
A Serverless Engine for High Energy Physics
Distributed Analysis

1st Jacek Kuśnierz
Institute of Computer Science

AGH
Kraków, Poland

Department of Informatics, TUM
Munich, Germany

kusnierz@protonmail.com

2nd Vincenzo E. Padulano
EP-SFT, CERN

Geneva, Switzerland
DSIC, UPV

Valencia, Spain
vincenzo.eduardo.padulano

@cern.ch

3rd Maciej Malawski
Institute of Computer Science

AGH
Kraków, Poland

malawski@agh.edu.pl

4th Kamil Burkiewicz
Institute of Computer Science

AGH
Kraków, Poland

5th Enric Tejedor Saavedra
EP-SFT

CERN
Geneva, Switzerland

6th Pedro Alonso-Jordá
DSIC,UPV

Valencia, Spain
palonso@upv.es

7th Michael Pitt
EP-CMG-OS

CERN
Geneva, Switzerland

8th Valentina Avati
EP-UHC

CERN
Geneva, Switzerland

Abstract—The Large Hadron Collider (LHC) at CERN has
generated in the last decade an unprecedented volume of data
for the High-Energy Physics (HEP) field. Scientific collaborations
interested in analysing such data very often require computing
power beyond a single machine. This issue has been tackled
traditionally by running analyses in distributed environments
using stateful, managed batch computing systems. While this
approach has been effective so far, current estimates for future
computing needs of the field present large scaling challenges.
Such a managed approach may not be the only viable way to
tackle them and an interesting alternative could be provided by
serverless architectures, to enable an even larger scaling potential.

This work describes a novel approach to running real HEP
scientific applications through a distributed serverless computing
engine. The engine is built upon ROOT, a well-established HEP
data analysis software, and distributes its computations to a large
pool of concurrent executions on Amazon Web Services Lambda
Serverless Platform. Thanks to the developed tool, physicists are
able to access datasets stored at CERN (also those that are under
restricted access policies) and process it on remote infrastructures
outside of their typical environment. The analysis of the serverless
functions is monitored at runtime to gather performance metrics,
both for data- and computation-intensive workloads.

Index Terms—Serverless, Distributed Computing, CERN,
ROOT, HEP, MapReduce, AWS, Lambda

I. INTRODUCTION

A. High Energy Physics and CERN

CERN is the largest research centre for HEP, attracting a
wide range of scientists and collaborating with various institu-
tions from all over the globe. It hosts the Large Hadron Col-
lider (LHC), a machine which has generated an unprecedented
volume of data in the last few decades, reaching spikes of a
few PB per year. Managing and processing information about
physics events happening in the accelerator has already proven
to be a challenge. The last active period of the accelerator saw
peaks of TB of data being generated each day. Furthermore,
current estimates for future computing and storing needs

describe an increase of a factor 30 in data size [1]. Thus,
research in this field needs to focus on performant and scalable
software to address the challenges ahead [2].

B. State of the art in High Energy Physics (HEP) data
processing

The full-scale analyses in which large scientific collabora-
tions at CERN and worldwide are interested in require pro-
cessing massive data volumes. A modern-day single computer,
no matter how powerful, is not fit for performing this kind
of task within a reasonable time frame. All the same, the
scientists need to lower their data processing workflow runtime
as much as possible to get to their physics results faster. To this
end, distributed computing approaches involving thousands of
nodes were developed and put into practice at CERN and
research institutions worldwide.

The most common solution for a HEP scientist to use these
pools of resources is provided by batch processing systems
such as HTCondor [3], implemented at a large scale in the
Worldwide LHC Computing Grid (WLCG) [4]. This kind
of approach comes with a cost: the need to manage the
infrastructure, as well as a strict requirement of getting to
know its configuration language and preparing the submission
file. All of that work is done just to be able to distribute
the analysis processing on the cluster machines. This requires
some training even for the end user who, while not having
to know about the underlying hardware, still has to write
the configuration file in a domain-specific language not used
anywhere else.

The nature of batch processing systems does not fit well
with the goal of giving end users the ability to run their
analyses in an interactive environment. This approach has
gained increasing popularity in the HEP field in the last
few years, also sustained by a similar, more generic trend
happening at wide in the industry, which relies on widely used

ar
X

iv
:2

20
6.

00
94

2v
1 

 [
cs

.D
C

] 
 2

 J
un

 2
02

2



data science methods and tools. CERN has joined this trend
with the deployment of an interactive web-based interface for
physicists, named SWAN [5], that allows running applications
in an interactive Jupyter notebook environment [6]. The system
also features an integration with an Apache Spark [7] cluster
at CERN, so that more computationally intensive applications
can be seamlessly offloaded to remote resources from within
the same interface.

While this type of system already abstracts quite a lot of
dependencies and configuration for the users, letting them
focus mostly just on the operations they need to perform on a
dataset, it is still bound to a specific infrastructure deployment.
The physical resources and the software stack need to be
provided and managed by a central agent.

C. Serverless computing

Serverless computing is a cloud computing execution model
in which the cloud provider allocates machine resources on de-
mand, taking care of the servers on behalf of their customers.
It makes it easier for developers to access a high amount of
computing power without having to think about setting up or
managing the machines executing the code. It operates on the
notion of ”function” - a piece of code that will be replicated
and invoked on multiple nodes.

The introduction of the serverless computing paradigm im-
proved on some of the pitfalls of managed systems described
above. For example, the end user does not need to have
any knowledge of the underlying cluster infrastructure while
submitting tasks to the remote machines. This allows to run
massively parallel computations outside of typical supercom-
puting facilities, as less deployment-specific administration
overhead is required.

The old approaches, such as HTCondor, running on typical
HEP environments struggle with scaling to very high numbers
of concurrent executions in multiuser settings, limited by the
hardware available for the computations.

Furthermore, they are not as intuitive or user friendly and
put an extra burden on the user who needs to split the
distributed application in multiple separate steps.

D. State of the art in serverless data processing

Every serverless execution engine relies on a type of ab-
straction layer for the infrastructure itself. This is usually
provided by big vendors, such as Cloud Functions by Google
[8], Lambda by Amazon, or open source solutions such as
OpenWhisk [9] running on real or virtual machines or Kna-
tive [10] running ephemeral Docker [11] containers directly
on Kubernetes [12].

Efficient orchestrating frameworks are useful in utilizing the
power of serverless functions in data processing applications.

One among these would be PyWren [13]. It allows to
seamlessly distribute arbitrary Python code over multiple
nodes. Needed objects and dependencies are serialized through
cloudpickle [14] in order to execute the application on AWS
Lambda natively. As of 2021, the original project is no
longer maintained, but it was used as a basis for interesting

extensions, including NumPyWren for numerical algebra [15].
The newer development, Wukong [16], builds on NumPyWren
experience with a focus on data locality and improved, decen-
tralized scheduling.

Most serverless data processing frameworks that we are
aware of require writing specific configurations for the analysis
not only in generic files, but also within the analysis code.
That is why here the comparison will be made only with those
frameworks that do not require analysis code changes, same
as the developed solution.

The serverless research scenario is quite wide. Other frame-
works do not feature a transparent offload of the Python
code from one machine to multiple functions, but have still
proven to be effective in some regards. For example, the
implementation given by the SCAR framework has allowed
executing arbitrary container environments on AWS Lambda,
even before this option was officially supported by the cloud
provider [17].

E. Goal of the project

Allowing HEP scientists to benefit from the advantages of
serverless computing without needing to teach them com-
pletely new tools requires a new method of communicating
with existing platforms.

This work presents a serverless engine that has been devel-
oped to run previously existing HEP analysis applications with
almost the same code in a seamlessly parallelized way with
massively distributed serverless functions. We have described
an early proof-of-concept of our engine in a short commu-
nication [18]. In this paper, we present a comprehensive and
complete solution, with the following main contributions:

• new scalable serverless approach for processing data
from HEP based on RDataFrame extension of ROOT
framework,

• implementation of the scalable distributed processing
engine which allows running dynamically compiled C++
code on AWS Lambda;

• solution to the problem of accessing private experiment
data from the cloud based on transferable Kerberos tick-
ets;

• detailed performance evaluation using a real physics
analysis of PPS project of the CMS experiment from
CERN and a synthetic CPU-intensive benchmark.

The paper is organized as follows: in Section II the parts
used in the engine are described. In Section III architecture and
algorithms of the engine are presented. Section IV contains
two different analyses that the engine was benchmarked with,
as well as the results achieved through them. Section V
discusses achievements and future work. Section VI ends the
work with thanks to the patrons of this paper.

II. TOOLS

As mentioned in Goals, our prototype processing engine
uses AWS Lambda as the execution environment. ROOT is
the framework in which the analysis is written. XRootD com-
municating with EOS enables data access by analysis on AWS,



authorized via Kerberos ticket. The last part of the developed
solution is Terraform, which automates the deployment of all
parts of the infrastructure running the computations. These
tools are presented and discussed below in the scope used in
the project.

A. AWS Lambda

AWS Lambda [19] is a service that allows running event-
driven short-lived computations in a serverless environment.
The platform provides a user-friendly way of deploying user’s
code in a broad range of languages to be run on the cloud
provider infrastructure. With the rising popularity of con-
tainerization technologies such as Docker, the AWS introduced
support for container-based lambdas as well. When a lambda
function signature is present, the execution of it can be
triggered when, e.g., a predefined event occurs like uploading
a file to the AWS data storage or sending an explicit HTTP
request. The key feature is that an administration of underlying
resources is solely done by AWS and one can dedicate time
to perfect the application logic instead of managing servers or
virtual machines. Another thing that is worth mentioning is
the high scalability of this approach. Once deployed, scaling
is done automatically on demand, which means that the user
can easily call for more computing power at any time.

The important thing to note here is that once the container
is spawned for function execution, it is retained for around
30 minutes, depending on the current workload on AWS
datacentre [20]. Further invocations running on the same
container will not have to wait until the whole environment
has been prepared - meaning that reuse of the container will
have made the startup shorter by that time. When reusing
the existing in-memory container, we are dealing with much
shorter “warm starts” compared to initializing from scratch
“cold starts” of Lambda functions.

B. ROOT

ROOT [21] is the most widely used software framework
for storing, analysing, processing, and displaying HEP data. It
has seen wide adoption at CERN and several other institutions
worldwide connected with it, such as those participating in
WLCG.

The framework defines a common data structure and data
layout to store HEP datasets, called TTree [22]. Its layout
is columnar on the disk, so that different columns can be
treated independently. The ROOT I/O subsystem is able to
read just a portion of a dataset, to minimize read requests to
the filesystem. The minimal amount of information that can
be read independently from other parts of the file is called
a cluster, which corresponds to a range of entries that can
belong to one or more columns. ROOT datasets can be stored
and read within the local filesystem of the user machine, but
very often are located in remote, distributed storage systems
and can be accessed through remote protocols like HTTP or
XRootD.

The main interface for analysing a TTree (and other data
formats) within ROOT is called RDataFrame [23]. With

RDataFrame, users can focus on their analysis as a sequence of
operations to be performed on the dataset, while the framework
takes care of the management of the loop entries as well as
low-level details such as IO operations and parallelization,
effectively creating a computation graph, that is a directed
graph where each node corresponds to one of the operations
to be performed on data. RDataFrame provides methods to
perform most common operations required by HEP analyses,
such as Define to create a new column in the dataset or
Histo1D to create a histogram out of a set of values. Other
than TTree, the interface supports processing datasets stored
in formats like CSV, Apache Arrow or NumPy arrays. Users
can also create an empty dataset with a certain amount of rows
that can be filled through the operations in the API. This is
particularly useful for benchmark and simulation scenarios.

RDataFrame has been built with parallelism in mind. In
fact, it is natively able to exploit all cores of a single ma-
chine through the implicit multithreading interface available
in ROOT.

C. Kerberos

MIT Kerberos [24] is an authentication protocol which
uses passwordless tickets to authorize to a particular entity.
After creating and validating a ticket, a client can use it to
connect to the server that has issued it. The ticket can be made
transferable, meaning that any machine, not only the one that
received it, can authorize to the server. Thanks to that, it is
possible to authorize any computing node if only such a valid
transferable ticket is provided to it.

D. EOS

EOS [25] is the storage used at CERN. It is a system that
the engine interacts with when requesting remote files, if such
are declared by the user for the particular analysis.

E. XRootD

XRootD program [26], developed by Stanford, is used
for high performance, scalable fault tolerant access to data
repositories. It allows for redirection and pulling of the data
from any authorized instance holding it. In the case of ROOT,
it is used to access remote data, usually on EOS enabled
servers. It can authorize to them in multiple ways, among them
using the Kerberos tickets.

F. Terraform and Infrastructure as Code

HashiCorp Terraform [27] is one of many tools allowing
declarative management of the infrastructure, also known as
Infrastructure as Code. In the case of this project, it was used
to automate the process of deployment of the required compo-
nents, which collectively constitute the computation platform
that is used by the engine. An important strength for the HEP
scientist is that the connection to the infrastructure requires
very little configuration from the user side, just requiring the
credentials to AWS to be provided.

After the analysis is done, the user can easily delete the
entire infrastructure to ensure no more costs are incurred



User

RDataFrame ROOT LAMBDA

(6) Read number of objects in bucket

if number equals partitions
then reduce and return

(5) Return processed
 objects

(3) Invoke Workers

(4) Read data
(1) Start Analysis

<Communicate
to EOS>

S3 PROCESSED
BUCKET

(2) Read metadata

Fig. 1: Overview of system’s modules including RDataFrame
client side, XRootD protocol for communication with EOS
data source and AWS Lambda serverless platform and S3
for server side. Engine workflow’s sequence described in (n)
labels.

because of its further idle operation, which would consist only
of a few empty storage buckets, a docker image and a function
signature.

III. A SERVERLESS ENGINE FOR HEP DISTRIBUTED
ANALYSIS

A. Overview

The goal of the project is to create a distributed execution
engine that is strongly integrated with the user-facing analysis
framework and does not require almost any configuration. The
entire execution from the client perspective is the same as if
it is run on the client’s own machine, but underneath it uses
distributed computing nodes in the form of serverless functions
running on Docker containers.

The engine relies on the distributed RDataFrame Python
package [28]. This is an extension of the RDataFrame interface
that wraps the computations issued by the user in their
application code in a MapReduce [29] pattern. The tool creates
tasks that split the dataset of the analysis in various logical
ranges of entries. The splitting is done in such a way that the
ranges do not overlap and will contain one or more TTree
clusters if the original dataset is stored in that format. This
ensures that the distributed nodes read the needed entries
exactly once. Each range is assigned to a separate serverless
function execution that applies the RDataFrame computations
to that piece of the original dataset. In this work, the payload
of each Lambda execution contains both a range and a copy
of the mapper function defined within RDataFrame. When the
Lambda is invoked, it executes the mapper on the part of the
dataset described by the metadata contained in the range.

The expected input from the user boils down to:
• A handle to the dataset: this usually comes in the form

of a pair of (dataset name, dataset path),
where the path to the dataset can be provided as a single

file path or multiple paths to various files. The path format
can change to a URI in case the files are stored remotely.

• The Mapper Script: The operations to be processed on the
dataset. This is the core of the analysis application and
it is written in Python and C++ using the RDataFrame
API.

• Access token (optional): should the analysis need to
access private data stored at CERN, the user has to create
and point to the transferable Kerberos ticket to allow the
authorization and therefore usage of these resources from
both client and worker sides.

• Extra C++ code (optional): some more complex physics
analyses use additional C++ headers that need to be
distributed to the worker environment and declared to the
ROOT interpreter to be available at runtime.

The engine itself is strongly decoupled: there are separate
client and Lambda (also known as worker) sides. The client
side is defined by the user application and the machine where it
is started. This application uses the correct RDataFrame imple-
mentation that is aware of how to connect to AWS and launch
multiple Lambda functions. The worker side is managed using
Hashicorp Terraform [27] mentioned beforehand, making the
deployment of the required infrastructure easy for end user,
while also allowing for swift changes or even a complete
teardown of the infrastructure by a few commands.

The whole architecture can be seen in Fig. 1. The leading
idea was the possibility of changing the backend seamlessly:
the AWS Lambda can be exchanged for any other computing
service, as long as it can run the environment and allow for
temporary storage.

For simplification, the client RDataFrame operating under
the newly developed AWS engine attached to ROOT shall be
henceforth treated as the client side, and ROOT Lambda as
the worker side.

The whole execution environment of the Lambda function
is packaged in a container. The reason for this comes from the
need of including ROOT, which is too big for typical limits on
storage imposed by serverless engines for normal functions.
Taking AWS Lambda as an example, the max function package
size at the time of writing this paper is 50 megabytes, while
a full ROOT installation can reach multiple gigabytes in size.

1) Client Side: The client side extends the RDataFrame,
receiving from it both a list of ranges and the user code
processed into a single Python object. For creation of the
Proof of Concept, the AWS Cloud was used for the serverless
platform, although it is possible to change the platform by
changing just a few integrating calls. The client side integrates
with the AWS using the Boto3 [30] software development
kit. The overall mechanism of the client side is described in
Algorithm 1.

The noteworthy part is that the C++ code from the analysis
is packed into a generic Python object using cloudpickle, so
it is possible to port the required part of the environment of
the client to the worker, allowing for more elastic execution.

The client side also takes care about packaging any required
C++ code besides the explicitly declared operations, be it



source files or headers. They are sent serialized as an input to
the worker main function, which then deserializes and includes
them before executing the script from the payload.

Algorithm 1 Engine Algorithm on the Client Side

Require: npartitions
1: npartitions← int
2: script← RDataFrame operations as a single object
3: token← Read Kerberos auth file
4: data← Read metadata about declared data sources
5: headers← Read headers declared in ROOT
6: ranges← split data into npartitions partitions
7: for range in ranges do
8: begin ASYNC THREAD(range)
9: payload← {range, script, token, headers}

10: {single result,monitoring data} ← call
Worker(payload)

11: call save(monitoring data)
12: end ASYNC
13: end for
14: results ← call reduce(single result) foreach

THREAD(range)
15: return results

2) Worker Side: The worker is provided as a Docker
image, utilizing the newly added Docker integration to AWS
Lambda [31]. It comes with ROOT installed as well as a
customized addition of a monitoring tool. It operates under the
Algorithm 2, which describes what happens in this particular
serverless function. It does not depend on any AWS services
with an exception of the S3, allowing for an easy potential
portability to other serverless platforms.

When the function is called, it expects to receive the data
handle and function to be applied. Optionally, Kerberos tickets
and supporting C++ code can be provided. It compiles the
C++ part using Cling [32] JIT compiler and executes it on the
provided range, downloading it on demand. It is worth noting
that Cling underneath makes use of LLVM [33]. Therefore,
it allows for compiling arbitrary code on the fly, making for
a generic worker able to compile and execute any C++ code
provided.

For the measurements for the paper, the customized Python
inspector from SAAF [34] project is employed. It measures
the current metrics of the worker environment, including CPU,
memory, and bytes transmitted via network. It does so every
second, to give a clear and granular understanding of what
goes on inside of every single execution to provide more
insights for future work. Besides measuring much more often
than the original and being run in a separate Python process,
it behaves the same as in the SAAF paper. It introduces some
overhead, but it is hard to measure the exact influence if the
monitoring tool is disabled.

In the current form, no caching is included, although it is
possible to attain with several data source string manipulations.

Algorithm 2 Engine Algorithm on Worker Side

Require: TokenFilePath
1: {range, script, token, headers} ← payload
2: write token into TokenFilePath
3: for {header, header file path} in headers do
4: write header into header file path
5: declare header file path in ROOT
6: end for
7: monitoring ← start ASYNC monitoring process
8: result← call script(range)
9: write result into s3 bucket

10: monitoring result← stop(monitoring)
11: return monitoring result

B. Payload

The payload that is input to the worker function consists of
several strings containing serialized objects, such as:

1) Mapper Script;
2) Range;
3) Kerberos Ticket;
4) List of headers, libraries etc.

Aside from Range, the other three objects are identical in all
invocations. Kerberos Ticket and headers are serialized on the
client side and their contents unpacked to files in temporary
storage on the server side.

C. Controlling the execution - asynchronous threads

Because of the requirement of advanced error handling,
the decision was made to use so-called synchronous Lambda
invocations. AWS Lambda provides two kinds of Lambda
invocations - synchronous and asynchronous [35]. The asyn-
chronous one is based on the fire and forget mechanism and
the response to the invocation request is sent straight away
when Lambda queues the event for processing. In contrast to
the previous one, the synchronous invocation waits until the
computation is finished and reports the execution state directly
to the caller. That allows for a more precise retry mechanism,
the logic of which is present on the client side. That option is
not available in asynchronous calls and would be not trivial to
implement. After sending the synchronous invocation request,
a connection with the Lambda is established and a thread
calling an invocation procedure is waiting for the Lambda to
complete processing. When the Lambda’s work is done, the
thread gets a response containing JSON serialized payload, the
content of which can be specified inside the Lambda function’s
code. This allows for passing information about the success
of the computation as well as the errors that occurred during
the computation.

Error handling mechanism was achieved by running a pool
of asynchronous Python threads, each managing a single
synchronous Lambda execution. If the Lambda fails, it sends
a type of error and an error message to the client side, where
those are logged and a retrial is done on the same thread. A



single Lambda instance that still errs after several retrials fails
the entire run.

Compared to our initial implementation of asynchronous
Lambda invocations on the main Python thread [18], there
was a massive gain in the speed of invocation observed in our
experiments, throttled only by AWS documented limit of 10
new synchronous lambda invocations per second [36] and the
speed of connection between client and the AWS server.

D. Kerberos emplacement

To enable authentication and authorization to secure storage
at CERN, a transferable Kerberos ticket needs to be provided
by the user, and has to be placed in a location readable by the
XRootD on the client side. Once the analysis code is triggered
on the client side, it is first used to access the metadata of the
required input data files. Then, the contents of the ticket file
are serialized and transported in the payload to each worker,
which then unpacks it in a specified location for the XRootD
to use, allowing for access with the same permissions as on the
client side (see Algorithm 2). For XRootD to read the ticket,
the pointer to it has to be provided. There are several ways to
do that. In this implementation, the value of KRB5CCNAME
environment variable is set on signature of the lambda and
used as the target path of writing the ticket file contents from
the payload, as well as the path of the file to be read by the
XRootD.

IV. EXPERIMENTS

The goals of the experiments are as follows:
• to evaluate the performance and scalability of the engine

using two representative workloads;
• to collect detailed metrics regarding CPU and network

usage, to understand the potential limitations and bottle-
necks;

• to assess the variability of the underlying AWS Lambda
infrastructure under this workload.

A. Methodology

The configuration for the a single Lambda function used to
run the tests is as follows:

• 1769 megabytes of RAM (corresponding to one vCPU-
second of credit per second, which means that a full
single vCPU core is allocated to this Lambda);

• The analysis runs on ”Intel(R) Xeon(R) Processor @
2.50GHz”, as reported by monitoring tool;

• 15 minutes timeout, which is max value allowed by AWS
in time of writing;

• Based on a Docker image of size ∼4 gigabytes [37];
• AWS Lambda is kept warm by running a 1000 container

warmup before the main analysis, meaning that the ROOT
initialization time is excluded thanks to avoiding addi-
tional time at cold start.

Two analyses are run on the infrastructure:
1) A CPU-bound benchmark. This serves as a baseline

for local resources utilization, as opposed to the typi-
cal data-intensive analysis. Creates a simulated dataset

TABLE I: Comparison of analyses used for testing the created
engine.

Name Size [GB] Chunks
CPU-bound benchmark 96 4 · 1e9
PPS analysis 420 26410

81632 64 128 256 512

Concurrent Lambda functions
0

100

200

300

400

500

600

700

800

Ru
nt

im
e 

[s
]

CPU benchmark
PPS analysis
ideal speedup

(a)

81632 64 128 256 512

Concurrent Lambda functions
0

10

20

30

40

50

60

Sp
ee

du
p

CPU benchmark
pps analysis
ideal speedup

(b)

Fig. 2: Comparison of runtime scaling of the cpu-bound
benchmark and the PPS analysis, with an increasing number of
Lambda invocations. a: comparison of the absolute runtimes.
b: comparison of the speedup with respect to a linear increase.

with one billion randomly generated entries and three
columns storing scalar floating-point values. The simu-
lated dataset total size is 96 gigabytes. The application
computes the mean value of each column, ten times
per column. This application will be called “CPU-bound
benchmark” from now on.

2) A real physics analysis processing data from the PPS
subsystem of the CMS experiment at CERN [38]. It
consists of the selection of candidate events of exclusive
dilepton production, pp→ p⊕``⊕p, with ` ∈ {e, µ, τ}.
The measurement of exclusive production of lepton
pairs involves two selections: (1) Exclusive cuts - lep-
tons are produced exclusively, i.e., no other particles
are produced during the proton-proton interaction, and
(2) correlation between leptons and protons. The total
dataset size is 420 Gigabytes. This application will be
called “PPS analysis” from now on.

The datasets’ sizes were adjusted to execute just below the
Lambda-imposed limit of 15 minutes before timeout (Table I).

Each analysis is run on a distributed RDataFrame increasing
the number of partitions, which is equal to the number of
Lambda invocations. These are: [8, 16, 32, 64, 128, 256, 512].
Each invocation processes a separate range of entries of
the RDataFrame. The distributed RDataFrame applications
are started within an environment that has both the AWS
credentials and the Kerberos ticket available (the latter is
needed to access the dataset of the PPS analysis).

B. Results

1) Runtime scaling: The developed engine is put to test
with the two analyses described in Section IV-A. The total
runtime of the execution of the Lambda functions is measured



by subtracting the minimum starting time among all executions
belonging to a single test run from the maximum ending time
within the same run. Figure 2 shows the behaviour of the
system with both applications and an increasing number of
Lambda invocations. It should be noted that this figure reports
a linear increase in speedup as the ideal expectation. This
is due to the specific nature of HEP data. Given a certain
collision between particles, all events involved are statistically
independent. The logic of an analysis is applied per event
and the operations do not change whether there are just one
hundred events or billions of them in the same dataset. This
means that effectively HEP data analysis is an embarassingly
parallel problem. Thus, if no other technical issues were to
be encountered, scaling to more cores should follow a linear
increase. Such behaviour is also shown in similar works [28],
[39], [40]. Furthermore, the scalability of the tests in this work
is subject to specific limitations imposed by AWS, which are
highlighted in Section IV-B4.

2) Network and CPU usage patterns during Lambda execu-
tion: Running the PPS analysis with the Lambda infrastructure
requires streaming the pieces of the dataset needed for the
analysis to the functions during their runtime. Given that
a certain RDataFrame range can span one or more TTree
clusters, these will need to be downloaded by the Lambda
when they are needed for processing. The ROOT I/O streams
a cluster of entries and processes them as they arrive, leading
to the usage patterns shown in Figure 3. This figure focuses
on a single Lambda invocation of the whole PPS analysis.
During runtime, RDataFrame requests clusters of entries, thus
triggering remote read requests that translate to higher spikes
in network usage (in blue in the figure). Subsequently, the
entries are processed leading to higher CPU usage (in orange
in the figure). It can be seen that the spikes in the network
and CPU usage alternate one another.

Fig. 3: CPU usage (in orange) and network traffic (in blue) in a
single Lambda execution running PPS analysis. This execution
belongs to a run with 64 concurrent invocations.

Aggregating the CPU percentage usage over all Lambda
invocations of a particular PPS analysis run produces the
pattern shown in Figure 4. Initially, as all lambdas finish
downloading the first chunk of the dataset they need to process,
a high spike in CPU usage is shown, reaching 74% of the total

available 64 vCPUs. Consecutively, the CPU usage hovers
around 40% until the first Lambda execution finishes and there
is a corresponding drop that lasts until all functions finish their
workload.

0 20 40 60 80 100
Time from start [s]

0

1000

2000

3000

4000

CP
U 

us
ag

e 
[%

]

Fig. 4: CPU usage of 64 Lambda invocations running the PPS
analysis.

The CPU-bound benchmark shows a different story. In
Figure 5 the usage is always above 90% of the total vCPUs
available until the end of the benchmark. This is coherent with
the average utilization for every Lambda seen on Figure 9.

0 20 40 60 80 100
Time from start [s]

0

1000

2000

3000

4000

5000

6000

7000

CP
U 

us
ag

e 
[%

]

Fig. 5: CPU usage of 64 Lambda invocations running the CPU-
bound benchmark.

3) Variability in starting and ending time of Lambda execu-
tions: The monitoring tool running in the Lambda execution
also reveals delays in the starting and ending times of different
Lambda invocations in the same analysis run. With serverless
computing, there is no direct control or access to the com-
puting resources, and this means that the actual starting time
of a certain computation after the Lambda has been invoked
from the client can show some variability. Figure 6 shows
that different Lambda invocations in the same test run can
vary both in their starting time and in their ending times. In
this particular CPU-bound run, the maximum delay between
the first starting Lambda and the last one is around 4 seconds,
while the maximum delay at the end is around 10 seconds.
While quite limited, this delay is still noticeable and it is
another peculiarity of the serverless workflow.



(a) Distribution of the start time
of a Lambda execution relative to
the Lambda that started first.

(b) Distribution of the end time
of a Lambda execution relative to
the Lambda that ended first.

Fig. 6: Comparison of distribution for start and end Times for
128 concurrent Lambda invocations running the cpu-bound
benchmark.

PPS CPU-bound

0

1

2

3

4

Av
er

ag
e 

Ne
tw

or
k 

Us
ag

e 
[M

B/
s]

Fig. 7: Comparison of average network usage for Lambda in
both analyses. The CPU-bound is added to show the lack of
any network activity.

4) Real utilization of available resources on AWS Lambda:
Because of the variable nature of PPS analysis dependant on
external IO, the synthetic CPU-bound analysis can be used to
see how efficient the serverless function can really be with
given resources.

We can clearly see that the synthetic CPU-bound benchmark
is able to utilize over 90% of allocated vCPU power at all
times (Figure 9). However, the actual time the analysis takes
is two times as long as that of the average execution, where the
outliers are few and differ little from the average Lambda. This
is because of the throttling imposed by AWS on the number
of new synchronous invocations per second, leading to delays

0 5 10 15 20 25
Time from the start [s]

0

100

200

300

400

500

La
m

bd
a 

in
vo

ca
tio

n 
nu

m
be

r

0 10 20 30 40 50
Time from the start [s]

0

100

200

300

400

500

La
m

bd
a 

in
vo

ca
tio

n 
nu

m
be

r

0 2 4 6 8 10 12 14
Actual runtime [s]

0

100

200

300

400

500

La
m

bd
a 

in
vo

ca
tio

n 
nu

m
be

r

0 10 20 30 40 50
Actual runtime [s]

0

100

200

300

400

500

La
m

bd
a 

in
vo

ca
tio

n 
nu

m
be

r

Fig. 8: Comparison of runtime variability in executions. The
top row shows the actual time of a single analysis computation,
aligned to the beginning of first Lambda as a 0 point. The
bottom row has every Lambdas’ start aligned to 0. The
left column shows synthetic CPU benchmark, the right PPS
analysis.

of startup time for multiple executions.
The PPS benchmark shows greater variability in execution

time, with some instances finishing much earlier than the
few outliers. Here the overall analysis time is very similar
to duration of the longest invocation, but it still takes several
seconds longer than it.

Both plots on Figure 8 present us with an execution of 512
lambdas given, each in the scope of a single analysis given
roughly the same data size. Each line presents a lifetime of a
single execution, sorted by start time for a better visibility.

In the case of PPS analysis, the clear variability is seen.
Data is divided as equally as possible, but RDataFrame engine
does not have insight into the exact content of the files given
to Lambdas and that it can create a difference between the ex-
ecution times. Moreover, some instances might stumble upon
network slowdowns or slower IO with some files that results
in a lower utilization of CPU on a particular Lambda. This
is why the CPU-bound analysis was taken as a comparison
point: we can see that after starting the analysis, the overall
execution is very uniform and the outliers are very few. Thus,
in principle, RDataFrame is able to saturate the CPU resources
available in the Lambda environment.

To understand the results in Figure 9, we need to see the
Figure 7 and an example of a single network bound execution
on Figure 3. The results show the lack of simultaneous
utilization of CPU and network resources.



CPU-bound PPS

30

40

50

60

70

80

90

Av
er

ag
e 

CP
U 

us
ag

e 
[%

]
Average CPU usage

CPU-bound

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

Av
er

ag
e 

CP
U 

us
ag

e 
[%

]

PPS

30

35

40

45

50

55

60
Av

er
ag

e 
CP

U 
us

ag
e 

[%
]

Fig. 9: Comparison of average CPU usage for every Lambda
in both analyses for 512 Lambdas. The left column shows both
analyses, while the right shows closeups to both.

C. Discussion

The results shown previously demonstrate how the engine
can perform quite well regarding CPU utilization, but there are
several limitations imposed by AWS that worsen our current
results. The currently implemented synchronous calls to API
from outside AWS are severely impacting the startup time,
making the execution much longer than it needs to be.

Despite that, as seen on Figure 2 the scaling shows promises
once the limit on the speed of invocation for a higher count
of Lambda is solved. While this may seem an issue if only
looked at from the perspective of a single user running a
single analysis, it is actually a demonstration of how the
serverless approach would allow to fully utilize the underlying
hardware. In fact, the time periods where the invocations
made by the engine have not started yet due to the AWS
limit of 10 per second, the same CPUs could still be used
by different serverless functions invoked elsewhere. This is a
nice compromise between full interactivity and long queues
in submission systems usually seen in HPC, and something
new to consider for HEP workflows. The other thing is data
locality, where the stream of I/O coming directly from CERN
causes the PPS analysis to stumble on the network connection
between CERN and AWS data centre, as well as probably on
CERN storage speed.

The speedup is almost linear up to 128 cores, but above that
value it falls off: something that can be fixed by deploying
an invocation mechanism on the server side, or using asyn-
chronous mechanisms just like Wukong [16] does.

V. CONCLUSIONS

The novelties presented in this work come in many flavors.
First, this is the earliest example of a public serverless

computing platform being used for real HEP analysis used by
scientists at CERN, yet it was conducted outside the CERN
or affiliated institutions’ infrastructure. This was achieved
by exploiting a lightweight environment thanks to serverless
functions and ephemeral storage to keep track of the current
state.

Second, typical serverless frameworks require the user to
have some knowledge about distributed computation, which is
not required here, as the interfaces in the distributed and local
versions are the same.

Third, this work proves that the current serverless platforms
supporting docker are able to run complex analyses on big,
complex frameworks requiring a lot of resources even to
start up. Scientific platforms are usually limited to particular
distributions, or have their functionality limited when using
such platforms, but here the full functionality of the distributed
RDataFrame is retained.

Fourth, the packaging of all needed software in a single
container image allows the user to have a flexible environment,
where they can modify the code of even the most complex
underlying frameworks such as ROOT and run it on the
infrastructure side. This approach was not easy (or sometimes
not even possible) on the classical managed infrastructures.

The engine presented here shows a promise for deployment
at a large scale as an alternative to a typical on-premises
analysis run on grids. The results are promising, as the engine
was capable of fully utilizing the AWS resources available
during function execution and the only real bottleneck was the
limit in Lambda invocations per second. Nonetheless, there is
still room for improvement, especially concerning the speed
of the overall startup time when running with a large number
of concurrent executions, as the network between the client
and the AWS API gateway can throttle the initialization part.

In a future work, the engine will be tested and compared
with various serverless frameworks and on different compute
services, in an attempt to reach the full parallelization capabil-
ities faster. Furthermore, other optimisation techniques will be
employed such as including the reduce step in the serverless
workflow and exploring input data caching, to further increase
performance of the engine.

Another interesting direction to build upon would be the
reuse of cling and llvm to run arbitrary C++ regardless of the
platform which it is run on. That would result in truly generic
C++ script runners, which could be useful for sideloading
arbitrary high performance C++ code to Python serverless
functions. This could help with the typical binary format of
compute-intensive parts of the program, which are not portable
between different processor architectures.

VI. ACKNOWLEDGEMENTS

This work was supported by the Polish Ministry of Ed-
ucation and Science, grant DIR/WK/2018/13 and the funds



assigned to AGH. It also received support from grant PID2020-
113656RB-C22 funded by the Spanish Ministry of Science and
Innovation (MCIN/AEI/10.13039/501100011033).

REFERENCES

[1] E. Elsen, “A Roadmap for HEP Software and Computing R&D for the
2020s,” Comput Softw Big Sci, vol. 16, no. 3, 2019.

[2] CMS collaboration, “Cms offline and computing public results,” https://
twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults.

[3] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[4] I. Bird, “Computing for the Large Hadron Collider,” Annual Review of
Nuclear and Particle Science, vol. 61, no. 1, pp. 99–118, 2011.

[5] D. Piparo, E. Tejedor, P. Mato, L. Mascetti, J. Moscicki, and
M. Lamanna, “Swan: A service for interactive analysis in the cloud,”
Future Generation Computer Systems, vol. 78, pp. 1071 – 1078,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X16307105

[6] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. development team, “Jupyter
Notebooks - a publishing format for reproducible computational
workflows,” in Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Scmidt, Eds. IOS Press, 2016,
pp. 87–90. [Online]. Available: https://eprints.soton.ac.uk/403913/

[7] Z. et al., “Apache spark: A unified engine for big data processing,”
Commun. ACM, vol. 59, no. 11, p. 56–65, Oct. 2016. [Online].
Available: https://doi.org/10.1145/2934664

[8] “Google Cloud Functions,” https://cloud.google.com/functions.
[9] Apache Foundation, “Apache openwhisk is an open source, distributed

serverless platform that executes functions (fx) in response to events at
any scale.” https://openwhisk.apache.org/.

[10] “Knative: Kubernetes-based platform to build, deploy, and manage
modern serverless workloads.” https://knative.dev.

[11] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, mar 2014.

[12] “Production-grade container orchestration automated container deploy-
ment, scaling, and management,” https://kubernetes.io/.

[13] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proceedings of the
2017 Symposium on Cloud Computing, ser. SoCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 445–451.
[Online]. Available: https://doi.org/10.1145/3127479.3128601

[14] PiCloud, “cloudpickle: Extended pickling support for Python objects,”
https://github.com/cloudpipe/cloudpickle.

[15] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless linear
algebra,” in Proceedings of the 11th ACM Symposium on Cloud
Computing, ser. SoCC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 281–295. [Online]. Available:
https://doi.org/10.1145/3419111.3421287

[16] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proceedings of the 11th ACM Symposium
on Cloud Computing, ser. SoCC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–15. [Online].
Available: https://doi.org/10.1145/3419111.3421286

[17] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless
computing for container-based architectures,” Future Generation
Computer Systems, vol. 83, pp. 50–59, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17316485

[18] J. Kuśnierz, M. Malawski, V. E. Padulano, E. Tejedor Saavedra, and
P. Alonso-Jorda, “Distributed parallel analysis engine for high energy
physics using aws lambda,” in Proceedings of the 1st Workshop on
High Performance Serverless Computing, ser. HiPS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 13–16.
[Online]. Available: https://doi.org/10.1145/3452413.3464788

[19] “AWS Lambda is a serverless compute service that lets you run code
without provisioning or managing servers,” https://aws.amazon.com/
lambda/.

[20] “Lambda execution environments,” https://docs.aws.amazon.com/
lambda/latest/operatorguide/execution-environments.html.

[21] R. Brun and F. Rademakers, “Root - an object oriented data analysis
framework,” in AIHENP’96 Workshop, Lausane, vol. 389, 1996, pp. 81–
86.

[22] ROOT team, “TTree class reference guide,” https://root.cern.ch/doc/
master/classTTree.html, 2021, accessed: 2021-11-11.

[23] Piparo, Danilo, Canal, Philippe, Guiraud, Enrico, Pla, Xavier Valls,
Ganis, Gerardo, Amadio, Guilherme, Naumann, Axel, and Tejedor,
Enric, “Rdataframe: Easy parallel root analysis at 100 threads,”
EPJ Web Conf., vol. 214, p. 06029, 2019. [Online]. Available:
https://doi.org/10.1051/epjconf/201921406029

[24] B. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” Communications Magazine, IEEE, vol. 32, pp. 33
– 38, 10 1994.

[25] A. Peters, E. Sindrilaru, and G. Adde, “EOS as the present and future
solution for data storage at CERN,” Journal of Physics: Conference
Series, vol. 664, no. 4, p. 042042, dec 2015. [Online]. Available:
https://doi.org/10.1088/1742-6596/664/4/042042

[26] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd/txnetfile:
a highly scalable architecture for data access in the root environment,”
Proceedings of the 7th WSEAS International Conference on Telecom-
munications and Informatics, p. 46, 01 2005.

[27] HashiCorp, “Terraform : Infrastructure as code for provisioning, com-
pliance, and management of any cloud, infrastructure, and service.”
https://www.hashicorp.com/products/terraform.

[28] Padulano, Vincenzo Eduardo, Cervantes Villanueva, Javier, Guiraud,
Enrico, and Tejedor Saavedra, Enric, “Distributed data analysis with
root rdataframe,” EPJ Web Conf., vol. 245, p. 03009, 2020. [Online].
Available: https://doi.org/10.1051/epjconf/202024503009

[29] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107–113, jan 2008.
[Online]. Available: https://doi.org/10.1145/1327452.1327492

[30] “Boto3 is the amazon web services (aws) software development kit
(sdk) for python,” https://boto3.amazonaws.com/v1/documentation/api/
latest/index.html.

[31] Amazon Web Services, “New for aws lambda – con-
tainer image support,” https://aws.amazon.com/blogs/aws/
new-for-aws-lambda-container-image-support/.

[32] V. Vassilev, P. Canal, A. Naumann, and P. Russo, “Cling – The New
Interactive Interpreter for ROOT 6,” vol. 396, 05 2012.

[33] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” in CGO, San Jose, CA, USA,
Mar 2004, pp. 75–88.

[34] R. Cordingly, H. Yu, V. Hoang, Z. Sadeghi, D. Foster, D. Perez,
R. Hatchett, and W. Lloyd, “The serverless application analytics
framework: Enabling design trade-off evaluation for serverless
software,” in Proceedings of the 2020 Sixth International Workshop
on Serverless Computing, ser. WoSC’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 67–72. [Online].
Available: https://doi.org/10.1145/3429880.3430103

[35] “Types of Lambda invocations,” https://docs.aws.amazon.com/lambda/
latest/dg/lambda-invocation.html.

[36] “Aws lambda quotas,” https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html.

[37] “Root lambda docker image used in the analysis,” https://gallery.ecr.aws/
u1r6s2k6/root lambda.

[38] M. Pitt, “Pps exclusive dilep analysis,” https://gitlab.cern.ch/mpitt/
ppstools/-/blob/master/exclusive-dilep/PrepareDataFrames.ipynb.

[39] V. Avati, M. Blaszkiewicz, E. Bocchi, L. Canali, D. Castro, J. Cer-
vantes, L. Grzanka, E. Guiraud, J. Kaspar, P. Kothuri, M. Lamanna,
M. Malawski, A. Mnich, J. Moscicki, S. Murali, D. Piparo, and
E. Tejedor, “Declarative big data analysis for high-energy physics: Totem
use case,” in Euro-Par 2019: Parallel Processing, R. Yahyapour, Ed.
Cham: Springer International Publishing, 2019, pp. 241–255.

[40] V. E. Padulano, I. D. Kabadzhov, E. T. Saavedra, and E. Guiraud,
“Distributed RDataFrame: leveraging Dask and latest optimisations,”
in 20th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research, 2021. [Online]. Available:
https://indico.cern.ch/event/855454/contributions/4596502

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
http://www.sciencedirect.com/science/article/pii/S0167739X16307105
http://www.sciencedirect.com/science/article/pii/S0167739X16307105
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1145/2934664
https://cloud.google.com/functions
https://openwhisk.apache.org/
https://knative.dev
https://kubernetes.io/
https://doi.org/10.1145/3127479.3128601
https://github.com/cloudpipe/cloudpickle
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421286
https://www.sciencedirect.com/science/article/pii/S0167739X17316485
https://doi.org/10.1145/3452413.3464788
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTTree.html
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1088/1742-6596/664/4/042042
https://www.hashicorp.com/products/terraform
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1145/1327452.1327492
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://doi.org/10.1145/3429880.3430103
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://gallery.ecr.aws/u1r6s2k6/root_lambda
https://gallery.ecr.aws/u1r6s2k6/root_lambda
https://gitlab.cern.ch/mpitt/ppstools/-/blob/master/exclusive-dilep/PrepareDataFrames.ipynb
https://gitlab.cern.ch/mpitt/ppstools/-/blob/master/exclusive-dilep/PrepareDataFrames.ipynb
https://indico.cern.ch/event/855454/contributions/4596502

	I Introduction
	I-A High Energy Physics and CERN
	I-B State of the art in High Energy Physics (HEP) data processing
	I-C Serverless computing
	I-D State of the art in serverless data processing
	I-E Goal of the project

	II Tools
	II-A AWS Lambda
	II-B ROOT
	II-C Kerberos
	II-D EOS
	II-E XRootD
	II-F Terraform and Infrastructure as Code

	III A serverless engine for HEP distributed analysis
	III-A Overview
	III-A1 Client Side
	III-A2 Worker Side

	III-B Payload
	III-C Controlling the execution - asynchronous threads
	III-D Kerberos emplacement

	IV Experiments
	IV-A Methodology
	IV-B Results
	IV-B1 Runtime scaling
	IV-B2 Network and CPU usage patterns during Lambda execution
	IV-B3 Variability in starting and ending time of Lambda executions
	IV-B4 Real utilization of available resources on AWS Lambda

	IV-C Discussion

	V Conclusions
	VI Acknowledgements
	References

