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Abstract—The Industrial Internet of Things (IIoT) plays a
powerful role in smart manufacturing by performing real-time
analysis for large volumes of data. In addition, IIoT systems
can monitor several factors, such as data accuracy, network
bandwidth and operations latency. To perform these operations
securely and in a privacy-preserving manner, one solution is
to use cryptographic primitives. However, most cryptographic
solutions add performance overhead causing latency. In this
paper, we propose an Edge Lightweight Searchable Attribute-
based encryption system (ELSA). ELSA leverages the cloud-
edge architecture to improve search time beyond the state-of-the-
art. The main contributions of this paper are as follows. First,
we present an untrusted cloud/trusted edge architecture, which
optimises the efficiency of data processing and decision making
in the IIoT context. Second, we enhance search performance over
current state-of-the-art (LSABE-MA) by an order of magnitude.
We achieve this by improving the organisation of the data to
provide better than linear search performance. We leverage the
edge server to cluster data indices by keyword and introduce
a query optimiser. The query optimiser uses k-means clustering
to improve the efficiency of range queries, removing the need
for linear search. In addition, we achieve this without sacrificing
accuracy over the results.

Index Terms—Industrial Internet of Things, Keyword-based
searchable encryption,Edge-Cloud architecture,smart manufac-
turing.

I. INTRODUCTION

The transformation of industrial manufacturing needs the
support of data and systems technology to enhance the effi-
ciency of manufacturing operations, improve product quality,
and support smart decisions. This transformation through the
Internet of Things has demonstrated significant improvements
in sectors such as smart cities, smart homes and healthcare [1].
As a result, introducing the IoT to the industrial sector led to
a new industrial revolution; Industry 4.0. A term Industrial
Internet of Things (IIoT) has been used to collectively refer to
proposed IoT solutions in this space [2], [3]. Khan et al. [4]
have predicted that IIoT will have 75 billion deployed devices
by 2025 and Accenture has predicted that the IIoT would add
$14.2 trillion US dollars to the global economy by 2030 [5].

A typical use case for IIoT is remote maintenance, product
traceability to manage the product life cycle and service
optimization [6]. In this case, factories may need to share data
with third parties such as insurance, consulting companies,

customers and employees, requiring different users to see dif-
ferent levels of information. Thus, accessing all the data might
compromise the factory while accessing some higher level of
information might be beneficial [7]. To provide accessibility,
data from multiple locations are collected and analysed on
the cloud, often provided by third-party Infrastructure as-a-
Service (IaaS) providers. Relying on IaaS providers raises
concerns of data confidentiality, integrity, privacy and security.
Cryptographic primitives such as AES and RSA are used
in various implementations [8]. Often efforts concentrate on
protecting the data-at-rest [9], [10]. This goal is challenging
as it requires processing the encrypted data (not the plaintext)
remotely in the cloud often through the use of searchable
encryption (SE) [11]. However, intermediate steps of partial
decryption often execute in the untrusted cloud environment.
Thus, implementing an SE method with minimal leakage of
unencrypted information is desirable. Additionally the search
requires data to be in a predefined (partial) order. Moreover,
to control and manage data access, IIoT systems must deploy
access control (AC) policies [12]. This adds an even more
significant challenge [13], [14]. Furthermore the keywords
may not relate to the order the data is stored and are embedded
in the ciphertext. Finally, all these challenges relate to the
computation and power availability of IIoT devices, the real-
time requirements imposed by the industrial processes, the
complexity of SE and AC algorithms.

A. Contributions

In this work, we introduce a cloud-edge architecture
IIoT that utilises keyword-based searchable encryption multi-
authority (MA) access control (AC) scheme for IIoT devices
assisted by a three-tier edge computing architecture. As acci-
dents of data leakage in cloud storage happen frequently and
have been considered as one of the security issues in cloud
storage [15], we consider the devices in the cloud to execute
in an untrusted environment and only allow it to process
encrypted data. We consider the devices executing in the edge
’tier’ to execute in a trusted environment. Any processing that
involves the raw data or partial decryption executes on the
edge server [16], [17]. Our contributions are as follows:

• We introduce an edge lightweight searchable attribute-
based encryption system (ELSA), a cloud-edge architec-



ture that optimises the efficiency of data processing and
decision making in the IIoT context.

• Our key novelty is the introduction of keyword indices
at the trusted edge alongside a query optimiser, which
uses a clustering algorithm; this improves the efficiency
of range queries, removing the need for linear search.

• We improve search performance relative to state-of-the-
art lightweight keyword-based searchable encryption with
multi-authority access (LSABE-MA) [18] by an order of
magnitude.

B. Organisation

The organisation of this paper is as follows. We briefly
describe related work in Section II. We provide a description
of LSABE-MA in Section III. ELSA and our optimisations to
improve search time are discussed in Section IV. In Section
V, we outline our evaluation methodology based on three
factors: overhead times, search time, and accuracy. Results
are presented in Section VI. Section VII discusses threats to
validity. Finally, we present our conclusions in Section VIII.

II. RELATED WORK

The first searchable encryption (SE) scheme was introduced
by Song et al. [19] and the first asymmetrical SE scheme
was presented by Boneh et al. [20]. Searchable encryption
is the most common search method to retrieve files using
keywords instead of retrieving all the encrypted files back.
The subsequent SE schemes were designed to support a range
of properties such as single keyword search [21] and multi-
keyword search [22].

Zhou et al. [23] identified schemes that combined Public
Key Encryption with Keyword Search (PEKS) with Attribute-
Based Encryption (PEKS-ABE) for cloud-based applications.
They identified that PEKS-ABE provides efficient data sharing
and search capability, though the privacy of user keys needed
improvement. However, they do not also apply the work to
IIoT. In this case an edge server could provide a more trusted
and privacy-preserving method for processing and storage of
transactions that involve the use of private user keys.

The following works focus on improving either SE or AC
for IIoT environments, but they do not combine them. Chen et
al. [24] proposed lightweight searchable encryption for cloud-
based IIoT applications with security improvements. Qi et
al. [25] improve Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) in the following ways:

1) They are using a hybrid cloud infrastructure. They
propose a public cloud to store encrypted IoT data and
a private cloud to execute CP-ABE tasks over the data.

2) They guarantee data-privacy at the user level against the
private cloud. The authors achieved this by proposing
two encryption techniques. These techniques work by
protecting IoT data privacy at the item level and pre-
venting the user-key leakage problem.

3) They enable the private cloud to execute CP-ABE en-
cryption/decryption tasks in batches, while executing the
CP-ABE re-encryption tasks regardless of the size of

IoT data. Thus, they improve the performance of IIoT
applications.

Chen et al. [24] proposed lightweight searchable encryp-
tion for cloud-based IIoT applications with security improve-
ments. To achieve more precise data retrieval, Miao et al.
[26] proposed an improved ABE scheme with multi-keyword
search to support simultaneous numeric attribute comparison,
thereby greatly enhancing the flexibility of ABE encryption
in a dynamic IoT environment. Furthermore, attribute-based
multi-keyword search schemes were also investigated in [27].
Nevertheless, this CP-ABE scheme inevitably concentrates on
the single authority environment in which a central authority
(CA) essentially controls all attributes’ authorisation. The
single authorisation cannot effectively generate and manage
the public/secret keys in the IIoT. However, these studies did
not improve the bandwidth of data that is outsourced to the
cloud, which is important to minimise the computational cost.

Moreover, many extensions of keyword-based searchable
encryption work in recent years such as [28], [29]. They
achieved decentralization by eliminating the central authority.
However, their schemes suffer from high computational over-
head and use expensive bilinear pairing operations. Consider-
ing the storage space constraint of lightweight IIoT devices,
it is a serious issue.

Zhang et al. [18] proposed a lightweight SE-AC scheme
by providing lower computational complexity. Moreover, their
framework enhanced privacy by preventing leakage during
data outsourcing to a cloud server. This scheme provides fine-
grained AC, multi-keyword search, lightweight decryption,
and a multi authority environment. They provide low latency
as well as improved security against the chosen-keyword
attack and the chosen plaintext attack. Their LSABE and
LSABE-MA schemes can support single keyword and multi-
keyword searching while maintaining the lightweight decryp-
tion on many practical testing platforms (PC, mobile phone,
Single-board Computers). Moreover, their schemes meet the
low-latency requirement of IIoT applications. Therefore, their
schemes are suitable for practical IIoT environments. However,
their work did not consider the accuracy and data bandwidth,
which is regarded as requirements of IIoT applications. In
addition, the encryption time for their scheme may not be suit-
able for real-time application requirements. Simultaneously,
latency is an important metric in the encryption phase for the
real-world IIoT environment. This work is based on sequential
search of all the encrypted data records. Thus, searching over
the encrypted privacy-sensitive data uploaded to the cloud
can introduce latency that does not adhere to the real-time
requirements of IIoT. Hence, we identify a deficiency in the
searching method and associated time as well as the bandwidth
utilised and we aim to improve the overall performance to meet
IIoT requirements.

III. BACKGROUND

We first conduct a reproduction study of LSABE-MA [18]
over two parts, a server and a client app. We then enhance



this approach through use of an edge device that runs sketch
algorithms and a query optimiser.

For the LSABE-MA scheme, the client app encrypts and
transmits the encrypted data to the cloud by performing the
following:

• Initialisation: The system is set up by the admin by taking
as an input a security parameter κ. The outputs are the
master secret key (MSK) and public parameters (PP )

(MSK,PP )← Setup(κ)

The Global Setup generates the global identity GID
beside the PP and MSK

• Secret Key Generation for AC: The authority setup al-
gorithm for each authority Aj generates an authority
attribute public key APKi,j and attribute secret key
ASKi,j for each attribute i. The secret key generation
utilizes the master secret key, public parameter, global
identity, and attribute secret key as parameters to generate
the secret key for each specific authority.

SecKeyGene(MSK, i,GID,ASKi,j)← SKi,GID

• Data Encryption: The data owner extracts the keyword
set KW from file M to produce the ciphertext CT ,
containing the IIOT devices’s reading and the encrypted
keyword. The encryption process takes the following
input: dataset M , access policy (A,q), keyword set KW ,
PP and the set of attribute public keys APKi,j for
relevant authorities, to produce the ciphertext CT , which
contains the encrypted secure index I and the encrypted
file CM .

Encrypt(M, (A,P ),KW,PP,APKi,j)← CT

• Data Transmission: the client sends the ciphertext to the
cloud (server)

• Searching: the data user generates a trapdoor TKW ′ by
using a set of keywords, PP and SK.

• Transformation Key: The data user also runs the trans-
form key generation function, which takes the SK and
a blind value z to generate the transformation key TK.
The user then sends the TK with trapdoor query to the
cloud.

The second part executes on the server. The server performs
the following:

• Receive the encrypted data from the user
• Store the data in a database
• Receive a search trapdoor from the user and perform

the search. The search function takes the trapdoor TKW ′

and the ciphertext as input. If the output of this function
is ”0”, then the data was not found in the database. If
the output of this function is ”1”, the cloud runs the
transformation algorithm.

Search(CT, TKW ′)← 0/1

• If the attributes included in transformation key TK
satisfy the access policy in the ciphertext then the server

runs the partial decryption on the result of the query using
the transformation key.

• Return the result to the user.
When the user (the client) receives the data, they will

decrypt it using the blind value z and the partially decrypted
ciphertext to display it as an output.

Decrypt(z, CTout)←M

For these two parts the following features of the LSABE-MA
were implemented: setup, key generation, encryption, trapdoor,
transform key generation, search, transformation (partially
decryption) and decryption.

IV. ELSA

A. Architecture

As illustrated in Fig. 1, our novel ELSA scheme leverages a
cloud-edge architecture. We propose a lightweight searchable
attribute-based encryption method on the edge. .

Edge Server Cloud Server

Records of Encrypted Data  

Sequence Number of each Record

Trapdoor with keywords

Trapdoor with Specific Range for Search

Required Records

Partially Decrypted Results

Raw Data

IIoT devices

Sketch

Query 
optimiser

Fig. 1. The sequence diagram for ELSA which demonstrates the interactions
between IIoT, Edge, Cloud, and the User.

In the cloud-based search model, query time increases as
the number of ciphertexts increase. If a large number of users
access the ciphertext at the same time, the server can be
blocked or even crash [30]. In LSABE-MA, this is induced
by the linear search performed on the cloud server over the
entire database. Our proposed optimisations remove the need
for a linear search through the introduction of clusters of data
points relevant to existing keywords.

Further, a cloud-edge architecture is the most suitable plat-
form for industrial applications. An edge computing entity can
optimize the overall system computation, as it can be closely
associated with IIoT objects while it can optimise the use of
cloud services [31].

The ELSA method presented in Fig. 2, utilises the cloud-
edge architecture to process the query over the encrypted
data where the edge is the trusted environment. The cloud
server is responsible for interacting with the full encrypted
dataset and only handles encrypted data (Fig. 2 left). Moreover,



the use of the edge server can reduce the load on cloud
communication and meet the IIoT privacy requirements, while
reducing the latency for the user to acquire the requested
data overall reducing core traffic. The edge (Fig. 2 middle)
is responsible for handling incoming requests from the user,
eliminating queries that would yield no result (bloom filter)
and optimise queries that are propagated to the cloud. It also
communicates directly with the IIoT devices and the data
owner to establish the AC policies. Any partial decryption
happens on the trusted edge server while user keys are only
handled in this environment.

Attribute 
Authority

Bloom 
Filter 

Key 
Generation

IIoT 
Devices

Plain 
Text

Certificate 
Authority

search

Encrypted 
Data and 
keywords 
with ID

Data 
User  

serach

    Data 
Owner

 server

The range of the Record

fetch

Transformation

Attribute Public Key

Data
Access Policy

Edge Server

Transform Key with Record

secret key

Cloud Server Client Side

Keywards

IDs

The range of ID

IDs

Lookup 
Tables

Trapdoor & Transform Key

Encrypted Data &Keywords

Encrypted Data

Ciphertext (Decrypted Partly)

Fully Decrypted

Data

Attribute Secret Key

Global Paraamter

Fig. 2. Proposed ELSA Architecture separating domains of trust coinciding
with data residence.

B. Generating Lookup Tables

To improve the performance, we enhance the architecture by
introducing the edge server. The edge server is located within
the smart-factory and introduces two significant optimisations
to reduce latency of the encrypted data search. These are
the sketch algorithms (probabilistic data structures), and the
query optimiser which we describe further in this section. The
workflow of ELSA is divided into 3 phases, as follows:

Phase 1: Generating keywords and ciphertext. The
proposed architecture can collect raw data from various
IIoT devices. The IIoT devices are connected to the edge
Server. Regardless of the keyword generation mechanism
(e.g., using feature extraction or thresholds), the edge
generates the appropriate keyword set (KW) for each
reading. The number of keywords associated with each
reading is assumed to be predetermined at this point. For
example in this paper we use the following: {CO2high

,
CO2low ,CO2normal

, humiditynormal, humidityhigh,
humiditylow, temperaturenormal, temperaturehigh,

temperaturelow}. Then the edge encrypts the raw data
with the keywords and appropriate user credential (CR) and
generates a ciphertext (CT ) as follows:

Encrypt({value,KW, sensorID, factoryID,CR})← CT

Phase 2: Building and updating the lookup tables. The
edge forwards the encrypted records to the cloud. The cloud
then stores the encrypted record and generates a unique ID
for each record. A unique ID for each encrypted record is
sent back to the edge server. The edge is now responsible for
maintaining the lookup tables which are updated whenever a
new ID is received. The lookup tables store the ID and the
associated keywords. The edge will also store the keywords
in a sketch table which is a Bloom-Filter [32]. The sketch
algorithm optimises access over summarised data through
the use of estimated or probabilistic methods, in this case
a Blook filter [33]. The Bloom filter [34] is based on a
membership approach to test if an item exists in the stored data
or no.The Bloom-filter simply answers the question of whether
a specified item exists in the sketch or not. Thus, the sketch is
used to determine whether the specified keyword exists in the
database or not, which reduces the searching time. Finally the
end user (Fig. 2 right) is responsible for generating the initial
queries bu generating a trapdoor, executes decryption based to
generate plain text if and only if the AC allows them access.

Phase 3: Searching. To initiate a search over the encrypted
data the user (or client) will need to creates a request through a
trapdoor function parameterised by a keyword and credentials.
This process is the trapdoor generation. When a client gener-
ates a trapdoor, it must first send the trapdoor along with the
required keywords to the edge server. For each keyword, the
sketch algorithm is executed to confirm if the keywords were
found in the look-up tables. If not found, the edge responds
to the client with zero results and indicates that no data is
available for the given keyword. If found, the query optimiser
is executed. The optimiser decides if a query should be handled
as a range or point query. When a client sends a query to the
edge, the edge will fetch all the IDs associated with the query
(keywords). The optimiser will then decide if the query should
be executed as a point or a range query. The IDs are then send
to the cloud and the cloud will only search within the specified
IDs.
Range query. The optimiser uses the k-means clustering
algorithm [35], [36] to cluster the IDs. It will be fastest to
search over data if you have clustered data. When using non-
clustered data, the server needs to do a sequential search over
the entire data. The data storage is the clustered index, so
searching by a clustered index eliminates the sequential search.

In ELSA, clustering data using the sklearn kmeans++ algo-
rithm with default hyper-parameter settings. It is the simplest
to implement and a lightweight clustering algorithm to deal
with massive data reduction to centroids. K-means clustering
is a popular unsupervised machine learning algorithm that
groups n data items into k clusters. The user specifies the
value of k. The centroid of each cluster is used to symbolize
it. The first k records are normally utilized as the centroids in



the first iteration. The remaining records are clustered based
on the smallest ”distance” between each record and each
centroid. The centroids are recalculated at the end of the first
iteration which using the mean values of the attribute values
for the records in each cluster. This step executes after each
user query. Once the optimiser clusters the IDs, it sends the
lower and upper bound of the IDs (each cluster) to the cloud.
For example, a cluster that contains IDs 1,2,5,7 will send
the values 1 and 7 to the cloud. Thus, reducing the query
size. Note that the number of clusters has to be predefined,
otherwise methods such as finding the optimal number of
clusters can be adopted.
Point query. In some cases sending the lower and upper
bound to the cloud uses more data than sending the IDs
themselves. In this case, the optimiser will send the IDs to
the cloud. For example, assume we have a query that requires
the following IDs, 1,6,20,30. And the optimiser is required to
find two clusters, i.e., cluster1 (1-20) and cluster 2 (30). Which
means that in a range query, the cloud will search in records
from 1-20, and record 30. That is a total of 21 records. In a
point query, the server will only search the exact records, i.e.,
1,6,20,30 (total of 4 records).

After the cloud searches for the specified IDs (using the
LSABE-MA search function), the matched required records
are then sent to the edge. Note that in this case, the cloud
will search within the specified IDs while ensuring that the
user has the appropriate permission (which is embedded in the
trapdoor) to access these records. Finally, the edge will receive
the records from the cloud, partially decrypt the records and
forward them to the authorized users. We discuss the sketch
and optimiser components of the search phase in the next
section.

C. Searching

As mentioned in the previous section, the edge is using the
record IDs to build the lookup tables. Using the IDs provides
several advantages. It allows the data to be sorted, it reflects the
insertion order, and groups data together into clusters. So, the
goal here is to identify a subset of data to search within instead
of performing sequential search on the entire data volume.

The query optimiser algorithm 1 enhances the search pro-
cess on the edge by clustering the data utilising their ID and
their associated keywords using the k-means algorithm.

Based on the density of the data around the keyword
centroid the optimiser selects if a range of data points or if
a single data point corresponds to the user query. A range
query is executed when there are several data points in a dense
cluster around the requested keyword. A point query (or a set
of point queries) is executed when there are few and space
data points corresponding to the requested keyword. The point
query is used to return unique records of required data and
avoid returning unrequired records from the cloud within a set
range. The range query is used to particularly when dense data
is to be return that were inserted in the database in a sequential
range of. This avoids sequentially searching through all saved
records.

Algorithm 1 Query Optimiser
Require: numOfClusters, IDs - The IDs to cluster
Ensure: Clusters ranges or IDs

1: function OPTIMISE(numOfClusters, IDs)
2: clusters← kmeanCluster(numOfClusters, IDs)
3: itemsCount← count(numOfClusters)
4: idsCount← count(IDs)
5: if itemsCount ≥ idsCount then
6: return upperAndLowerBounds(clusters)
7: else
8: return IDs

Moreover, as illustrated in Fig. 2, the edge server utilises
a sketch algorithm. The sketch algorithm we are using in
this case is the Bloom filter [34]. The Bloom filter works
as follows: hash the key to be searched, then check all of
the resulting array’s index places. Return false if any bit is
zero , indicating that the key is “missing”. Return true if any
bit is one, indicating that the key is “found”. This algorithm
reduces the overhead on cloud, in particular when the user
runs a query that would return no results, while the size of
this sketch on the edge is 158 bytes. Thus being very efficient
in both execution time and resource use. However, the Bloom
filter can introduce imprecision with the probability of a false
positive being 0.01 in this case. If the number of unique
keywords increase then the the number of hash function and
the size of bloom filter will be increase. To calculate the bloom
filter in ELSA, the number of unique keywords is nine, the
probability of false positive is 0.01 and the number of hash
function is one. So, the size of bloom filter is 100 Bytes. This
step can eliminate queries that would potentially return zero
results. Thus, ELSA eliminates redundant queries from being
propagated to the cloud and causing a linear search over the
full database only to return an empty set of results. Thus a
false positive would be initiating such a search which is not
detrimental to returning the correct response to the user. It
would only add some amount of unnecessary processing.

V. EVALUATION

This section describes the evaluation setup, evaluation cri-
teria, and presents the evaluation results. We evaluate ELSA
(proposed method) by comparing its performance to the
LSABE-MA scheme through reproducing the work presented
in [18].

A. Evaluation Setup

1) Implementation and Dataset: In our evaluation, we
first reproduced the state-of-the-art lightweight keyword-
based searchable encryption scheme LSABE-MA [18]. The
LSABE-ME [18] scheme and ELSA were implemented in
Python 3.7. For the dataset, we used three different cases
of data based on the percentage of representation for each
keyword. These are the sparse dataset case, the medium
density case and the dense case. The data consists of 200,000
unique temperature (temp), co2, and humidity (hum) values.
For evaluation purposes, we considered the {CO2high

,



CO2low ,CO2normal
, humiditynormal, humidityhigh,

humiditylow, temperaturenormal, temperaturehigh,
temperaturelow} values as the keywords. This data is
categorical, based on threshold values for ranges. The results
are calculated by taking the average of 1000 runs for the
three different cases. The dataset was synthetically generated
as presented in Algorithm 2. For sparse data a probability of
appearance was used to generate more data points associated
with one keyword and very few data points associated with
another. The latter being a more cumbersome task for the
linear search approach in the LSABE-MA scheme.

Algorithm 2 Dataset generator
Require: len, keywords - The keywords to associate with

len data points, probabilities - percentage of representa-
tion for each keyword

Ensure: dataset
1: function GENERATE(len, keywords, probabilities )
2: while len−− ≠ 0 do
3: value← uniform rand()
4: keyword← get next(keywords, probabilities)
5: datapoint← {value, keyword}
6: return dataset

The specific trapdoor generated for the evaluation in each
case was constant and used in both the LSABE-MA and our
proposed method ELSA.

2) Architecture: Fig. 3 illustrates the experimental setup
used for LSABE-MA. We separated this scheme into two parts
client and server. We run the client application on an edge
device with Intel 2.3 GHz Core i9 processor and 16GB RAM.
We deployed the server code on a docker container hosted on
a DigitalOcean cloud provider (located in the UK). The plan
for the cloud provider was CPU-Optimised, with 1 dedicated
CPU, 2-32 vCPUs, 50 GB Memory, 2GB RAM/CPU and 2TB
Bandwidth.

The following describes the procedure involved in evaluat-
ing LSABE-MA and our scheme (ELSA):
Setup and secret key generation - Client (1-2). The client
setup and generates secret keys.
Encryption - Client (3). The client encrypts the sensor
readings along with the appropriate keywords. The client then
sends the encrypted data to the cloud, storing it on the cloud
(step 4).
Searching - Client (5-6). The client generates trapdoors for
the required keywords (query). Also, the client generates a
transformation key used by the cloud to transform (partially
decrypt) the encrypted results before sending them to the
client.
Searching - Server (7-8). The server receives the trapdoor and
transformation key and performs a search on the encrypted
data. The results are then transformed (step 8) and returned to
the client.
Decryption- Client (9). The client decrypts the data using the
secret key only.

Edge server

4- Store encrypted data

Cloud server

1- Setup (?)? (MSK,PP).

2- SecretKeyGen(MSK,S,PP)? SK.

3- Encrypt (M,KW,(A,?),PP)? CT.

5- Trapdoor (SK, KW?, P P)? TKW?

6- TransKeyGen (SK, z)? TK.

7- Search (C T , TK W?)? 0/1.

8-Transform (C T , T K)? C Tout/? .

9- Decrypt(z,CTout)? M.

Encrypted data (CT)

Search (TKW?, TK)

(Partially decrypted )

Transformed data

Fig. 3. Evaluation architect of LSABE-MA where the user is directly
requesting information from the cloud using the ELSA edge Server as their
end-point machine.

B. Criteria

As our goal is to develop a secure, fast and accurate solution
for IIoT data. Thus, we focus on the following evaluation
criteria:
Performance. We evaluate the performance of LSABE-MA
and our method ELSA by measuring the execution time for
various functions. Specifically we measure the execution of
the key generation, encryption, search and decryption.
Accuracy. We measure the accuracy of the query by compar-
ing the encrypted results of ELSA method and LSABE-MA
against a plaintext version. We use the well defined Precision
and Recall metrics [37] to measure the accuracy of the search.
Precision is the percentage of relevant records among the total
retrieved records, which is defined as:

Precision =
RRT

RRT − IRT
× 100%

Recall on the other hand is the percentage of relevant
records in relation to the correct records (in the database),
which is defined as:

Recall =
RRT

RRT −RRNT
× 100%

where:
• RRT = Number Of Relevant Records Retrieved
• IRT = Number Of Irrelevant Records
• RRNT = Number Of Relevant Records NOT Retrieved

VI. RESULTS

A. Secret Key Generation

Fig. 4 demonstrates the key generation time for ELSA
method and LSABE-MA by measuring the execution time in
seconds. For both schemes, we measured the execution time
for the function (MSK, i,PP,GID,ASKi,j) → SKi,GID.
The results shows that there is no significant difference
between ELSA method and LSABE-MA demonstrating that
adding the edge server has no detrimental effect to the overall
performance.
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Fig. 4. Key Generation Time measured over 1000 repetitions for each case,
reported collectively.

B. Encryption and Decryption

Fig. 5 and Fig. 6 show the encryption and decryption
time respectively for both our scheme and LSABE-MA. We
measure the execution time for both cases in terms of the
function (M, (A, ρ),KW,PP, {APKi,j})→ CT . Decryption
time for both approaches were measured using the same
decryption function (z,CTout)→M . Again the introduction
of the edge server has caused no detriment to the overall
performance.
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Fig. 5. Encryption Time for the full dataset measured over 1000 repetitions
for each case, reported collectively.
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Fig. 6. Decryption Time of the returned query results measured over 1000
repetitions for each case, reported collectively. The results contain 100,000
datapoints in the dense case, 22,000 datapoints in the medium sparsity case
and 10,000 in the sparse case.

C. Searching

To further evaluate the scalability of our approach, we
measure the search time using various density datasets (shown
in Fig. 7). The searched keyword represents 50% of the data
size in the Dense Data, 11% in the medium density and 5%
in the sparse data. As shown in Fig. 7, the searching time for
LSABE-MA is consistent in all three cases, i.e., 386s. ELSA
attains 214s search time for the dense data, which is 1.8×
faster than LSABE-MA. ELSA has a 43s and 28s search time
for the medium and sparse data, respectively. To conclude,
ELSA achieves 1.8 − 14× better performance than LSABE-
MA. As the sparsity of the data increases the benefit of non-
linear search is becoming apparent. In a dense dataset where
the keyword repeats very often the search optimisation still
returns a large range to be searched over. However, as the
keyword appears less frequently in the sparse case, the smaller
range queries combined with point queries significantly boost
performance.

Fig. 7. Search time for three different cases measured at 1000 repetitions per
case.

D. Edge and server operations and overhead times for ELSA

In our proposed method ELSA, the encryption process has
one additional step. This additional step is to store data in
the lookup table on the edge. So, the overhead of this step
is illustrated in Table I as load data time. It is evident that
this time is insignificant compared to the overall execution
time and did not affect the user because of the computational
capacity available to our edge server.

In addition, we have two operations in the search process:
sketch and clustering algorithms. The sum of the execution
time for both these operations are less than 0.1 ms as shown in
Table I once again being insignificant compared to the overall
execution time.

However, as ELSA scheme depends on several devices
communicating we have further evaluated the execution time
of each step in the process to identify bottlenecks and isolate
the effect of networking or cloud operations that are beyond
our control. In the Fig. 8, we illustrate the overall execution



TABLE I
MEAN OVERHEAD TIMES ON THE EDGE SERVER FOR THREE DIFFERENT

CASES.

Overhead Times for ELSA
Factors clustering(ms) data load(ms) Sketch(ms)

Execution Time 0.05 32.71 0.00007

time as well as details of the execution time for the various
operations which take place on the edge and Cloud servers.
These operations are the following: the total operations time as
overall operation, encryption time ,the overall operation of the
cloud server, edge storage time, cloud server - communication
time, and cloud server - storage time. It is evident that the
encryption process is one of the main contributors to the
overall latency.

Fig. 8. The Time of Operations in Edge and Server for ELSA measured at
1000 repetitions for each case, reported collectively.

E. Overall Execution Time

Fig.9 compares our ELSA scheme with LSABE-MA
scheme in overall execution time. This graph aims to deter-
mine the overall effect of search time improvements to the
latency experienced by the user from initial query to final
result. As demonstrated, the ELSA scheme reduced the overall
execution time by 1.21x.

F. Lookup Table Size

To improve search time we have traded-off space used on
the edge server to store the lookup tables. To investigate the
potential limitation of ELSA we have measured the lookup
tables size for our three cases. As presented in Fig. 10, the
size of the lookup tables for dense data, medium density data
and sparse data are 2.39, 2.15 and 2.25 Megabytes respectively.
This did not prove to be a limitation for our use cases but might
need to be further investigated in future work to identify any
adverse effect on scalability of ELSA for big datasets in the
IIoT context.

Fig. 9. Overall Execution Time in Seconds measured over 1000 repetitions
for each case, reported collectively.

Fig. 10. Lookup Table Size for three different data cases measured at 1000
repetitions per case.

G. Accuracy

To evaluate the accuracy, we performed two queries. The
first query contains one keyword: (co2-high), while the second
query contains two keywords: (co2-low,co2-normal). Both
queries use different keywords. As shown in Table II, both
schemes offer 100% precision and recall for both cases. As
a result our additional operations and optimisations did not
introduce a detrimental effect on the accuracy.

TABLE II
SEARCH PRECISION AND RECALL (ACCURACY) FOR OUR ELSA METHOD
AND LSABE-MA DEMONSTRATING LOSSLESS DATABASE PERFORMANCE.

Proposed ELSA scheme LSABE-MA
Number of keywords 1 2 1 2
No. retrieved records 44,000 22,000 44,000 22,000

Precision 100% 100% 100% 100%
Recall 100% 100% 100% 100%



H. Comparison to original LSABE-MA results

In our implementation, we use one attribute, so we compare
the results from our re-implementation with the original results
from [18] for the one attribute case, which is the first point
in their reported graphs. It is worth mentioning that their
number of keywords is smaller (set to 5) compared to our
re-implementation study.

In terms of encryption time, we find the LSABE-MA
scheme takes 9.85s to encrypt the data, while in our Fig. 5 we
reported 1550s on average. However in our case we measure
the encryption of the full dataset while from the original paper
it is unclear if they report the encryption of a single entry (one
datapoint being added). If a single datapoint requires 9.85s
then our implementation of the encryption for our 200,000
points is orders of magnitude faster. However, we are unable
to verify this assumption.

Fig. 6 shows the decryption time of our replicated LSABE-
MA, which took 3160 ms on average. In [18], their scheme
requires 400 ms to decrypt the ciphertext, which, as they claim,
does not significantly increase with the increased number of
attributes. However, again it is unclear how many datapoints
are returned in each case as it is dependent on the dataset,
the keyword appearance frequency and the combination of
keywords used for the query. As a result we cannot conduct
any reasonable comparison between these two numbers. This
is because, the authors of the original study did not explain
the complexity of the dataset, the hardware configuration on
the cloud and did not disclose the software they used.

From this analysis we can conclude that the large differences
come from the number of records encrypted or decrypted in
each case. Overall, it is unclear what is the size of the record
encrypted in the original study, how large is the database that
is searched over, and how many records are returned during
the measured decryption step. Further it is unclear how long
is the search time in the original study. Thus, no meaningful
conclusions can be extrapolated from this comparison.

VII. THREATS TO VALIDITY

Because of lack of access to the original source code for
LSABE-MA, we have created a clean room re-implementation
of the scheme. This means that there might be subtle dif-
ferences to the implementation as initially presented [18].
However, we followed the description presented in the paper
and replicated algorithms and formalism to the best of our
capacity.

The evaluation is performed on a single fixed deployment
scenario. We feel this scenario is sufficiently representative to
allow us to hypothesise that the trends identified in the results
would generalise.

Further the evaluation focused on a limited set of queries
and respective searches. We have tried to cover different
data characteristics within those to identify trends in the
performance of ELSA. In further work we aim to implement
a wider variety of queries to identify potential scalability
thresholds and limitations.

Finally, ELSA uses k-means as the method to restrict
the scope of the query search cloud-side. However, other
clustering methods may apply in this scenario. We intend to
investigate these in future work.

VIII. CONCLUSION

In this paper, we presented a new cloud-edge architecture
for Keyword-based Searchable Encryption with an optimised
query process. Compared with the state of the art, our scheme
ELSA is advantageous with respect to maintaining the en-
cryption and decryption process and achieving more efficient
data sharing and data searching. In terms of performance, the
experimental results show that our ELSA scheme effectively
reduces the search time by up to 14× and overall perfor-
mance by 1.21×. Compared to LSABE-MA the ELSA scheme
significantly reduces the execution time and communication
overhead by clustering the required data without sacrificing
accuracy. This is achieved through the use of optimisations
on the edge server that provide better than linear search
performance at a trade-off of utilised storage space.
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