-
weight tasks to be run on powerful resources such as those
offered by the cloud.

Along with functionalities to configure and deploy ser-
vices/tasks at each computing level, use cases have been
defined to let users request the activation of multiple tasks
distributed along the chain of the computing infrastructures
(bottom-left side of Figure 1). Depending on the needs,
chains can be configured that span two (IoT-Cloud or IoT-
Edge) or all infrastructure levels (IoT-Edge-Cloud). As an
explanatory example, a typical data processing chain envi-
sions data sensing and filtering tasks deployed in the IoT, an
ML model training task running in the cloud and fed with
data at rest, and an ML model execution task running in the
edge consuming IoT data streams. Along the chain, data
transfer services (bulk data transfer, live data transfer) and
storage services (Relational/NoSQL/Time series DB, file-
system based storage, etc.) can be instantiated.

3.3. Reference architecture

As large-scale pilots need a solid and flexible e-
infrastructure to be effectively implemented, the IoTwins
project develops this infrastructure on top of existing data
center resources, capable of supporting the needs of the

identified use cases. To achieve this goal, the IoTwins ar-
chitecture is based on a Platform as a Service (PaaS) layer
able to leverage disparate hardware resources (traditional
commercial clouds, HPC resources offered by research insti-
tutions, and on premise industrial private clouds) to process
large amounts of data and to exploit the efficient storage
technologies/infrastructures made available by the partners.
The IoTwins PaaS provides advanced tools for computing
and for processing large amounts of data, and to exploit
current storage and preservation technologies, with the ap-
propriate mechanisms to ensure security and privacy.

Figure 2 depicts the four-layered IoTwins architecture.
Specific technologies and components that implement the
depicted functionalities are then selected and used to create
the three computing levels IoT, Edge and Cloud respectively.
The possibility to implement these functionalities using
diverse technologies enables the user to address application
and testbed-specific requirements in a flexible way (see
Section 3.2).

Resource
Registry

Resource
Monitoring

Resource
Scheduler

R
es

ou
rc

e
M

an
ag

em
en

t
La

ye
r

Pl
at

fo
rm

Se
rv

ic
e

La
ye

r

Data
Communication

Service
Monitoring

Data
Storage

Ap
pl

ic
at

io
n

La
ye

r

IoTwins platform
IoTwins User

Service
Orchestration

Resource
Configuration

R
es

ou
rc

e
M

id
dl

ew
ar

e
La

ye
r

Bare metal
application runtime

Container
runtime

Virtual machine
environment

Service
Repository

Data
Analysis

Model ML
Runtime

Model ML
Training

 Access, Role
& Identity

Management

Data
Encryption,

Data
Privacy

Figure 2: IoTwins platform: Reference architecture

For the implementation (cf. Section 3.4)), components
out of a pool of existing (open source or partner-owned)
tools were chosen. To show the openness of the architecture,
several parts (e.g., the service orchestration and the edge
management components) of the reference architecture were
realized using multiple competing technologies.

3.3.1. IoTwins platform layers
I. The Resource Middleware Layer contains compo-

nents that implement the virtualization of the underlying
computing assets and provide high level functionality to
manage these resources. The term resource thereby com-
prises all kinds of virtualized and encapsulated computing
resources (virtual machine, virtual storage, container, etc.)
ready to use for general-purpose computation. To utilize the
power of containerized applications to uniformly operate
applications for sensing, controlling, and data filtering to
a variety of distributed devices, multiple solutions in addi-
tion to the widely used Docker17 runtime are available. In

17. Docker: https://docker.com

order to enable usage a multitude of these technologies the
containers have to adhere to a certain standard. The project
therefore focuses on solutions for Open Containers Initia-
tive18 (OCI) compatible solutions. This includes Docker17,
Podman19 and CRI-O20 on the level of container execution
management.

The remote application management functionality on the
edge and IoT devices is closely connected to the function-
ality provided on the Service Provisioning Layer. For ex-
ample, KubeEdge21 together with CRI-O20 is a lightweight
solution to enable the remote management of containerized
applications on resources by use of a Kubernetes22 based
backend. Kubernetes integration with OpenStack23 is possi-
ble using the Magnum24 component together with Mesos25
(cf. Section 3.4 for the components used in the reference
implementation).

II. The Resource Management Layer provides the
upper layer with the functionality to manage Resources (i.e.,
virtualized computing resources) in a transparent way using
the following components:

• The Resource Registry keeps track of all resources,
their features, their availability, etc. Whenever a new
resource is available to the platform, a new entry
(record) representing that resource will be added to
the registry.

• On request the Resource scheduler searches for fit-
ting computing resources and schedules tasks on
behalf of the requester.

• The Resource monitor implements the monitoring
of all active computing resources. Resource level
utilization will be monitored through a set of KPIs.

III. The Platform Service Layer is responsible for the
provisioning of IoTwins services. All services are provided
using OCI18-compliant containers; their images are stored
in a container image registry accessible from all computing
units. Most of the IoTwins services will be pre-packaged and
pre-loaded on the registry, however the system also allows
for packaging and upload of customer services (typically,
custom applications for data elaboration such as data filter-
ing, simulators, ML models, etc.) during runtime.

A service can belong to one of the two following types:

• Data Communication: This category comprises all
services that offer support for one-to-one, one-to-
many, or many-to-many communication. Support
will have to be offered for real-time, bulk data, short-
lived and long-lived transfer in general. Example of
services providing data transfer support are message
brokers based on the publish/subscribe pattern (e.g.,
Kafka), FTP, NTP, webdav, etc.

18. OCI: https://opencontainers.org/
19. Podman: https://podman.io
20. CRI-O: https://cri-o.io
21. KubeEdge: https://kubeedge.io/
22. Kubernetes: https://kubernetes.io
23. OpenStack: https://www.openstack.org
24. Magnum: https://wiki.openstack.org/wiki/Magnum
25. Mesos: http://mesos.apache.org

https://docker.com
https://opencontainers.org/
https://podman.io
https://cri-o.io
https://kubeedge.io/
https://kubernetes.io
https://www.openstack.org
https://wiki.openstack.org/wiki/Magnum
http://mesos.apache.org

• Data Storage: These services store data locally on
the computing unit where the service has been re-
quested. Data storage services will include relational
databases, NoSQL databases, time series DB, file
system-based storage, etc.

The Service Monitoring component is in charge of mon-
itoring the provisioned services and informing the upper
layer about their performance (e.g., end-to-end delay in the
case of a data transfer, storage capacity saturation in the
case of a data storage service, etc.)

The Service Orchestrator component is responsible for
assigning IoTwins applications to computing resources. In
particular, it is in charge of managing the life-cycle of these
applications, starting with the provisioning of all required
software components and ending with their disposal. It
will monitor applications’ health (in terms of QoS) and
take corrective actions in case the QoS level is not being
sustained as requested.

Upon the arrival of an end-user request the Orchestrator
will

a) schedule resources in the computing continuum
(IoT → Edge → Cloud),

b) retrieve the tools/software components/libraries
useful to build up the distributed application,

c) install the software components on the target de-
vices, do the necessary pipelining (configuring and
adequately connecting components to each other),

d) set up and run the application monitoring infras-
tructure, and

e) run the applications.

IV. The Application Layer is populated by customer
applications that perform some kind of elaboration over data.
An example on the IoT level could be an application that
filters or polishes data before sending it to the edge. On the
edge side, there could be an ML model that takes in input
data coming from IoT and elaborates actions (e.g., triggering
commands to actuators). On the cloud side, there could be
a simulator that works on bulk data provided by the edge
or the training of an ML model.

Access, Role & Identity Management is a framework
of policies and technologies for ensuring that the proper
users access the appropriate resources in a computing in-
frastructure. Those systems not only identify, authenticate,
and authorize individuals but also applications and services
that can access certain resources.

3.3.2. Computing levels perspective
The functionalities from the reference architecture (Fig-

ure 2) are combined to form systems implementing the
following three computing levels:

I. The Cloud Level (Figure 3) provides components for
central resource management of all architectural levels, i.e.,
it controls which software is running on which hardware
(orchestration) in the complete system. In addition, the
Cloud Level stores and provides data from and to the devices
on the Edge Level. Third, the Cloud Level provides services

to process the data and create (partial) models of the system
that can the be used on Cloud Level, Edge Level and/or IoT
Level.

Figure 3: Cloud Level Architecture

II. The Edge Level (Figure 4) provides components
that implement the central orchestration decisions on the
edge devices. The orchestration functionality on the Edge
Level is also used to run the models that were created on
Cloud Level. In addition, the Edge Level devices store and
forward sensor data to the Cloud Level and retrieve data
and applications from the Cloud Level. The orchestration
and execution of machine learning components on the edge
devices must thereby be managed with respect to locality
(control algorithms are bound to one device) and the avail-
able computing resources (optimization and adaptation for
hardware properties, e.g., CPU architecture).

Figure 4: Edge Level Architecture

III. The IoT Level (Figure 5) is the most diverse level.
It comprises integrated smart devices that implement all
necessary connectivity and pre-processing functionality as
well as devices that in their architecture resemble the Edge
Level and thus provide methods to orchestrate functionality
on these devices.

Figure 5: IoT Level Architecture

3.4. Implementation

The IoTwins project proposes a possible implementation
of the reference architecture (see subsection 3.3), with a soft-
ware framework built to provide the functionalities defined
by the requirements elicited from the testbeds.

The main component of this framework is a tool for ser-
vice orchestration acting as resource manager on the cloud
layer. This component is the INDIGO PaaS Orchestrator
[13], a tool able to allow the instantiating of resources on
cloud management frameworks (like OpenStack26, Open-
Nebula27) and Mesos clusters28. It takes the deployment
requests, expressed through templates written in TOSCA
YAML Simple Profile v1.0 [9], and deploys them on the
best cloud site available according to SLAs, monitoring info
and other data from the services of the cloud provider.

TOSCA has been selected as the language for describing
applications, due to the wide range of adoption of this
standard, and since it can be used as the orchestration lan-
guage for both OpenNebula (through the IM) and OpenStack
(through Heat). The INDIGO PaaS layer is able to provide
automatic distribution of the applications and/or services
over a hybrid and heterogeneous set of IaaS, such as the
edge layers of the infrastructure and both private and public
clouds.

The PaaS layer is able to accept a description of a cluster
of services/applications, and is able to provide the needed
brokering features in order to find the best fitting resources.
During this process, the PaaS layer is also able to evaluate
data distribution, so that the resources requested by the users
are chosen by the closeness to the storage services hosting
the data requested by those specific applications/services.

The service has been integrated with the INDIGO-IAM
Service to fit the project requirements for an unified identity
and access management service. INDIGO-IAM is an open
source software that provides a layer where identities, enroll-
ment, group membership and other attributes and authoriza-

26. OpenStack: https://www.openstack.org/
27. OpenNebula: https://opennebula.io/
28. Mesos: http://mesos.apache.org/

tion policies on distributed resources can be managed in a
homogeneous way, supporting identity federations and other
authentication mechanisms (X.509 certificates and social lo-
gins). It supports, as authentication methods, SAML Identity
Providers (IdPs) or identity federations, OpenID Connect
providers and X.509 certificates.

With the INDIGO architecture, this sample implementa-
tion fulfils the IoTwins platform requirements, providing the
functionalities of Service Provisioning and Orchestration,
Resource Management, and Access, Role and Identity Man-
agement. Finally, Figure 6 depicts a UML sequence diagram
of the activities triggered by the INDIGO PaaS orchestrator
upon a user’s request. In the figure, the user requests the
deployment of distributed and dockerized software compo-
nents (Min.IO server/client, InfluxDB, Grafana) along the
Edge-Cloud chain; the service orchestrator is in charge of
deploying, configuring and pipelining the components.

4. Conclusion
In this paper we presented the requirements that a

platform for the management of digital twins in industrial
scenarios has to fulfill and the use-cases it has to enable
and support. A reference architecture for platforms to man-
age such digital twins that was developed based on the
derived requirements and use-cases was presented. Thereby
the openness of the architecture allows an implementation
using diverse technologies to exactly fit the application
domains use-cases and technical requirements, which proved
to be useful especially when an IoTwins platform is to be
integrated with an existing system.

One possible implementation of the reference architec-
ture was also presented. In the future, intensive experiments
will be carried out on industrial partners’ testbeds to make
qualitative and quantitative assessment of the architecture
in several domains (including manufacturing and energy
management).

Acknowledgments
This work was partially supported by EU H2020 IoTwins

Innovation Action project (g.a. 857191).

References

[1] Stephan Cejka, Felix Knorr, and Florian Kintzler.
“Edge Device Security for Critical Cyber-Physical
Systems”. In: 2nd Workshop on Cyber-Physical Sys-
tems Security and Resilience (CPS-SR). 2019.

[2] Baotong Chen et al. “Edge Computing in Iot-Based
Manufacturing”. In: IEEE Communications Magazine
56.9 (2018), pp. 103–109.

[3] Wenbin Dai et al. “Industrial Edge Computing: En-
abling Embedded Intelligence”. In: IEEE Industrial
Electronics Magazine 13.4 (2019), pp. 48–56.

[4] Igor Halenar et al. “Virtualization of Production Us-
ing Digital Twin Technology”. In: 2019 20th Interna-
tional Carpathian Control Conference (ICCC). May
2019.

https://www.openstack.org/
https://opennebula.io/

Figure 6: Application deployment: UML sequence diagram

[5] Florian Jaensch et al. “Digital Twins of Manufactur-
ing Systems as a Base for Machine Learning”. In:
2018 25th International Conference on Mechatronics
and Machine Vision in Practice (M2VIP). Nov. 2018.

[6] Abid Khan et al. “Towards Smart Manufacturing
Using Spiral Digital Twin Framework and Twin-
chain”. In: IEEE Transactions on Industrial Informat-
ics (2020), pp. 1–1.

[7] Florian Kintzler et al. “Large Scale Rollout of Smart
Grid Services”. In: 2018 Global Internet of Things
Summit. 2018.

[8] Giuseppe Landolfi et al. “Design of a multi-sided
platform supporting CPS deployment in the au-
tomation market”. In: 2018 IEEE Industrial Cyber-
Physical Systems (ICPS). May 2018.

[9] OASIS. TOSCA Simple Profile in YAML Version
1.3. http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.3. Last accessed on 06-02-2021.
Feb. 2020.

[10] Alexander Perzylo et al. “OPC UA NodeSet Ontolo-
gies as a Pillar of Representing Semantic Digital
Twins of Manufacturing Resources”. In: 2019 24th
IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA). Sept. 2019.

[11] Davy Preuveneers, Wouter Joosen, and Elisabeth Ilie-
Zudor. “Robust Digital Twin Compositions for In-
dustry 4.0 Smart Manufacturing Systems”. In: 2018
IEEE 22nd International Enterprise Distributed Ob-
ject Computing Workshop (EDOCW). Oct. 2018.

[12] Qinglin Qi and Fei Tao. “A Smart Manufacturing
Service System Based on Edge Computing, Fog Com-
puting, and Cloud Computing”. In: IEEE Access 7.nil
(2019), pp. 86769–86777.

[13] D. Salomoni et al. “INDIGO-DataCloud: a Platform
to Facilitate Seamless Access to E-Infrastructures”.
In: Journal of Grid Computing 16.3 (Aug. 2018),
pp. 381–408.

[14] Greyce N. Schroeder et al. “A Methodology for Digi-
tal Twin Modeling and Deployment for Industry 4.0”.
In: Proceedings of the IEEE (2020), pp. 1–12.

[15] Alexander Willner and Varun Gowtham. “Towards
a Reference Architecture Model for Industrial Edge
Computing”. In: IEEE Communications Standards
Magazine 4.4 (Aug. 2020), pp. 1–10. arXiv: 2008 .
04164.

https://arxiv.org/abs/2008.04164
https://arxiv.org/abs/2008.04164

	Copertina_postprint_IRIS_UNIBO
	IoTwins_digitalTwins_prePrint
	Introduction
	Related work
	The IoTwins Platform
	Requirements elicitation
	Use cases
	Reference architecture
	IoTwins platform layers
	Computing levels perspective

	Implementation

	Conclusion

