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Abstract—The European project URBANITE (Supporting the
decision-making in URBAN transformation with the use of dis-
ruptive Technologies) aims to put in place a sustainable mobility
with the support of disruptive and innovative technologies for
the sector of urban mobility. Urban mobility and smart mobility
contexts, but not only, now require more than ever the use of large
amounts of historical data to carry out the necessary analyses
for different use cases. A good management of time series
data, able to use pagination concepts in an optimized way and
providing the user with specifications functions, therefore become
indispensable. This need emerged as a native implementation
in MongoDB 5.0. With the release of this version, users have
functionality to manage time series collections. This new solution
has stimulated us to undertake a study on the methods of
managing time series data and compare the solution proposed
by MongoDB with our solution based on the advanced use of the
bucket approach. The two solutions were tested in a real context
and the results obtained are reported in the paper.

Index Terms—Decision Support, Policy Decision, Smart Mobil-
ity, Urban Mobility, MongoDB, Time series, database No-SQL,
Smart City, Big Data

I. INTRODUCTION

Nowadays, nearly all cities are increasingly moving towards
models of intelligent infrastructures, the so-called smart cities,
capable of anticipating the needs of their inhabitants by pro-
viding them with increasingly innovative and targeted services.
A smart city can collect an infinite amount of information by
acquiring real-time vehicle locations, weather data, air quality
measurements or GPS position of electric vehicles in the city
center. By processing this information it is possible to provide
both administrators and citizens with real-time information or
digital services that can improve their quality of life. The large
amount of data exchanged between IoT acquisition tools (such
as sensors and cameras) and databases, but also the need to
make this information immediately available, makes central
the creation of increasingly efficient data models, both in
the process of writing data into the selected database and in
the reading phase, when the access time by users becomes
extremely important to increase the quality of the service.
The correct data management is in fact important in various
aspects of smart cities. The use of data is fundamental for

the monitoring of cities and for the creation of planning
and decision making tools. The European Commission funds
various research programs for the development of smart cities
and for an optimal use of data. With Horizon 2020, Horizon
Europe and the Next Generation EU programs are being
developed projects in various fields including that of urban
mobility. The URBANITE project is active in this particular
sub-area of Smart Cities and it was funded under the H2020
funding program. Among the objectives of URBANITE, the
main one is to promote the use of disruptive technologies in the
nascent Smart City in technological term, through the use and
analysis of Big Data, artificial intelligence algorithms, etc. An
innovative element, however, is that linked to the promotion of
innovative tools for participation in decision-making processes
such as the Laboratory Social Policy (SoPoLab). The aim of
the project is therefore to provide stakeholders of the project
a series of innovative technological tools in order to support
the decision-making processes of the executives of public
administrations and companies. At the base of these tools
is important the organization and management of data, the
subject of the work presented.

In the use case of the project, concerning the city of
Messina, we faced the problem of organizing large quantities
of data concerning local public transport. We have tried to
propose an efficient solution for querying a huge database
by introducing innovative concepts and using existing tools
effectively for our purpose. The study focused on the opti-
mization of data acquisition and their query in the case of
using MongoDB. We implemented and tested the solution
trying to understand if it could have a real beneficial effect
in the implementation of decision making tools in urban
mobility applications within the project. The rest of the paper
is organized as follows: the Section II describes the state of
the art regarding the topics analyzed. The Section III describes
the reasons that prompted us to invest in the proposed work,
which is depicted in the Section IV. The tests carried out are
reported in the Section V, the conclusions and future scenarios
analyzed are discussed in Section VI



II. RELATED WORK

In mobility use cases, sensor data or machine-to-machine
communications are stored, analyzed and tracked using time
series. However, in cases where systems need to be highly scal-
able and different functionalities are required, it could be better
to use a document database such as MongoDB. In this study,
therefore, we want to understand how the problem of querying
large databases, based on time series, can be optimized using
MongoDB, but in the first instance we want to investigate
the state of the art to better understand which are the other
solutions available. A general study of traditional relational
databases as well as NoSQL-based solutions for time series
data is reported in [1]. The authors conclude that for time
series databases the key factor is the speed. The study shows
that NoSQL databases can be used in case of time series which
an high frequency of measurements. The solution indicated
in this case, without considering MongoDB in the study, is
Cassandra. An example of a DB comparison that also includes
MongoDB is shown in [2]. In this paper the authors compare
relational databases such as Oracle with non-relational DBs
such as MongoDB, Redis and Cassandra. For the experiments
a DB on railway connections is used. The comparison between
the DBs is made with two models. The first concerns the
speed of access to data on a small portion of the database. The
second, on the other hand, evaluates the times and requests for
storage space on a large number of records. The study carried
out concludes that certainly on a large amount of data it is
better to use NoSQL type DBs. In particular, MongoDB is the
best in terms of query performance. In [3] it is experimentally
demonstrated how to manage a time database, Chronos. The
authors use temporal and parallel algorithms as well as specific
RAM storage methods for data management. The presented
method increases the efficiency of temporal data management
by approximately 40% — 90% compared to other databases,
such as MySQL and MongoDB. The increasingly common use
of data for analysis purposes concerns various areas. Surely, an
inexhaustible source of data are social networks. In this context
a study, whose methodologies are interesting, is reported in [4].
After defining the application requirements, the authors make
a detailed comparison of five of the most popular NoSQL
systems, namely Redis, Cassandra, MongoDB, Couchbase and
Neo4j, in relation to the defined requirements. The importance
of defining the requirements before choosing a DBMS is
fundamental. One of the problems in managing data organized
in time series mainly concerns historical data. Especially in
the field of mobility, various data accumulated over time are
organized in SQL like databases. In [5] the authors tackle
this problem by proposing a solution for converting queries
from MySQL to MongoDB taking into account the database
structure. In the IoT field and in particular in the context
of mobility, the management of Big Data is fundamental. It
emerges from several studies that the number of connected de-
vices is always increasing, and the data they collect is managed
more and more often with DBMS NoSQL. In practice, the data
collected by IT devices are nothing more than series of data.

This implies that it is necessary to manage the data with spe-
cific technologies. In [6] the authors present the results of an
empirical comparison of three NoSQL Database Management
Systems. The assessments cover Cassandra, MongoDB and
InfluxDB, maintaining and recovering gigabytes of real IIoT
data. The results of the tests show that MongoDB gave the best
performance for queries on non-temporal indexed attributes,
while Cassandra was unstable compared to its competitors.
InfluxDB was on average the best performing solution, com-
pared to Cassandra and MongoDB in terms of storage and
with regard to ingestion and time-based queries. In [7] the
authors evaluate the use of time series databases for telemetry
data and they combine these results with microbenchmarks
to determine the best compression techniques and storage
data structures for designing a new optimized solution for
data from IoT. The query translation method allows to use
data models such as the Resource Description Framework
(RDF) for interoperability and data integration in addition
to optimized storage. The authors propose a framework, Tri-
tanDB, which shows an improvement in performance on cloud
hardware on many databases used within IoT scenarios. In [8]
the authors consider a case study in which IoT devices send
large amounts of data to the database. In the context of this
scenario, the performance of multiple DBMSs is analyzed.
The results of the study allow to evaluate the load on the
system that writes the data and the scalability of the system.
From the evaluation of the results it is clear that MongoDB
is the best choice, but according to specific configurations or
needs, other choices such as MariaDB or InfluxDB are also
optimal. The work presented in [9] reports a concept of a
GPU extended non-relational database management system.
The research focuses on implementing kernels and performing
basic aggregate functions on a JSON file. The Numpy library,
a CPU counterpart and MongoDB are compared showing
the importance of the concept. The hypothesis is to test
whether the GPU can speed up NoSQL database queries. The
results show that GPU runtime grows steadily, but slowly.
Furthermore, it was found that even in the case of 700,000,000
rows of integers the worst GPU time is 30.07 milliseconds,
which is considered to be very fast compared to the CPU.
However, it is possible to improve the performance of a
DBMS containing Big Data. This strategy allows to optimize
querying on large databases. A study on the use of this
technique is reported in [10]. In [11] the authors propose
SmartBench, a benchmark focused on queries resulting from
(almost) real-time applications and long-term analysis of IoT
data. The paper presents the evaluation of seven representative
database systems and highlights some interesting findings
to consider when deciding which database technologies to
use with different types of IoT query workloads. The work
highlights that the choice of the data base is strongly linked
to the type of input, the data organization model and the type
of querying that is planned to perform on the data.

Starting from the studies carried out, we propose in this work
an optimization of the use of MongoDB in the management of
time series data. In particular, given the innovations introduced



by MongoDB 5.0 with respect to the management of time
series, we will propose a solution that optimizes as much as
possible the use of MongoDB and we will compare the results
obtained to better understand which is more appropriate in our
context.

III. MOTIVATIONS

The URBANITE project was created to offer innovative
technological solutions in the field of urban mobility. In
particular, the aim of the project is to provide the pilot cities
(Amsterdam, Helsinki, Bilbao and Messina) with innovative
tools that allow the decision maker to make decisions and
make assessments on mobility decision-making policies. These
tools are based on data analysis and artificial intelligence
algorithms and work on both historical data series and data
collected in real time. The basic idea is that, starting from
the analysis of historical data, it is possible to analyze the
data acquired in real time, giving suggestions to decision
makers. Therefore, the organization of the collected data and
their structure is fundamental. In general, the data relating to
this technological field are series of historical measurements
acquired by the sensors, hence the reference to time series
data. It is important to obtain quick answers from the analysis
and above all, in case of open data policies, also to optimize
data sharing efficiently. Several studies on the use of SQL and
No-SQL databases have emerged from the state of the art. It
is clear that the use of one technology rather than another
also depends on the type of application to be implemented.
In our case, however, being aware of the fact that MongoDB
has released in version 5.0 the optimization functions for the
management of time series, we want to deepen by pushing
our approach as much as possible and comparing the results
with the new solution. In particular, we want to use the
bucket structure for managing time series data on document-
oriented databases. After having structured the data in an
optimized way for the software applications to be used in
the field of mobility, we will compare the proposed solution
with the approach used in MongoDB 5.0 for the management
of time series. Starting from the opportunities offered by the
URBANITE project, we worked on a database made available
by the Municipality of Messina regarding the positions of local
public transport vehicles. Within the project activities it was
necessary to move data from an SQL database to a NoSQL,
and from here we want to understand how to optimize the use
of the database and what is the best approach for our purposes.
The proposed work goes on by exploring complex approaches
to data organization.

Furthermore, specific experimental approaches aimed at
testing the functionalities of interest have been studied, pre-
cisely in order to evaluate in detail the computational differ-
ences of the applied approaches.

The proposed solution can be used in the context of urban
mobility, but it has a general value. A generic use case is
shown in Fig. 1, where several sensors in an environment
record data and send it to a collection point, a Data Lake.
On the Data Lake, the data would be organized according
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Fig. 1. Generic use case, where sensor data are collected into a Data Lake
and made available for use and sharing

to the proposed solution and therefore will be easily usable
by the Decision Makers through a Dashboard, or shared with
External Entities.

IV. METHODOLOGY

In this section the methodologies implemented for the two
approaches compared in this work are described. Our goal is
to build an interface that allows a user to query large amount
of time series data, considering different response formats and
especially using a server-side managed pagination. Data can be
returned as an array of documents, grouped by their timestamp
or by their id.

The user specify a date range, a pagesize, filters (optional)
and the page id through a RESTful API and get the data
for that page as a response. In addition, data aggregation
capabilities are offered, metadata properties can be enabled
and included, and the total item count for the entire query is
calculated (considering the number of results from all pages).

A. Time series collection

The new time series collection introduced in MongoDB
5.0 allows to easily handle time series data, making the data
structure optimization transparent to the user.

First of all the collection has to be created into the database
specifying the option required according to the measurements
that are taking into account. Specifically, timeField is the name
of the field that indicates the timestamp of the data, metaField
is the field that contains the properties which are constant
and the granularity is set according to the frequency of data
collection. The data can be thus inserted into the database as
if it were a standard collection.

The time series collections, for optimization reasons, have
different limitations compared to the others. In particular,
among other things, they do not allow updating or deleting



documents, even if they provide the possibility of setting a
TTL (time to live).

The pagination is implemented using the skip-limit tech-
nique. Therefore, considering the user’s request, the page size
is multiplied by the page id and the result gives the number
of documents to skip. Instead, the query limit is directly set
equal to the page size. As example, with a page size of 20,000
the page 0 will be obtained with a skip equal to 0, the page 1
with a skip equal to 20,000, the page 2 with a skip of 40,000
and so on.

The pipeline stages of the query are then dynamically
defined according to a configuration file, which describes
structure and characteristics of the collection. In summary,
they retrieve the documents related to the specific page and
organize them following the format chose by the user.

If requested, aggregation operation are performed in an
added stage according to the operations (i.e. a subset of
minimum, maximum, average) and to the granularity (seconds,
minutes, hours, days, months, years) indicated by the user. It
is important to say that in this case the pagination is more
complex, because data that has to be aggregated together must
be in the same page.

Finally, the total count is calculated considering the entire
date range using the aggregation operator $count provided by
Mongo. Since this value does not change passing from one
page to another, it is calculated only at the moment of the
first request and stored in cache for the following ones.

B. Advanced bucketing

This approach exploits as much as possible the use of buck-
ets, using methodologies in order to optimize performances
and functionalities to the maximum. It is based on five main
pillars:

1) Bucket

2) Total count

3) Aggregation

4) Range pagination

5) Query pipeline
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1) Bucket: the bucket is a well known pattern that is used
to optimize the management of time series data. In general,
it is a group of documents, based on a specific expression
and boundaries. If we consider periodic measurements that
then provide time series data, the simplest and most spon-
taneous way to organize such data is to create a document
in the collection for each individual measurement. Here, with
the buckets approach, these documents are instead grouped
with predetermined criteria into container documents (Fig. 2).
Consequently, the collection contains buckets that consists of
an array of documents, which represent the real measures, as
well as contain the metadata that remains constant over time.

The bucket length can be fixed if there is set a maximum
number of measurements, dynamic if the insertion of a mea-
surement within it depends on other factors. It is also important
to consider that the length of the bucket must take into account
the limits that MongoDB imposes on BSON documents, which
is 16 megabytes.

This work aims to provide first of all clear guidelines about
the bucket structure that can be used in our contexts and
can ensure optimal performance on all the features previously
described. The most convenient bucket structure for our pur-
poses is a dynamic one, in which a single bucket contains
the measurements coming from a specific data source in a
given time interval, because this will allow us to use specific
algorithms for data retrieval. The criteria of insertion are thus
based on both the data source and the timestamp of acquisition.

In summary we can describe the structure of our bucket
composed of the following fields:

e an _id, the document unique index create automatically
by Mongo;

e an id, which uniquely identify the data source (for
example, a device-id);

« a timestamp, which sets the start of the time interval,

o a granularity, which establishes the size of the time
interval;

e a list of properties (optional), that are the metadata
related with the measurement;

« a count, which keeps track of the number of measure-
ments contained in the bucket;

o an list data, that contains a document for each measure-
ments.

It is worth noting that id and timestamp together represent
the primary key. The granularity must be set according to the
data acquisition frequency, in order to be sure to remain within
the size limits of the single document (usually a reasonable
size of a bucket can be around 1,000 measurements).

With the bucket approach, the insertion of a new measure-
ment consists in the creation of the bucket if the document
does not exists, otherwise it will be done through an update
operation on the reference bucket that adds the new mea-
surements to the list of the bucket (in this case, to simplify
the process, on MongoDB the update method with the upsert
option can be used in both cases).



A generic structure of our bucket implementation is de-
scribed below in Listing 1.

Listing 1. Bucket data structure example

"_id": ObjectId("60b0c77517fe39f60ed63e45"),
"id": "sensor01",
"timestamp": "2021-01-01T00:00:00Z",
"propertyl": "generic",
"property2": "description",
"granularity": day,
"counts": 55,
"data": [
{
"timestamp": "2021-01-01T01:00:00z2",
"valuel": 25,

"value2": 5,

"timestamp": "2021-01-01T01:01:00z2",
"valuel": 6,
"value2": 32

2) Total Count: the second pillar concerns the calculation
of the total count of the items corresponding to the request.
In our solution we want to find a better approach for counting
to the one offered by MongoDB, which is quite slow if the
amount of data is significant. For this reason we build a
special data structure that we store in a cache and that allows
to calculate the value quickly, regardless of the amount of
measurements accounted.

Considering all the buckets in the collection sorted by
timestamp, for each of them we build a parallel structure
that calculate the cumulative count values with respect to the
previous bucket. To give a simple example, let’s consider the
following bucket counts:

e Bucket A count = 10;

e Bucket B count = 15;

e Bucket C count = 20;

e Bucket D count = 5;

The parallel structure will be then dynamically built as
follows:

e Bucket A cumulativeCount = 10;

e Bucket B cumulativeCount = 10 + 15 = 25;

o Bucket C cumulativeCount = 25 + 20 = 45;

e Bucket D cumulativeCount = 45 + 5 = 50.

Since the counts are cumulated and the buckets are ordered
by timestamp, to know the number of elements contained
in the request interval it is sufficient to simply know the
cumulativeCount values of the first and last bucket of the
request, regardless of everything in between.

Considering the previously described example and a request
whose timestamp match includes buckets from B to D, the
totalCount can be calculated with the following formula:

cumulativeCount_D — cumulativeCount_B + count_B

which is equal to 50 — 25 + 15 40 and is equivalent
to the sum of the single bucket counts. As we can see in the
calculation, we are completely ignoring the buckets between
B and D, in this case C.

Buckets ordered by DATE

o o o o

cumulativeCount: 50,
count_sensor2: 25,
count_property': 45,
count_sensor2_propertyl: 25

cumulativeCount: 40,
count_sensorl 25,
count_property2: 5,
count_sensor_property2: 5

cumulativeCount: 35,
count_sensort:15,
count_property2: 35,
count_sensorl_propertyt: 15

cumulativeCount: 20,
count_sensort: 20,
count_property': 20,
count_sensor_propertyt: 20
first_bucket last_bucket

=

~ ~

e
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Fig. 3. Buckets parallel structure with cumulative counts (buckets are sorted
by timestamp)

Actually, the necessary approach must take into account two
additional aspects:

« the time interval of the request may exclude some mea-
surement of the bucket delimiters, when specifying a
higher granularity;

o some buckets can be excluded because the user can
specify filters on the id and metadata, where permitted.

For this reason the algorithm that calculates the total count
foresees the following steps:

o the parallel structure, in addition to the cumulativeCounts
described above, calculates also the cumulative values
taking into account the possible filters, as in the example
shown in Fig. 3;

o considering the request, the bucket delimiters are de-
tected;

o using the parallel structure and the formula previously
described, the fotalCount is calculated;

e a query checks how many measurements are inside the
delimiters but outside the time range of the request.
This value is then subtracted from the fotalCount (this
operation is quite fast because it operates on the few
delimiting buckets).

Once the totalCount is calculate, the value is stored in
a cache associating it to the request via hash code. Since
the parallel structure is independent from the requests, it is
calculated a priori and stored in-memory to be used when
required. When a new measurements is inserted, the parallel
structure has to be updated.

3) Aggregation: the third pillar, the Aggregation, is closely
linked to the concepts of granularity. First of all in our bucket
structure we set a field that contains pre-aggregated data with
a granularity equals to that of the bucket. This means that,
for each new insertion of a measurement within the bucket,
the pre-aggregated values of the bucket are updated in terms
of minimum, maximum and average. The final generic bucket
structure is shown in Listing 2.

Listing 2. Bucket data structure example with pre-aggregation
{

"_id": ObjectId("60b0c77517fe39f60ed63e45"),
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"id": "sensor01",
"timestamp": "2021-01-01T00:00:00Z",
"propertyl": "generic",
"property2": "description",
"granularity": day,
"counts": 55,
"aggregation": {
"min": { "valuel": 6, "value2": 5, ...}
"max": { "valuel": 45, "value2": 55, ...}
"avg": { "valuel": 23.4, "value2": 18.1, ...}
}
"data": [
{
"timestamp": "2021-01-01T01:00:00z2",
"valuel": 25,
"value2": 5,
b
{
"timestamp": "2021-01-01T01:01:00z",
"valuel": 6,
"value2": 32

At this point, depending on both the level of aggregation
granularity required by the user and the granularity of the
bucket itself, we can fall into three different cases:

1) granularity_aggr < granularity_buckets
2) granularity_aggr = granularity_buckets
3) granularity_aggr > granularity_buckets

In the first case data is simply aggregated from collected
measurements; in the second case we directly use the pre-
aggregated data of the bucket; in the third case we aggregate
the pre-aggregated data of the bucket (in particular for the
average we consider a weighted sum based on the count value
of the single bucket).

4) Range Pagination: the fourth pillar regards the Range
pagination, which is an optimized alternative of the skip-
limit approach for implementing pagination. In particular, it
considers the documents of the collection (i.e. the buckets)
in their natural order and uses match filters based on the
document _id to select the measurements that has to be
returned for the specific page.

To be more clear, when a user requests a page-(i), the _ids of
the documents that will delimit the page are identified based on
the count value of the individual buckets. These delimiters are
calculated using an iterative approach: starting from a cumu-
lativeCount of zero, the count of the next bucket that matches
the filters and has an _id greater than those on the page-(i-1) is
added, until this value does not exceed the pagesize indicated
by the user. The first and last _ids will be then our page
delimiters. In this case the size of the page depends on the
bucket counts, therefore the parameter specified by the user in
the request is more properly a maxPageSize.

Obviously, since to calculate page-(i) it is necessary to start
from page-(i-1), this method performs best when pages are
requested consecutively starting from page-0. Moreover, to
avoid having to calculate the previous pages at every request,
the values of the delimiters and the total count are stored in a

special cache, in which each request is identified by its hash
code.
An example of the cache structure is shown in the Listing 3.

Listing 3. Pagination cache example
{

"requests": {
"D8454A6029D6BI9AED2468B1B411F5DBA" ¢ {
"totalCount": 17000234,
"pages": [
{
"id": O,
"Sgte": ObjectId("60b0c77517fe39f60ed63e48"),
"$lte": ObjectId("60b0c77517fe39f60ed63e89"
}I
{
"id": 1,
"Sgte": ObjectId ("60b0c77517fe39f60ed63eal"),
"$lte": ObjectId("60b0c77517fe39f60ed63eac")

In the third case of aggregation, when the required granu-
larity is greater than the bucket granularity, great care must be
taken with pagination since the data to be aggregated together
must necessarily be contained in a single page. Consequently,
in this situation, the page delimiters are forced to the extremes
of the aggregation period according to the granularity.

5) Pipeline: the pipeline stages of the query are dinami-
cally defined according to the request and a configuration file,
which describes structure and characteristics of the collection.
Data are organized depending to the format chosen by the user:
by default the data are not grouped but are presented as a list
of documents; alternatively, it is possible to group them using
timestamp or id as a key. The results are then put together and
returned in response to the user.

V. EXPERIMENTS AND RESULTS

In this section the experiments performed to validate, test
and compare both Time series collection and Advanced Buck-
eting approaches are presented. We will use a case study
addressed in the URBANITE project in the context of smart
mobility, in particular exploiting a real dataset containing the
measurements of public transport extracted from an OpenGTS
(Open GPS Tracking System) portal.

The measurements are collected at a distance of about ten
seconds from each other when a vehicle is switched on. The
time period considered is four years and provides a significant
amount of data equal to approximately 178 million measure-
ments. The information present concerns speed, altitude, status
and GPS position of the reference vehicle.

The tests are carried out on two VMs having the following
characteristics:

« VM-MongoDB:

— Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz x4
- RAM: 16GB
— Disk Space: 197 GB



e VM-Server:

— Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz x2
- RAM: 4 GB
— Disk Space: 20 GB

A. Data import

First of all the two type of collection are created and the
measurements, taken from a MySQL database, are inserted
one by one. For the Time series collection the granularity
of measurements is set to seconds, while in the Advanced
Bucketing the granularity of the bucket is fixed to hour. In
the experiment 2000 measurements collected from the same
device and in a interval of one hour are considered.
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Fig. 4. Comparison of data insertion times between Time series collection and
Advanced Bucketing approaches. (a) Time of insertion of 2,000 measurements
(b) Average time of insertion. Time series collection: 0.0546s - Advanced
Bucketing: 0.0113s

As we can see in Fig. 4, the insertion times in both
approaches remain more or less constant as the number of
measures inserted increases. However, the average speed of the
insertion time required in the Time series collection is almost
five times less than Advanced Bucketing. This is closely
related to the two different methods used, insert in the first
case and update in the second, and to the pre-aggregation
calculation performed in the latter. In order to speed up the
process for the insertion into the bucket, an index on both
timestamp and data.timestamp is created.

Also in terms of storage, as shown in the table below, the
first approach succeeds in being more optimized, even if at
the level of dump size Advanced Bucketing clearly prevails.

Advanced Time series %

Bucketing collection diff

bucketsCount 1541081 1388374 9,9
avgBucketSize(bytes) 17791 15744 11,5
storageSize(bytes) 6238638080 | 4579606528 | 26,6
dumpSize(bytes) 3533452435 | 5228679763 | -47,9

B. Pagination

Pagination is the focal part of this work, as it is the main
key needed to achieve adequate data retrieval and sharing, even
when considering large amounts of data.

The tests are performed using different pagesize and re-
questing 1000 pages consecutively. As we can see in Fig.
5(a), in the case of Time series collection the behaviour is
linear and the required time is accumulated following the
increment of the request page number. This is due to the skip-
limit approach, as page after page the elements to be skipped
become more and more.

(a) (b)
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Fig. 5. Comparison of data pagination times considering different pagesize.
(a) Time series collection: the page computation time grows linearly as the
page number increases (b) Advanced Bucketing: the page calculation time
remains constant regardless of the page number

The Advanced Bucketing, on the other hand, thanks to the
Range pagination technique, manages to remain constant on
a very small scale compared to the opponent’s one, as shown
in Fig. 5(b). Taking in consideration page-(1000), the time of
calculation demanded in this case is 10 times less then that
one of the Time series collection and this value grows more
and more with the increase of the number of page.

The trend in both cases remains unchanged as the pagesize
value changes.

C. Data retrieval

Since increasing the size of the pages obviously also in-
creases the time required for the single request, it becomes
legitimate to ask what is the optimal size for obtaining large
amounts of data and what is the difference between the two
approaches. In this test we evaluate the time required for
retrieval of 15,000,000 measurements, varying the pagesize
as shown in the Fig. 6.

We can immediately see that in the case of Time series
collection approach, the time required reduces as the page
size increases. This is an expected behaviour and we can
justify it because more pages correspond to fewer requests and,
consequently, the same measures will have to be skipped fewer
times. Ideally in fact, with a pagesize equal to totalCount,
the results would be obtained with a single request and the
overhead introduced by pagination would be reduced to zero.
This is obviously not feasible in practice, since the size of
the page must be contained, both for the processing capacity
required and for network reasons.

On the contrary, according to the tests carried out on
pagination, Advanced Bucketing allows us to have a more
or less constant behavior as the pagesize varies. In this case,
although the differences are minimal, the best performances
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Fig. 6. Comparison of data retrieval considering an interval containing
15,000,000 of measurements: the Time series collection approach improves
on increasing the dimension of the page, through the Advanced Bucketing the
behaviour remains more or less constant

are obtained with pagesize of 8,000 and 20,000 elements; we
can attribute this behaviour to the size of the single buckets
that, not being constant, has its influence on pagination.

In all page sizes tested, despite the fact that the two methods
tend to converge, Advanced Bucketing consistently performs
better than the Time series collection approach. Page sizes
larger than those used are not considered appropriate for use
in the reference context.

D. Response formats

Another relevant aspect to consider, in order to make
easier for users the use of data, is the format in which the
data is presented. In this case, as announced, by default the
measurements are returned as a list of documents, as in the
example shown in Listing 4.

Listing 4. Default results format example

1
2 "results": [

3 {

4 "idll: II784|I,

5 "timestamp": "2016-01-02T12:00:23+00:00",
6 "status": "EnRoute",

7 "location": {

8 "type": "Point",

9 "coordinates": [

10 15.552624980919063,

1 38.2070849952288

12 ]

13 br

14 "speed": 19.0,

15 "altitude": 75.0

16 br

17

18 ]

19 "status": 200,

20 "startDatetime": "2015-01-01T00:00:00",
21 "endDatetime": "2021-01-01T00:00:00",

2 "pageCount": 9990,

23 "cumulativePagesCount": 49660,

24 "totalCount": 178539023,

25 "page": 4,

26 "nextPage": true,

27 "lastUpdate": "2021-12-09T20:03:05"

Alternatively, the implemented algorithms allow the same
data to be grouped using timestamps or ids. In Fig. 7 we
can analyze the differences in terms of the computation time
required to derive the data in the different formats. In the case
of default (ungrouped) and data grouped by Id, we can see that
the Time series collection approach performs slightly better
than Advanced Bucketing. This is mainly due to the simplified
data structure, which avoids small reorganization operations.
In the case of grouping by timestamps, however, the use of
buckets helps the process and causes Advance Bucketing to
perform better.

B Time series collection [l Advanced bucketing
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Fig. 7. Comparison between different data formats in the response result. The
Time series collection approach behaves slightly better with ungrouped and
grouped by id data, however the Advanced Bucketing prevails with grouping
by timestamps.

E. Aggregation

Dynamic aggregation from collected data is fundamental
in some contexts, as it allows additional information to be
extracted from the raw data. In our case study, being able to
provide aggregation functionalities directly through the data
retrieval process saves time and resources. At the same time,
an optimized solution with reasonable timeframes is necessary
to ensure its use.

The results obtained from the tests performed on the two
different approaches are shown in Fig. 8. Although, as is
obvious to expect, aggregation performed directly on the
collected data performs comparably on both solutions, the use
of pre-aggregated data in cases where the required aggregation
granularity is greater than or equal to that of the bucket causes
Advanced Bucketing to perform significantly better than the
Time series collection approach, with the difference becoming
more significant the further away from the data collection
frequency the desired granularity is. This is because the use of
the buckets pre-aggregation allows the result times to scale by
an order directly proportional to the order of the bucket size.
On the other hand, there appears to be no detectable difference
between the different operations for calculating the minimum,
maximum and average values.
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Fig. 8. Comparison of data aggregation considering different granularities
(minute, hour, day, month, year). Time intervals are chosen according to the
specific granularity.

E Total count

Finally, the calculation of the total number of measurements
present in a request becomes very useful in practical use, as
it allows to know the amount of data required without having
to first complete the retrieval of the data itself through paging
operations.

In this case, as we can see in Fig. 9, the native MongoDB
functions suffer considerably as soon as the number of data
to be considered increases, making the use of the parallel
structure built in Advanced Bucketing very useful. As in
paging, in fact, the computation time required in the case of
the Time series approach grows linearly as the number of data
increases, while the behavior of Advanced Bucketing remains
constant. Obviously the creation of the parallel structure
necessary to calculate the value of totalCount depends on an
initial processing time, which in this case is about 58s, and an
additional insertion complexity as the structure itself needs to
be updated.

VI. CONCLUSIONS

This paper presents two different methodologies that can
be adopted for managing time series data on MongoDB. This
approach should be noted with regard to smart city contexts
in which, in addition to sharing large amounts of data, it is
necessary to be able to quickly find and analyze measurements.
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Fig. 9. Comparison in logarithm scale of total measurements count, varying
the amount of data requested. The Time series collection approach follow a
linear behaviour, on the contrary the Advanced Bucketing allows calculation
in a constant time regardless the amount of data considered.

The use of the bucket, together with other techniques, has
been optimized to the maximum (keeping an eye on usability
aspects), allowing to compare the results obtained with those
provided by the standard methods applied to the new collec-
tions of time series. implemented in MongoDB 5.0.

Although the insertion times and the required development
complexity are in favor of the data series management used in
MongoDB 5.0, the Advanced Bucketing approach is prefer-
able, considering also the current limitations of time series
collections, in contexts where large amounts of historical
data are required and therefore the analysis refers to wide
time intervals. The results obtained from the operations of
aggregation and management of the total count bring to the
solution presented an additional added value which, when
useful, can be decisive.

However, it is correct to underline that the approach used
in the management of the Time series collection approach
was the basic one and it is not forbidden to apply various
advanced methodologies to increase performance and optimize
functionalities. In a future scenario it is therefore possible to
think about deepening the use of time series collections and
re-evaluate the two approaches in the different contexts of use.
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