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Abstract—Accurate real-time traffic flow prediction can be
leveraged to relieve traffic congestion and associated negative
impacts. The existing centralized deep learning methodologies
have demonstrated high prediction accuracy, but suffer from
privacy concerns due to the sensitive nature of transportation
data. Moreover, the emerging literature on traffic prediction by
distributed learning approaches, including federated learning,
primarily focuses on offline learning. This paper proposes BFRT,
a blockchained federated learning architecture for online traffic
flow prediction using real-time data and edge computing. The
proposed approach provides privacy for the underlying data,
while enabling decentralized model training in real-time at
the Internet of Vehicles edge. We federate GRU and LSTM
models and conduct extensive experiments with dynamically
collected arterial traffic data shards. We prototype the proposed
permissioned blockchain network on Hyperledger Fabric and
perform extensive tests using virtual machines to simulate the
edge nodes. Experimental results outperform the centralized
models, highlighting the feasibility of our approach for facili-
tating privacy-preserving and decentralized real-time traffic flow
prediction.

Index Terms—Blockchain, Federated Learning, Traffic Flow
Prediction.

I. INTRODUCTION

Traffic prediction plays a critical role in alleviating traffic
congestion and associated negative impacts (e.g., unreliable
travel time estimates, increased fuel consumption, adverse
environmental effects) [1]. Recently, as vehicle miles traveled
(VMT) continues to grow annually, traffic congestion has
become a pervasive societal problem. For example, the 2019
Urban Mobility Report estimated congestion in the United
States resulted in an additional 8.8 billion hours of travel
time and 3.3 billion gallons of extra fuel consumption in 2019
alone [2]. Consequently, real-time traffic prediction can help
alleviate congestion by providing roadway users and busi-
nesses accurate real-time traffic conditions for route planning
and offering rerouting options once the vehicles are en route.

Recently, deep learning (DL) has become a promising
method for traffic flow prediction (TFP), having demonstrated
much success in the literature [3] [4], with prediction accu-
racy as high as 93%. However, in the context of the TFP
problem, existing DL models are centrally trained, requiring
vast amounts of data to be collected and aggregated by a
data center or the cloud for processing. This process makes it
difficult to comply with the data privacy regulations [5] if all
of the collected data must be directly shared to facilitate model
creation, or when the crowd-sourcing techniques are used [6].

In addition, the emergence of connected and autonomous ve-
hicles (CAVs) into the internet of vehicles (IoV) network will
necessitate new methodologies, including real-time learning
and prediction, for utilizing the wealth of data dynamically
generated by sensors on CAVs [7]. Therefore, a paradigm shift
in DL methodologies becomes necessary to enable efficient
and distributed online model training leveraging real-time data
while protecting data privacy.

Federated learning (FL), where multiple participants collab-
oratively train a learning model without exposing the underly-
ing data [8], has been investigated as a way to enable efficient
and distributed knowledge sharing for various applications [9].
For TFP, FL can train the model in real-time and update it
dynamically as traffic sensors and edge devices continuously
collect incoming traffic data. Moreover, FL removes the need
to share or aggregate locally-collected traffic data, providing
improved communication efficiency, privacy, and security for
stakeholders (e.g., data collectors).

This paper proposes a novel framework for real-time traffic
prediction by integrating FL with a permissioned blockchain
network of edge devices. Our FL approach to real-time TFP
utilizes the Federated Averaging (FedAvg) algorithm [8] with
deep learning models. Specifically, the roadside units (RSUs)
collect local traffic data within their respective observance
areas and then leverage it to train a localized traffic flow
prediction model. After training, the RSUs share their knowl-
edge with other participants by sending only the up-to-date
model parameters, in contrast to sharing the local traffic data.
In addition to preserving privacy, our approach has the added
benefit of distributing training workload to the RSUs at the
network edge.

We propose to use a permissioned blockchain network as
the framework for FL. Blockchain is a decentralized network
technology that can provide the benefits of reliability, security,
and integrity for all stored local models in comparison to
centralized storage alternatives (e.g., cloud service providers)
[10] [11]. Regarding the IoV, blockchain has been recently
demonstrated as a strong candidate for improving security
of the networking layer [12]. In the case of permissioned
blockchains, the consortium of participating nodes control both
system usage (writes) and data access (reads) [13] [14]. This is
in stark contrast with public permissionless blockchains (e.g.,
Bitcoin), where anyone can join the network at will, access
all of the data, and participate in consensus processing [15].
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These properties of permissioned blockchain make it an ideal
candidate for the FL framework.

Together, permissioned blockchain and FL provides a novel
way to train TFP models in real-time using locally collected
live data, with additional benefits of being dynamic, privacy-
preserving, decentralized and low-latency in comparison with
the existing, centralized model training approaches. Moreover,
the continued integration of newly learned model parameters
from RSUs enables the global model to better react to dynamic
network conditions. In contrast, existing static and centralized
models suffer from a significant delay to learn from newly
collected data [16]. Notably, these benefits provide strong
justification for further research into integrated blockchain and
federated learning-based approaches for real-time TFP.

Contributions. This paper presents BFRT, a blockchain-
enabled Federated Learning approach to real-time traffic flow
prediction. In this work, we make the following contributions:

• We propose a privacy-preserving and secure-by-design
FL framework for collaborative and real-time traffic pre-
diction leveraging RSUs, edge devices, and permissioned
blockchain. Specifically, we design federated versions of
both the LSTM and GRU models and use traffic flow
prediction as the example case study.

• Unlike existing works [5] [17] [18], we design a real-
time FL process where the data shards for each participant
(e.g., RSU) are distinct and private. Online learning simu-
lations are conducted to replicate real-time data collection
and training of the federated model. We evaluate the
learning performance of our FL models for predicting
traffic in a real-world scenario using dynamically col-
lected incoming arterial data. Experimental results show
that our FL approach can generally outperform the cen-
tralized baseline models.

• We prototype a permissioned blockchain network using
Hyperledger Fabric [19] and simulate the edge nodes
as resource-constrained virtual machines. We evaluate
the performance of the permissioned blockchain network
using the Hyperledger Caliper [20] benchmarking tool.
Experimental results demonstrate the blockchain network
can provide suitable throughput and latency for our
proposed FL architecture.

II. RELATED WORK

In recent years, FL has emerged as a novel approach for
ensuring the privacy of user data in a collaborative learning
setting [21]–[24]. Specifically, FL is a distributed machine
learning approach that enables a model to be trained locally
by a decentralized dataset hosted across various devices with
different locations. Blockchain technology has been applied
in some FL studies to achieve true decentralization during
the FL model aggregation [25]–[27]. Additionally, blockchain-
based FL implementations leverage the blockchain features
such as auditability, traceability, and immutability to make the
FL approach more robust, reliable, and trustworthy [8] [28].

Presently, FL has been at the forefront of various collabo-
rative learning research areas where a large amount of data is

required to train the model and achieve desirable performance.
The authors of [29] discussed how FL could be used instead of
centralized machine learning (ML) for building vehicular net-
work applications in intelligent transportation systems. FL has
also been implemented in several collaborative data-preserving
schemes in smart AI-based IoV systems. Specifically, in the
study of [30] the authors proposed an FL approach to enable
privacy-preserving collaborative ML across a federation of
independent Drones-as-a-Service (DaaS) providers for traf-
fic prediction and parking occupancy management. In [17]
the authors simulated a hierarchical blockchain-enabled FL
algorithm for knowledge sharing within the IoV to improve
reliability and security.

With the ever-growing amount of traffic data and the intro-
duction of DL, traffic flow prediction has achieved tremendous
success. However, the current prediction approaches are also
concerned with the challenges regarding user privacy. Consid-
ering the performance trade-off, the authors of [5] proposed an
FL-based gated recurrent unit neural network algorithm (Fed-
GRU) and a clustering-based ensemble scheme to organize
the data-generating entities for TFP before applying FedGRU.
Additionally, in [31], a multi-task FL framework implementing
hierarchical clustering to partition collected traffic data for
traffic flow prediction and route planning was proposed to
cover the diverse traffic situations. Although these works have
used FL and DL approaches for TFP, they have primarily
evaluated their design with identical data shards using offline
FL training and inference. To the best of our knowledge, no
other FL studies for TFP have focused on the real-time setting
for online FL learning and inference with distinct data shards.

III. BFRT SYSTEM DESIGN

A. Problem Definition

In the context of our work, we define real-time FL-based
TFP as a traffic prediction problem along an arterial corridor.
Overseeing the corridor, there is an administration (e.g., the
State’s Department of Transportation) that manages and oper-
ates a set of deployed RSUs acting as traffic collection devices
along the corridor. Alongside the RSUs are the edge devices
that cooperatively train an online traffic prediction model
leveraging the continuously collected traffic data from the
RSUs in real-time, without sharing their underlying data. The
edge devices also interact with the backend edge computing
servers to execute the FedAvg algorithm and participate in
blockchain-related operations.

B. System Architecture of BFRT

In the framework of Hyperledger Fabric, the entities
of clients, peers, and orderers are defined. Clients C =
{c1, c2, ..., c|C|} are the participants who interact with the
Hyperledger Fabric blockchain network but do not expend
additional resources on blockchain operations (such as trans-
action evaluation, ordering, validation, and block creation and
storage). Peers P = {p1, p2, ..., p|P|} represent the nodes who
perform transaction execution, endorsement, and validation,
as well as maintain the blockchain ledger. Lastly, orderers
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Figure 1: System architecture of BFRT.

O = {o1, o2, ..., o|O|} are the nodes tasked with consen-
sus processing that order the transactions and batch them
into blocks, ensuring consistency and fault tolerance for the
blockchain network.

Fig. 1 depicts the architectural components of BFRT, the
mapping of these components to the entities of Hyperledger
Fabric, and their operations and interactions. All the devices
(RSUs, edge devices, and edge computing servers) are owned
and operated by the administration to have the most de-
ployment flexibility as the deployment strategy for peers and
orderers can significantly impact the blockchain’s performance
(throughput and latency) for traffic prediction.

RSUs deployed along the roadway collects local traffic
data in real-time. The edge device co-located with each RSU
possesses a current copy of the global traffic prediction
model and acts as a client to participate in the FL process
by training the global model with its locally collected traffic
data by the RSU. In BFRT, the global model can be either the
Federated GRU model or the Federated LSTM model. After
one round of training, each edge device submits a transaction
proposal containing the updated parameters of its locally
trained model, encapsulated in the HDF5 file format, to all the
edge computing servers acting as peers for endorsements.

In BFRT, the backend edge computing servers are deployed
alongside base stations. Each peer edge computing server
independently evaluates the transaction proposal and sends
back an endorsement to the client. The client edge device
packages all the received endorsements into a transaction,
then digitally signs it, and submits it to the edge computing
servers that act as orderers. The orderers execute the RAFT
consensus algorithm [32] to establish an unambiguous order
on transactions and batch them into a new block. Note that the
edge computing servers can be configured to run as either peer,
orderer, or both. Each peer edge computing server receives

the new block, validates the transactions, and commits it to its
blockchain ledger copy. Each client edge device downloads the
block, then retrieves the encapsulated transactions, and lastly
performs FedAvg on the sets of most recent model parameters
to generate a new version of the global model.

C. Real-time Federated Learning of Traffic Flow

BFRT trains a model in a real-time manner without requir-
ing exchange or aggregation of any collected data, resulting
in dynamic and efficient-to-update traffic prediction models.
BFRT accomplishes this by letting the clients C collaboratively
train a single, continuously updated global prediction model G
using FedAvg, leveraging the new incoming traffic data, in
a series of communication rounds R = ⟨r1, r2, · · · , ri, · · · ⟩.
During each round r, every client c ∈ C performs the following
sequence of operations: (1) collect local data; (2) train the
global model with local data; (3) generate a transaction pro-
posal with the updated model parameters; (4) send the transac-
tion proposal to all the peers; (5) upon receiving endorsements,
package the received endorsements into a transaction, digitally
sign it, and submit the transaction to the orderers; (6) retrieve
the newly created block; (7) extract parameters from the
transactions in the block; and (8) update the global model.
These operations are presented in Algo. 1 and Fig. 2.

Initially, each client c is provided an identical model G0

before the first round r1. G0 could optionally be a pretrained
model to jump-start the learning process. At the start of
round ri, each client c collects the incoming local traffic
data din,ic (Algo. 1: line 2) for a predefined period p to be
combined with its local historical traffic data dold,ic to form
dnew,i
c (Algo. 2: lines 3-6). To mitigate overfitting the old

data, data samples in dnew,i
c should be limited to a maximum

data sample size MaxDataSize, where data from the older
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rounds is excluded from the training dataset in the new rounds
(Algo. 2: lines 7-10).

Following data collection, c trains (updates) its local copy
of the global model obtained from the last round Gi−1 using
dnew,i
c (Algo. 1: line 3). After that, the parameter set of

the updated local model Li
c is encapsulated in the HDF5

file format and saved in a transaction proposal txi
c (Algo.

1: line 4). txi
c is sent to all the peers P who evaluate and

endorse txi
c (Algo. 1: lines 5-6). Afterwards, c packages all the

endorsements into a transaction etxi
c and submits etxi

c together
with its digital signature signaturec to orderers O, who
reach consensus on the order of submitted transactions (Algo.
1: line 7) and create the new block Blocki containing all
the transactions. After the block Blocki has been committed
by peers P to their copy of the blockchain ledger, client c
downloads Blocki (Algo. 1: line 8) from peers, extracts the
model parameter sets trained by all the client edge devices
from the transactions within Blocki, and performs FedAvg on
the new model parameter sets to generate a new version of
the global model Gi (Algo. 1: lines 9-10).

Algorithm 1 Operations of clients C in round ri

1: For each client c ∈ C in round ri of R in parallel do:
2: dnew,i

c ← c.UPDDATASET(dold,ic ); ▷ Algo. 2
▷ dnew,i

c becomes dold,i+1
c in ri+1

3: Li
c ← c.TRAINLOCALMODEL(Gi−1, dnew,i

c );
4: txi

c ← c.FORMTRANSACTIONPROPOSAL(HDF5(Li
c));

5: c.SENDTOPEERS(txi
c , P );

6: etxi
c ← c.GETENDORSEDTRANSACTION(P );

7: c.SENDTOORDERERS(etxi
c , , signaturec , O);

8: Blocki ← c.BLOCKRETRIEVAL(P );
9: {Li

c, ∀ c ∈ C} ←
c.EXTRACTPARAMS({HDF5(Li

c)} in Blocki);
10: Gi ← c.GLOBALMODELUPD({Li

c, ∀ c ∈ C});
▷ by FedAvg

Algorithm 2 UPDDATASET() Real-time traffic data collec-
tion and training data update of client c in round ri

1: Input: dold,ic ;
2: Output: dnew,i

c ;
3: while within the data collection period p do
4: din,ic ← c.COLLECTDATA();
5: dnew,i

c ← dold,ic ∪ din,ic ;
6: end while
7: if dnew,i

c .size > MaxDataSize then
8: RemoveSize ← dnew,i

c .size−MaxDataSize
9: dnew,i

c .REMOVEOLDDATA(RemoveSize);
10: end if

D. Permissioned Blockchain Network

BFRT adopts a permissioned blockchain network as the
FL framework. The permissioned blockchain controls and
manages the FL workflow by processing the transactions txc’s,

for all c ∈ C containing the clients’ uploaded model parameters
(i.e., local model updates Lc’s, for all c ∈ C). Specifically, each
transaction in a block consists of an HDF5 file containing the
local model parameters for each RSU in the given FL round
and the associated metadata (e.g., cryptographic signature).
By storing the model updates on the blockchain, the history
of FL can be retrieved and reviewed for quality assurance,
preservation, auditing, and other purposes.

For the blockchain network, the data structure used for the
stored model updates is as follows:

type ModelUpdate struct {
FederatedID string
DetectorID string
RoundNumber int
ModelParameters HDF5

}

The parameters within the ModelUpdate data structure rep-
resent the following: FederatedID refers to the name of the
associated FL process (e.g., “LSTM TFP I-95”); DetectorID
is the identifier for a specific client c ∈ C within the blockchain
network; RoundNumber indicates the FL round index (i.e. i
in ri) associated with a given HDF5 file; and lastly the
ModelParameters field contains the HDF5 file.

The blockchain transaction workflow in BFRT is modeled
after Hyperledger Fabric v2.2 and separates the transaction
endorsement process (execution) from the transaction ordering
process (consensus). The endorsement process abides by a
configurable policy specifying that a subset of peers must
verify and approve the transaction before it can be ordered
into blocks and committed to the chain. When a client submits
a transaction, it is first sent to endorsing peers. Each peer then
simulates the transaction in a containerized sandbox environ-
ment, after which the peer returns the endorsed transaction to
the client.

After collecting the necessary endorsements, the client for-
wards the endorsed transaction set to an orderer who enacts the
consensus mechanism and packages the pending transactions
into a new block. Following consensus, the new block is
forwarded to all the peers who validate the transactions to
verify each transaction’s endorsements and metadata. Once
verification is complete, the transactions are committed to the
local copy of the blockchain and the client is notified. Lastly,
the client retrieves the new block from a peer and executes
FedAvg to update its local version of the global model.

IV. EXPERIMENTAL RESULTS

A. Experimental Design

1) Setup: The BFRT experiments are simulation-based,
which were conducted on Google Colab with one NVIDIA
P100 GPU, two Intel(R) Xeon(R) CPUs @ 2.30GHz, and
13.34 gigabytes of RAM. All experiments involved 7 clients
for both LSTM and GRU federation, and their training samples
were dynamically fed in sequence during each round to sim-
ulate real-time training. The parameters of G0 are randomly
initialized in every experiment instead of using a pretrained
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Figure 2: Workflow of the BFRT system.

model. Each client in both LSTM and GRU federations adopts
FedAvg, with 5 local training epochs per round.

The simulations of blockchain operations were conducted
on a virtual machine with 24 gigabytes of RAM and 8 cores
of an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz. We
simulate the proposed system of edge devices on Hyperledger
Fabric version 2.2, using docker containers to represent the
blockchain peers and blockchain orderers. We set resource
restrictions on each container in accordance with the system
architecture, providing a maximum of 2 gigabytes of RAM to
each peer and 4 gigabytes of RAM to each orderer respectively
while ensuring peers are provided with 50% of the processor
clock cycles given to each orderer container. In our reference
deployment, we instantiate 4 peers each and 5 orderers using
the RAFT consensus algorithm. For all the blockchain exper-
iments, we leverage the Hyperledger Caliper benchmarking
tool to measure our deployment’s transaction throughput and
latency under various transaction loads.

2) Dataset: The dataset used in the experiments is from
the Delaware Department of Transportation (DelDOT), which
includes traffic flow data collected from DelDOT maintained
roadways at a 5-minute time resolution. We select 7 nonse-
quential loop detectors along the I-95 north arterial to act as
the FL clients in BFRT. The selected dataset for each detector
includes data ranging from the start of August 2019 until the
end of September 20191.

3) Models: The studies in [33] found that the RNN mod-
els, specifically LSTM and GRU, exhibit comparably good
inference performance on the traffic flow data from the PeMS
dataset [34] when training offline in a centralized manner.

1We separate 80% of the data for real-time training and inference and save
the remaining 20% for future work involving offline prediction experiments.

Inspired by this finding, we choose both LSTM and GRU
models for real-time FL, termed LSTM-Fed and GRU-Fed. To
highlight the performance of the federated models, we also let
each client train its own centralized LSTM and GRU, termed
LSTM-Base and GRU-Base, using the same dataset dnew,i

c

in round ri, without federation, as the baseline models.
Specifically, each client c in ri also uses the dynamically
updated dnew,i

c to train either LSTM-Base or GRU-Base by 5
epochs as in BFRT, but the updated baseline model Bi will
continue to be trained in round ri+1, whereas in BFRT the new
global model Gi will replace the local model of all c ∈ C when
progressing to round ri+1. The baseline training algorithm is
shown in Algorithm 3.

Algorithm 3 Baseline model training of client c in round ri

1: For any client c ∈ C in any round ri ∈ R:
2: dnew,i

c ← c.UPDDATASET(dold,ic ); ▷ Algo. 2
3: Bi

c ← c.TRAINBASELINEMODEL(Bi−1
c , dnew,i

c );

All federated and baseline RNN models in our experiments
have 12 neurons in their input-layer and 1 neuron in their
output-layer, respectively. This corresponds to 1 hour of traffic
flow data at a 5-min resolution, which produces a 5-min look
ahead prediction. As a result, the sample size of din,ic , i > 1 is
set to equal the input shape of the RNN models (i.e., 12), to
control data flow by hours. The exception is that dic.size, i = 1
is set to 24 (i.e., 2 times of din,ic .size, where i > 1) in r1 for
all c ∈ C, because the models need at least 13 data samples
for training. The result is a total of 1165 rounds for all BFRT
experiments.

After designing the four models (i.e, LSTM-Base, LSTM-
Fed, GRU-Base, and GRU-Fed), we perform experiments with
MaxDataSize = 24, 36, 48, 60, 72 because the sample size
is found to influence the prediction accuracy of deep learning
models in [35]. In our experiments, MaxDataSize controls
the sample size for FL training in each round. Due to the
space constraint, we report and compare the performance of
the four models with MaxDataSize = 24 and 72. Moreover,
because the model architecture impacts prediction accuracy,
we conducted small-scale FL simulations with varied numbers
of hidden layers and neurons prior to training the LSTM
models. Based on the error values, we choose 2 hidden layers
and 128 neurons for each hidden layer for the LSTM model
architecture. For the GRU model architecture, we make our
design decisions based on the results of [5], selecting 2
hidden layers with 50 neurons in each. Due to the space
limitations, we omit the report for the error values in these
tuning experiments. To ensure reproducibility, the simulation
code, selected dataset, and all other experimental results are
made available in our GitHub repository2.

B. BFRT Performance on Real-time Inferences

Fig. 3 shows the partial real-time inference curves of the
four models for the 7 detectors with MaxDataSize = 24

2https://github.com/hanglearning/BFRT
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(a) LSTM with MaxDataSize = 24 (b) GRU with MaxDataSize = 24

(c) LSTM with MaxDataSize = 72 (d) GRU with MaxDataSize = 72

Figure 3: Real-time inferences curves of all 7 detectors during the last 24 rounds in BFRT

and 72. Out of the inference values in the entire 1165 rounds,
we report the last 24 FL rounds which includes 1 day of traffic
flow data. Algo. 4 describes how we obtained the inference
values (i.e., the values of BASE and FED in Fig. 3).

For any client c ∈ C in round ri ∈ R, i > 1, a temporary
dataset dpred,jc is first initialized by extracting an input shape
(i.e., 12 in our experiments, the same as din,ic .size, i > 1)
number of the latest data points from dold,ic (Algo. 4: line 5).
As a special case in r1, c only performs learning on din,1c ,
and therefore the inference starts from r2. The 5-min look-
ahead real-time inference in ri, i > 1 is done by c ∈ C using
Bi−1

c or Gi−1 to predict on the continuously updated dpred,jc

(Algo. 4: lines 6-12). Specifically, the real-time inference has
input shape steps (Algo. 4: line 6), which is assumed to be
exactly within the data collection period p. In our experiments,
we set p to be 1 hour to be consistent with the input shape
(i.e. 12) of the models, which in turn results in 12 steps of

inference. During each step, c uses Bi−1
c or Gi−1 to predict

on dpred,jc , and output a 5-min look-ahead prediction to be
added to BASEi

c or FEDi
c (Algo. 4: lines 7-8). For instance,

dpred,0c , which is assigned at Algo. 4: line 5, will be used to
output the first prediction of the traffic volume in ri. Then,
c waits to collect one incoming data (i.e., at a 5-min interval
in our experiments) and adds it to din,ic (Algo. 4: line 9).
Notably, Algo. 4: line 6, line 9 and line 10 make up the
COLLECTDATA() function appearing in Algo. 2: line 4. After
that, dpred,jc is updated by popping out its oldest data point,
and merging with din,ic (4: line 11).

After completing an input shape number of prediction
steps, the resulted BASEi

c and FEDi
c will contain the in-

ference values from the corresponding models for ri, i > 1.
Lastly, din,ic is assigned to TRUEi

c (Algo. 4: line 13), which
represents the TRUE curve(s) in Fig. 3.

In each subfigure of Fig. 3, we picked the detector with
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Table I: Real-time Inference Errors of the Last 24 Rounds

DetectorID Model MAE-24 MAE-72 MSE-24 MSE-72 RMSE-24 RMSE-72 MAPE-24 MAPE-72
LSTM-Base 39.68 22.54 3444.57 992.92 58.69 31.51 0.22 0.13
LSTM-Fed 23.07 19.82 1076.03 749.4 32.8 27.38 0.13 0.11
GRU-Base 24.04 23.77 1088.77 919.01 33 30.32 0.15 0.1519912 NB

GRU-Fed 19.79 19.91 717.44 738.07 26.79 27.17 0.12 0.11
LSTM-Base 37.11 36.91 2863.12 2577.12 53.51 50.77 0.13 0.13
LSTM-Fed 50.47 35.88 4761.38 2590.1 69 50.89 0.17 0.11
GRU-Base 40.14 43.78 2981.27 3441.6 54.6 58.67 0.15 0.1719924 NB

GRU-Fed 45.8 41.49 4001.79 3306.1 63.26 57.5 0.15 0.13
LSTM-Base 56.6 28.39 8178.46 1469.3 90.43 38.33 0.22 0.12
LSTM-Fed 33.16 26.07 2116.6 1288.38 46.01 35.89 0.14 0.11
GRU-Base 29.19 31.4 1639.82 1669.34 40.49 40.86 0.14 0.1519951 NB

GRU-Fed 28.48 27.84 1563.93 1396.44 39.55 37.37 0.12 0.12
LSTM-Base 20.91 16.79 830.04 517.22 28.81 23.9 0.21 0.16
LSTM-Fed 25.79 16.65 1039.69 466.47 32.24 21.6 0.47 0.26
GRU-Base 21.81 18.56 877.46 585.14 29.62 24.19 0.26 0.2419978 NB

GRU-Fed 20.31 17.62 639.12 515.08 25.28 22.7 0.39 0.29
LSTM-Base 17.11 15.88 512.8 424.23 22.65 20.6 0.19 0.18
LSTM-Fed 22.18 15.43 787.55 412.16 28.06 20.3 0.25 0.17
GRU-Base 15.07 14.72 376.12 390.9 19.39 19.77 0.18 0.1619985 NB

GRU-Fed 17.2 14.7 479.97 375.67 21.91 19.38 0.2 0.16
LSTM-Base 25.71 20.59 1155.86 730.62 34 27.03 0.22 0.16
LSTM-Fed 19.94 17.05 718.44 514.14 26.8 22.67 0.16 0.13
GRU-Base 17.1 18.77 537.46 613.88 23.18 24.78 0.14 0.1619992 NB

GRU-Fed 16.72 16.69 489.48 494.51 22.12 22.24 0.14 0.13
LSTM-Base 39.53 22.91 3288.69 968.6 57.35 31.12 0.2 0.12
LSTM-Fed 25.74 19.76 1305.35 788.8 36.13 28.09 0.13 0.11
GRU-Base 22.4 23.89 1042.65 994.79 32.29 31.54 0.12 0.1419997 NB

GRU-Fed 19.79 21.44 840.6 950.62 28.99 30.83 0.12 0.11

Table II: Best Model Count with MaxDataSize = 24

Model MAE-24 MSE-24 RMSE-24 MAPE-24
LSTM-Base 1 1 1 2
LSTM-Fed 0 0 0 0
GRU-Base 1 1 1 1
GRU-Fed 5 5 5 4

Table III: Best Model Count with MaxDataSize = 72

Model MAE-72 MSE-72 RMSE-72 MAPE-72
LSTM-Base 0 1 1 1
LSTM-Fed 4 3 3 2
GRU-Base 0 0 0 0
GRU-Fed 3 3 3 4

the DetectorID 19912 NB as the focus while keeping the rest
of the six detectors’ plots small for reference. The x-axis
of all the 28 plots indicates the round index for the last 24
rounds, and the y-axis represents the traffic volume. Therefore,
for instance, index 1165 on the x-axis represents r1165, and
the three curves plotted after index 1165 are TRUE1165,
BASE1165 and FED1165.

1) Baseline models vs. federated models: By comparing
the proximity of the BASE and the FED prediction curves to
the TRUE data curve for 19912 NB in Fig. 3a, we observe
that LSTM-Fed has better overall prediction accuracy than
LSTM-Base with MaxDataSize = 24 from r1142 to r1165.
This trend is also seen in Table I when comparing the error
values between LSTM-Base and LSTM-Fed for 19912 NB.
Table I denotes four types of error values (i.e. MAE, MSE,
RMSE, MAPE) for analyzing predictions resulting from the
four models of all 7 detectors with MaxDataSize = 24
and 72 during the last 24 rounds. The number following the
error type indicates MaxDataSize (e.g., RMSE-72 denotes
the RMSE inference error with MaxDataSize = 72 over
the entire last 24 rounds). The values highlighted in green or

beige are the smaller error values between the corresponding
baseline and federated models within the relative 2-value
groups. For instance, the LSTM-Fed MAE-24 error value 23.07
of 19912 NB is highlighted, to compare with 39.68 to show
that LSTM-Fed has smaller MAE-24 error compared to LSTM-
Base for 19912 NB.

From Table I, it is observed that most of the inferences
from the federated models outperform the baseline models.
This is especially true for detectors 19912 NB, 19951 NB,
19992 NB, 19997 NB. For 19985 NB, the baseline models al-
ways outperform the federated models with MaxDataSize =
24, whereas the federated models always have smaller er-
rors than the baseline models with MaxDataSize = 72.
This may be the result of differences in the real traffic
flow trend of 19985 NB compared to the other detectors
(19912 NB, 19951 NB, 19992 NB, and 19997 NB), due to
changes in network topology (e.g., interstate exits or merges)
between detector locations. Notably, in Table I, increasing
MaxDataSize results in improved accuracy for the federated
model on 19985 NB, highlighting the importance of additional
historical data to rectify the difference in data trends. On the
other hand, 19924 NB and 19978 NB have mixed results. For
19978 NB, 9 out of the 16 pairs of error values indicate that
federated models outperform its baseline models. However,
For 19924 NB, only 6 out of the 16 pairs of error values
indicate that federated models outperform its baseline models.
This may be the result of a non-recurrent traffic event or
recurrent congestion occurring around r1160, where a sharp
drop in volume is observed.

In summary, the error values in Table I imply that most fed-
erated models outperform their corresponding baseline models
in our experiments. However, as model performance is dataset
dependent, we plan to perform the comparative experiments
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(a) MAE Error of LSTM with MaxDataSize = 24

(b) MAE Error of GRU with MaxDataSize = 24

(c) MAE Error of LSTM with MaxDataSize = 72

(d) MAE Error of GRU with MaxDataSize = 72

Figure 4: The MAE errors of real-time inferences of all 7
detectors in all rounds of BFRT

using different datasets in future work.
2) LSTM models vs. GRU models: The error values high-

lighted in green of Table I also indicate the smallest error
value among all four models for the respective detector.
For instance, the GRU-Fed MAE-24 error value 19.79 of
19912 NB is highlighted in green, to compare with the values
39.68, 23.07 and 24.04, and highlight that GRU-Fed has the
smallest MAE-24 error compared to the three other models
on detector 19912 NB. The total counts of values highlighted
in green with respect to the four models for each detector
are also summarized in Table II and Table III. As seen
in Table II, GRU-Fed has the highest smallest error value
count for all four types of errors across all the detectors
with MaxDataSize = 24, whereas GRU-Fed and LSTM-
Fed have a tie with MaxDataSize = 72. In conclusion, the
GRU models generally outperform the LSTM models in our
experiments.

3) Real-time MAE errors across all 1165 rounds: Similar
to reporting error/loss values across training epochs in central-
ized training, we collected the real-time prediction errors to
examine the model performance as the BFRT rounds progress.
Fig. 4 shows the normalized MAE errors in 100 round intervals

Algorithm 4 Real-time inference of client c in round ri, i > 1

1: For each client c ∈ C in round ri of R, i > 1:
2: Input: Gi−1, Bi−1

c , dold,ic ;
3: din,ic , BASEi

c, FEDi
c ← [], [], []; ▷ Empty arrays.

4: j ← 0;
5: dpred,jc ← dold,ic [: input shape];

▷ Extract input shape number of the latest data.
6: while j < input shape do
7: BASEi

c.ADD(c.PREDICTBY(Bi−1
c , dpred,jc ));

8: FEDi
c.ADD(c.PREDICTBY(Gi−1, dpred,jc ));

9: din,ic .ADD(c.COLLECTONEDATA());
10: j ← j + 1;
11: dpred,jc ← dpred,jc .POPLEFT() ∪ din,ic ;
12: end while
13: TRUEi

c ← din,ic ;

for the four models with MaxDataSize = 24 and 72 across
all 1165 rounds for all 7 sensors. In all 28 subplots, the
x-axis represents round range while the y-axis denotes the
normalized MAE error for that round range. There are 12
values on the x-axis, each representing a range of 100 rounds,
except the last round representing 65 rounds. For example,
the y value corresponding to the x value of 500-600 represents
the normalized MAE error comparing [TRUE500, TRUE600]
and [BASE500, BASE600] (yellow line), or comparing
[TRUE500, TRUE600] and [FED500, FED600] (green line).
The percentage value in each plot indicates the percent of 100
round groups where the federated model inference error is
lower than the baseline model. The percentage is colored red
when the value is greater than or equal to 50%, highlighting
that the federated model outperformed the baseline model in
that particular experiment.

By comparing Fig. 4a and Fig. 4b, we observe that the
GRU models exhibit flatter error curves compared to the LSTM
models. This indicates that with MaxDataSize = 24, the
GRU models have better real-time prediction ability. Also, the
FED curves of the GRU models for 19924 NB, 19951 NB,
19978 NB, and 19951 NB in Fig. 4b have lower MAE errors
in earlier rounds compared to their respective FED curves for
the LSTM models in Fig. 4a. Additionally, when comparing
Fig. 4a and Fig. 4c, and also Fig. 4b and Fig. 4d, we observe
that increasing the MaxDataSize from 24 to 72 may improve
the real-time prediction accuracy in earlier rounds as the error
curves quickly become smooth for all 7 sensors. Lastly, when
comparing Fig. 4c and Fig. 4d, we observe that both LSTM and
GRU models have comparably good inference performance.
This finding is consistent with the result in Table III. 17 out of
the 28 plots have the percentage values in red, implying that
the federated models outperform the corresponding baseline
models in real-time prediction over the entire 1165 rounds in
over 60% of our experiments.

C. Performance of Blockchain Network

In our blockchain experiments, we analyze the operation
performance using two metrics: transaction throughput and
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Figure 5: Average transaction throughputs for READ and
WRITE operations.
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Figure 6: Maximum and average transaction latencies for
READ operations.

transaction latency. Transaction throughput quantifies the num-
ber of transactions per second (TPS) which can be success-
fully processed by the blockchain network, while the latency
indicates the running time of a single transaction from the
initial construction by the client until the time it is successfully
committed to the ledger. In all the experiments, we analyze
both metrics under increasing send rates, where the transaction
send rate indicates the number of TPS input by the blockchain
clients. Notably, we choose to differentiate the operations of
READ and WRITE, as the cost of both operations is not the
same, and the selected operation has a notable impact on the
network performance.

1) Transaction Throughput: In Figs. 5a and 5b, we illus-
trate the throughput of our blockchain network under the
READ and WRITE operations, respectively. We report the
average transaction throughput over multiple testing cycles for
quantifying the performance. Fig. 5a shows that the transaction
throughput increases as the send rate increases to 2000.
However, at send rates above 2000, the performance levels off,
and throughput remains relatively constant. This indicates that
the maximum network throughput for the READ operation is
about 1750 TPS.

Likewise, for the WRITE operation, Fig. 5b illustrates that
the network performance begins to stabilize when the peak
TPS of 390 is reached at send rate 400. These results highlight
that writing is a more expensive blockchain operation than

Figure 7: Maximum and average transaction latencies for
WRITE operations.

reading. Notably, the performance degrades slightly as the
send rate increases beyond 400. One reason for this is the
increased processing time of the WRITE operation compared
to the READ operation. For the WRITE operation, as the
send rate increases beyond the maximum network throughput,
transactions will amass in the pending transaction pool causing
a bottleneck. This issue is less visible in the READ results, as
pending transactions are processed faster.

2) Transaction Latency: Figs. 6 and 7 report both the aver-
age and minimum transaction latency for READ and WRITE
operations, respectively. In Fig. 6 there is a clear uptrend in the
latency when increasing send rate because higher transaction
loads on each peer and orderer will increase confirmation
times. However, it is notable that even at the highest send
rate of 2400 TPS, the average latency value is still only 0.07
seconds. This demonstrates that the blockchain network can
perform well for retrieval operations even under considerable
transaction loads. On the other hand, Fig. 7 shows severely
degraded performance when the WRITE load exceeds 400
TPS, with the average latency value rapidly converging to
the maximum latency. This confirms that the blockchain will
not perform well in our architecture if the WRITE load
exceeds 400 TPS. Comparing both operations, it is clear that
even at lower send rates, the average and maximum latency
values for the WRITE operation are significantly higher than
that of the READ operation.

V. CONCLUSION

This paper proposes BFRT, a blockchained federated learn-
ing architecture for online traffic flow prediction using real-
time data. BFRT protects the privacy of underlying traffic data,
while also decentralizing computation to the network edge.
We prototype both the FL process and blockchain network
using a combination of Python and Hyperledger Fabric, and
conduct extensive experiments. In our FL experiments, we
federated LSTM and GRU models and measured the real-time
training and prediction performance using newly collected and
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distinct arterial traffic data shards. Additionally, we simulated
the edge devices using a Hyperledger Fabric blockchain net-
work with resource-limited docker containers and measured
the READ and WRITE performance using the Hyperledger
Caliper benchmarking tool. The results show that our FL
process and models can generally outperform the centrally
trained baseline models, while the permissioned blockchain
network can provide high throughput and low latency. For
future work, we plan to investigate new methodologies for on-
line multi-output prediction and also experiment with various
blockchain architectures to better streamline the FL workflow.
We anticipate this work will lay the foundation for future
research into real-time traffic flow prediction models.
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