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Abstract—We describe the design, implementation and perfor-
mance of the RADICAL-Pilot task overlay (RAPTOR). RAPTOR
enables the execution of heterogeneous tasks—i.e., functions and
executables with arbitrary duration—on HPC platforms, pro-
viding high throughput and high resource utilization. RAPTOR
supports the high throughput virtual screening requirements of
DOE’s National Virtual Biotechnology Laboratory effort to find
therapeutic solutions for COVID-19. RAPTOR has been used on
> 8000 compute nodes to sustain 144M/hour docking hits, and
to screen ∼1011 ligands. To the best of our knowledge, both the
throughput rate and aggregated number of executed tasks are
a factor of two greater than previously reported in literature.
RAPTOR represents important progress towards improvement
of computational drug discovery, in terms of size of libraries
screened, and for the possibility of generating training data fast
enough to serve the last generation of docking surrogate models.

I. INTRODUCTION

In response to COVID19, many researchers are using high-
performance computing (HPC) to support epidemiological
studies and to design anti-viral therapeutics. Significant ef-
fort has been invested in designing drug-discovery pipelines
that can screen many more ligands than traditional in-silico
drug-design approaches.

Nearly all high throughput virtual screening (HTVS)
pipelines involve docking, i.e., the process of scoring a pu-
tative drug candidate (ligand) with a potential protein target.
Docking algorithms are significantly cheaper but less accu-
rate than full physics-based simulations to compute binding
affinities between ligand and protease. The relative inexpen-
sive scoring allows many more ligands to be investigated,
which is necessary given the possible 1060 drug candidates.

One noteworthy COVID19 HTVS pipeline is the IMPEC-
CABLE campaign [1], [2]—DoE’s National Virtual Biotech-
nology Laboratory (NVBL) [3] effort to develop therapeutics
for COVID-19. We discuss design, implementation and per-
formance of RADICAL-Pilot task overlay (RAPTOR), which
serves as the workhorse of the campaign’s docking effort.

RAPTOR is a general purpose, portable, coordinator/worker
framework for the execution of function and executable tasks
on HPC platforms. RAPTOR is a subsystem of RADICAL-
Pilot (RP) [4], and relies on it to acquire and manage resources,
and to schedule and launch its coordinator and workers on
those resources. RAPTOR extends RP’s capabilities, provid-
ing: (1) steady utilization above 90% of the available resources
with task executing for 1 second or longer; (2) partitioning of
CPU and GPU resources across an arbitrary number of concur-
rently and/or sequentially executing batch jobs; and (3) parti-

tioning of tasks across multiple, independent coordinators and
workers.

To get a sense of the scale and impact: RAPTOR has been
used on up to 466,816 concurrent CPU cores to sustain 144×
106/hour docking hits [5] and to screen approximately 1011

ligands. To the best of our knowledge, both throughput rate and
aggregated number of executed tasks are a factor of two greater
than previously reported in literature [6]. RAPTOR was used
to generate consensus and ensemble scoring against protein
targets, and to generate training data for docking surrogate
models [7], [8] that are up to 3–4 orders of magnitude faster
than traditional docking programs [2]. Finally, RAPTOR has
been used for more than 2M node-hours on primarily TACC
Frontera and ORNL Summit, to support the identification of
over 40 hits on COVID19 drug targets that are progressing to
advanced testing [5], [9].

The main contributions of this paper are a description of the
design and implementation of RAPTOR, and a performance
evaluation of RAPTOR when used to perform computational
docking at scale, as part of an HTVS pipeline. §II describes
the HTVS use case and the state of the art infrastructure for
it. §III discusses the design and implementation of RAPTOR,
showing how it extends RP to support HTVS. §IV discusses
experimental insight into the performance of RAPTOR for dif-
ferent workloads and configurations used to run HTVS.

II. HIGH-THROUGHPUT VIRTUAL SCREENING

HTVS is used in a variety of disciplines, from materials
design [10] to drug discovery [11]. HTVS analyzes libraries
of molecules, reducing them to a set of promising leads for
experimental evaluation. Typically, HTVS follows a computa-
tional funnel (Fig. 1) to focus computational effort on promis-
ing molecules. Specifically, HTVS intelligently samples the
large space of possible candidates and narrows the number of
candidates down to an experimentally tractable set. HTVS is
necessary for problems where exhaustive exploration is not an
option, or for time critical options where random search is not
acceptable.

In drug-discovery, HTVS enables rapid, low-cost screening
of significantly larger and curated compound libraries, than
feasible in experimental studies [11]. HTVS can now outper-
form equivalent experimental high throughput screening, and
has been shown to rapidly identify tightly binding compounds.
However, virtual libraries used in molecular discovery are of-
ten still too large to exhaustively evaluate, warranting the use
of algorithms to help with exploration.
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Fig. 1. A schematic of high throughput virtual screening (HTVS): Down-
stream stages are progressively computationally more expensive, but are fo-
cussed on increasingly promising candidates Image source Ref. [10].

Computational docking often forms the first stage in an
HTVS pipeline. Docking fits trial drug-like compounds into
(protein) binding sites in three-dimensional models of the pro-
tein targets characterized by a score. Docking is useful in early
stages of molecular discovery to identify initial hits to be pri-
oritized for experimental validation. This is true for both “reg-
ular” drug discovery pipelines, as well as for customized and
AI-based ones.

A. HTVS Docking Infrastructure: State-of-the-Art

Several efforts created an open HTVS infrastructure, taking
advantage of cloud platforms [6], [12] or HPC resources [13]
to support large-scale ligand docking across various protein
targets. Here we discuss four recent publications that repre-
sent the spectrum of performance considerations and design
properties. Impressive results notwithstanding, given the di-
verse computing platforms and docking programs employed,
as well as different measures of performance, it is difficult to
provide a head-to-head performance comparison.

1) VirtualFlow [12] submits multiple “jobs” to different
“clusters”. VirtualFlow exhibited linear scalability with a peak
at 160,000 CPUs on Google Cloud. VirtualFlow can dock
1B compounds in approximately 2 weeks, using 10,000 CPU
cores simultaneously. In the context of COVID19, Ref. [12]
investigate 17 virus-related targets, 45 screens, and ≈ 50×109

docking instances. However, they do not report how effectively
the resources are utilized and focus on application performance
measures (docks/time).

2) Ref. [13] outlines a supercomputer-driven pipeline for in
silico drug discovery, using enhanced sampling molecular dy-
namics (MD) and ensemble docking. Ensemble docking makes
use of MD results by docking compound databases into repre-
sentative protein binding-site conformations, thus taking into
account the dynamic properties of the binding sites. On Sum-
mit, that pipeline docked 1B compounds in 24 hours, using
Autodock-GPU [14]. In Fig. 6 of Ref. [13], the authors outline
the variation in docking time, of both GPU-based and “regu-

lar” CPU-based docking programs, observing fluctuations of
2x and 10x respectively.

3) Ref. [15], an ACM 2020 Gordon Bell Finalist, reported
a peak performance of 20,000 docks/second on Summit, i.e.,
an aggregated performance of 50M docks/hour, for up to 20
poses per dock. This was primarily achieved through adapta-
tion of AutoDock-GPU: GPU offloading feature calculations
in re-scoring and database queries. A further 10x performance
improvement was achieved by using parallel database meth-
ods. So far, 70M docks/hour is the highest reported throughput
in literature.

4) The COVID-Moonshot project [16] used the fold-
ing@home approach in conjunction with high-throughput
experimental screening, MD simulations and ML to identify
covalent and non-covalent inhibitors against main protease
(MPro) which demonstrated viral inhibition. Although fold-
ing@home is an “exascale” platform, the peak or sustained
throughput is not precisely reported, nor is it easy to discern
from available data. Based upon published science results,
our best-effort estimate is that the COVID-Moonshot project
screened 10 × 109 ligands over a period of several months,
using steady state resources, thus about 100× 106 docks/day
over approximately 1000 CPUs.

B. RAPTOR for HTVS Docking

RAPTOR is used for the docking phase of DoE NVBL’s IM-
PECCABLE campaign [1]–[3], [5], which integrates algorith-
mic and methodological innovations with advanced infrastruc-
ture to dock a large number of ligands with protein targets. A
protein target represents a well-defined binding site, expressed
as PDB file. For each target, we iterate through ligands from
certain molecule libraries and compute a docking score for
that ligand-protein pair. To increase the reliability of results,
we used OpenEye and Autodock-GPU for the same ligand set
and targets, which also allowed us to leverage HPC resource
heterogeneity. We executed OpenEye on Frontera’s x86 ar-
chitectures and Autodock-GPU on Summit’s GPUs. A dock-
ing call is executed either as a task function of the OpenEye
Python library, or as an executable task launching AutoDock-
GPU. In both cases, RAPTOR is used for orchestration.

Docking was used for consensus and ensemble scoring of
large libraries [9], and to generate training data for docking
surrogate models [7]. Several libraries, the largest of which
(mcule-ultimate-200204-VJL) has 126M drug candi-
dates, were used to dock against more than 100 targets. Other
libraries include Orderable-zinc-db-enaHLL with
6.6M candidates, details of which can be found in Ref. [5].
Based upon library sizes, we estimate RAPTOR has been
used to screen close to 100 × 109 molecules against over a
dozen drug targets in SARS-CoV-2.

RAPTOR is a general-purpose, high-throughput task execu-
tion system that is not limited to a specific docking program or
computing platform. This is in contrast to Refs. [12], [16] and
Refs. [13], [15], [17], respectively. Since the docking programs
are different, a direct comparison of scientific docking results
are not meaningful, however RAPTOR reached a throughput
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Fig. 2. RADIAL-Pilot (RP) architecture and execution model. RP is a dis-
tributed system that execute its components between the user’s workstation
or the HPC platform’s login node, and the HPC platform’s compute nodes.
RAPTOR executes on the target HPC platform’s compute nodes (see Fig. 3).

of 144M docks/h and performed a total of 100 × 109 dock-
ing tasks. These are both factor of two greater than previously
reported in literature. RAPTOR achieved this on Frontera, us-
ing 8300 nodes at peak and with resource utilization above
90%. Further, different from VirtualFlow [6], [12], RAPTOR
can manage the entire workload within a single large job, or
spread across multiple jobs.

III. DESIGN AND IMPLEMENTATION

The RADICAL-Pilot Task OveRlay (RAPTOR) is a coor-
dinator/worker framework for the execution of function and
executable tasks on HPC platforms. It is designed to enable
high-rate task execution at scale, e.g., up to 144×106tasks/h
on TACC Frontera’s 8300 nodes. RAPTOR is a component
of RADICAL-Pilot (RP) [4] and relies on RP to acquire and
manage resources, and to schedule and launch its coordinators
and workers on those resources. RAPTOR is implemented in
Python as is RP.

Fig. 3 shows RP’s architecture and execution model. RP
exposes an API to describe pilots and tasks [18], and uses
four modules to manage them: PilotManager, TaskManager,
Agent and DB [4]. Once described, pilots and tasks are passed
to RP’s runtime system 1 . The PilotManager submits pilots
on one or more resources via the SAGA API 2 . The SAGA
API implements an adapter for each supported resource type,
exposing uniform methods for job and data management [19].
Once a pilot becomes active on a resource, it bootstraps the
Agent module 3 .

The TaskManager schedules each task to an Agent 4 via
a queue on a MongoDB instance. This instance is used as
the RP DB module to communicate task descriptions between
the TaskManager(s) and the Agent(s). Each Agent pulls tasks
from the DB module 5 and schedules 6 each task on an
Executor upon resource availability (e.g., number of cores or
GPUs). The Executor sets up the task’s execution environment
and then spawns the task for execution.

RP’s tasks are fully-decoupled, i.e., they have no data de-
pendences. Task dependences can be resolved before submis-
sion to RP via workflow engines, e.g., EnTK [20] and [21].
Each task is assumed to be self-contained, executed by RP as a
black-box that returns success or failure codes. RP has no con-
trol or knowledge about the code each task executes, enabling

the separation of concern among resource management, exe-
cution management and task executables. At application level,
RP implements a ‘batch-like’ programming model to describe
groups of tasks (i.e., workloads) and submit them for execu-
tion. Concurrency is implicit as users do not control it: RP
executes tasks with the maximum concurrency allowed by the
available resources.

RP is designed to schedule and launch executable tasks and
not function tasks, i.e., tasks coded as functions in a specific
programming language. Executable tasks are comprised of a
self-contained program that can execute on the compute nodes’
operating system. RP handles such tasks as an object contain-
ing its requirements, e.g., number of processes, type of pro-
cess communication, type and number of CPU cores and/or
GPUs, and so on. RP’s tasks are relatively ‘heavy’ and require
a certain time to be scheduled and launched. That limits RP’s
throughput and, ultimately, the efficiency at which RP can use
resources with tasks shorter than 1 minute [4], [22].

Scheduling in RP is global: all the tasks that are submit-
ted to RP’s Agent are managed by a single scheduler. While
the scheduling algorithm is tweaked to reach peaks of 350
tasks/s, its performance degrades for short running tasks on
large resources (less than ∼ 60s for ∼ 1000 nodes, ∼ 120s
for ∼ 2000 nodes, etc.).

RAPTOR extends RP to support the execution of tasks like
those required by the COVID19 campaign described in §II.
RAPTOR can: (1) execute both function and executable tasks;
(2) achieve high throughput with arbitrary short running tasks;
(3) arbitrarily partition resources and tasks; (4) use a multilevel
scheduling in which workloads are partitioned and then subsets
of tasks are scheduled to subset of resources; and (5) partition
tasks across multiple, independent executors.

Fig. 3 shows how RAPTOR integrates within RP to enable
the setup of the coordinator/worker infrastructure and how it
launches and executes tasks on it. Due to RP’s task model,
scheduling and launching RAPTOR’s coordinators and work-
ers do not require additional capabilities: once bootstrapped,
1 and 2 , RP manages coordinators and workers as any other

task 3 . Once running, a coordinator schedules one or more
workers on RP’s Scheduler 4 . Each worker is then launched
on a compute node by RP Executor 5 . Finally, the coor-
dinator schedules function calls on the available workers for
execution 6 , load-balancing across workers as to obtain max-
imal resource utilization.

As a subsystem of RP, RAPTOR integrates with overall
RP’s capabilities. RP’s TaskManager schedules and launches
RAPTOR’s coordinators and workers but also other executable
tasks. In turn, RAPTOR can execute both function and exe-
cutable tasks on the resources acquired by RP’s PilotManager
and allocated to RAPTOR’s workers, independent of whether
RP executes tasks on other resources. This is illustrated in
Fig. 3 by showing RP executing a 32 CPU MPI task (green)
on two compute nodes, while RAPTOR executes Python func-
tion calls of diverse sizes (yellow) on its workers (red).

RAPTOR’s coordinators and workers manage the execution
of tasks via several queues, depending on configuration pa-
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Fig. 3. RAPTOR: architecture and execution model.

rameters and performance requirements. A coordinator pushes
tasks to a queue and N workers concurrently pull that queue
for tasks to execute. The number of coordinators, queues and
workers can be tuned so that the rate of (de)queuing does not
exceed the capabilities of the queue implementation and of the
used network. That keeps resources busy and avoid worker
starvation. Both coordinator and worker are implemented in
Python, using ZeroMQ to implement their queues.

RAPTOR’s performance mainly depends on set up and
management times of coordinators and workers. Five design
choices improve performance: (1) launch coordinators and
workers via MPI so to reduce latency, given the available tech-
nologies; (2) use a dedicated communication channel between
each coordinator, its workers, and RP’s scheduler; (3) par-
tition resources across a user-defined number of coordinators
and workers; (4) limit each worker to use at most one compute
node; and (5) submit function tasks in bulk from a coordinator
to its workers.

RAPTOR’s design enables the implementation of work-
load control at coordinator level. RAPTOR coordinator’s API
consists of the rp.raptor.coordinator class and four
main methods: submit, start, join and stop. Users in-
herit the class and initialize their coordinator with parame-
ters like the workers’ description (dscr), and the number
of workers (n_worker), CPUs (cpn) and/or GPUs (gpn).
Users then specify the workers’ payload—either a Python
function or an arbitrary executable—and, in case, callbacks
to receive updates about the workers’ status. Class methods
are then used to submit the payload to the workers (e.g.,
coordinator.submit(descrd̄escr, ...)).

RAPTOR limits workers to a single node, making impossi-
ble to execute multi-node MPI Python function tasks. This is
acceptable considering that RP would still be able to execute
multi-node MPI executable tasks alongside the coordinators/-
workers tasks. As discussed in the next section, the maximum
number of coordinators and workers that RP can manage de-

pends on the HPC platform’s MPI performance. RAPTOR’s
throughput depends on the workload executed and on system
capabilities such as shared file system performance, availabil-
ity of caches, etc. RAPTOR enables resource-specific opti-
mizations (e.g., using nodes’ SSD storage) that are not neces-
sarily portable due to hardware and system constraints. Cur-
rently, RAPTOR provides workers for Python functions and
code snippets, and for arbitrary non-MPI executables. Proto-
types of workers to execute multi-node MPI functions and
executables are being tested.

IV. PERFORMANCE CHARACTERIZATION

We characterize RAPTOR’s performance and overheads,
showing how it supports the execution of the workload de-
scribed in §II at scale. We perform experiments with: pro-
duction runs for NVBL-Medical Therapeutics campaigns on
Frontera; runs for largest achievable size on both Frontera and
Summit; and runs with both function and executable tasks.
Tab. I summarizes the parameterization and results of each
experiment. We measure: docking time in seconds (s); dock-
ing rate in docks/h; resource utilization; and RAPTOR set-up
time in seconds.

Resource utilization measures the percentage of available
CPU and/or GPUs used for docking operations. Resources be-
come available as soon as the HPC platform’s batch system
schedules the job(s) submitted by RP. As such, resource uti-
lization is a measure of how efficiently RP and RAPTOR use
the available resources to execute the given workload. Extend-
ing the results presented in Ref. [1], tab. I provides two values
for resource utilization: avg for the average utilization over
the pilot runtime, and steady for the steady-state utilization.
For the latter, we remove the contributions of startup and cool-
down. We define startup as the time where the concurrency of
tasks rises, and cool-down where the concurrency decreases.

We assign one pilot for each protein to which a set of
ligands will be docked. Within each pilot, each coordinator
will manage the workers defined via its interface (see §III).
Each coordinator iterates at different strides through the lig-
ands database, using pre-computed data offsets for faster ac-
cess, and generating the docking requests to be distributed to
the workers. Each worker runs on one node, executing docking
requests across the CPU cores or the GPUs of that node.

A. Experiment 1

Experiment 1 performed the docking of 6.6×106 ligands—
from the Orderable-zinc-db-enaHLL database—on 31
proteins. We used RP to acquire resources via 31 independent
pilots, i.e., 31 jobs submitted to Frontera’s batch system. We
used 1 pilot for each protein and, for each pilot, we used RP
to initialize RAPTOR’s coordinators and workers. Each coor-
dinator then managed the execution of the docking function
tasks on its workers. Due to the different queue waiting times,
at most 13 pilots executed concurrently in experiment 1, with
a peak throughput of ∼ 17.4× 106 docks/h.

The number of pilots used depends on the policies that gov-
ern: (1) the number of jobs that can be concurrently submitted



TABLE I
EXPERIMENTS. RAPTOR USES ONE PILOT FOR EACH PROTEIN, COMPUTING THE DOCKING SCORE OF A VARIABLE NUMBER OF LIGANDS TO THAT

PROTEIN. OPENEYE AND AUTODOCK-GPU IMPLEMENT DIFFERENT DOCKING ALGORITHMS AND DOCKING SCORES, RESULTING IN DIFFERENT TASK
TIMES AND RATES. RESOURCE UTILIZATION IS OFTEN IMPEDED BY THE LONG TAIL TASK TIME DISTRIBUTIONS WHICH CAUSE AN EXPENSIVE

COOLDOWN PERIOD. HOWEVER, THE STEADY STATE RESOURCE UTILIZATION IS >=90% FOR ALL EXPERIMENTS.

ID Platform Application Nodes Pilots Tasks Startup 1st Task Utilization Task Time [sec] Rate [×106/h]
[×106] [sec] [sec] avg / steady max mean max mean

1 Frontera OpenEye 128 31 205 129 125 90% / 93% 3582.6 28.8 17.4 5.0
2 Frontera OpenEye 7600 1 126 81 140 90% / 98% 14958.8 10.1 144.0 126.0
3 Frontera OpenEye 8336 1 13 451 142 63% / 98% 219.0 25.3 91.8 11.0
4 Summit AutoDock 1000 1 57 107 220 95% / 95% 263.9 36.2 11.3 11.1

(a)

(b)

Fig. 4. Experiment 1: Distribution of docking times with the (a) shortest and
(b) longest average time out of the 31 proteins analyzed. The distributions of
the docking times for all 31 proteins have a long tail.

to the batch job system; (2) the amount of resources a batch
job can request; and (3) the maximal walltime allowed for
each job. We used Frontera’s normal queue for experiment 1
that allowed us up to 100 concurrent jobs, each with a maxi-
mum of 1280 nodes and 48h of walltime. For experiments 2
and 3, we used instead a single pilot as we had access to a
special queue that spanned all the machine for 24 and 3 hours
respectively. Importantly, RP and RAPTOR required no fur-
ther coding to support those diverse running modalities but
only the setting of some of their configuration parameters.

Earlier runs with a setup similar to experiments 1 encoun-
tered performance bottlenecks related to Frontera’s shared file
system which stalled the simulation progress. To keep an ac-
ceptable load on Frontera’s shared filesystem, only 34 of the
56 cores available were used on each node in experiment 1.
Also in this case, no coding was required but just changing a
configuration parameter.

Figs. 4a and 4b show the distribution of docking times for
proteins with the shortest and longest average docking time,
using the Orderable-zinc-db-enaHLL ligand database.
All proteins are characterized by long-tailed docking time dis-
tributions. Across the 31 proteins, the max/mean docking times
are 3582.6/28.8s (Tab. I).

The large number of resulting docking requests (31×6.6×
106 = 205 × 106) poses a challenge to scalability due to the
communication and coordination overheads. The long tail dis-
tributions necessitate load balancing across available workers
to maximize resource utilization and minimize overall execu-
tion time. Thus, docking requests cannot be assigned statically
to workers, but need to be dispatched dynamically.

Consistent with RAPTOR’s design, we addressed load bal-
ancing by: (i) communicating tasks in bulk so as to limit the
communication frequency and therefore overhead; (ii) using
multiple coordinator processes to limit the number of workers
served by each coordinator, avoiding bottlenecks; (iii) using
multiple concurrent pilots to partition the docking computa-
tions.

Figs. 5a and 5b show the docking rates for the pilots de-
picted in Figs. 4a and 4b, respectively. As with docking time
distributions, the docking rate is similar across proteins. It
seems likely that rate fluctuations depend on the interplay of
machine performance, pilot size, and specific properties of the
ligands being docked, and the protein. We measured a mean
docking rate of 5× 106 docks/h, with a max rate 17.4× 106

docks/h when 13 pilots where executing concurrently, using
about 20% of Frontera’s resources (Tab. I).

Note that each pilot needs some time to launch coordina-
tors and workers, and to begin distributing data and docking
requests. Further, each pilot also needs some time to termi-
nate and collect trailing results. That behavior is visible in all
experiment plots. The respective overheads depend on the pi-
lot size, and we will discuss them in more details for a larger
setup in experiment 3. On Frontera, the time between when
the pilot started and the first worker started to execute the
first task was ∼120s on average (Tab. I). That includes ∼55s
taken by the workers’ coordinator to setup the execution and
the time needed to prepare some of the input parameters of the
docking functions. As the total execution time was between
1h:40m and 27h:46m (Fig. 5), setup time overhead was not
relevant. Tab. I also provides resource utilization (as defined
above) for the steady state between startup and cooldown, and
as average for the full pilot lifetime.



(a)

(b)

Fig. 5. Experiment 1: Docking rates for the protein with (a) shortest and (b)
longest average docking time. The docking rates given in Tab. I are aggregated
over concurrent pilots and thus larger than shown here for individual pilots.

B. Experiment 2

Experiment 2 characterizes the scalability of RAPTOR with
a single pilot, spanning all available nodes on Frontera (about
1000 nodes were reserved for system work at the time of this
run). To minimize the overhead caused by repeated loading
of the receptor data into memory, the data were loaded once
per node and then reused for all docking runs assigned to
that specific node. The individual cores hosting the docking
computations received cloned copies of the receptor data so
as to isolate the individual docking computations.

To reduce the overhead of loading compound data from
disk, the storage offsets in the dataset were precomputed at
startup and staged to the compute nodes. Intermediate data
were stored on node-local SSDs, further reducing the load on
the shared file system. For the same reason, during startup we
stored a static Python virtual environment with the OpenEye
docking modules on the local storage of the nodes. Together,
those improvements enabled the use of all the 56 cores of each
compute node and required minor programming at application
level. RP and RAPTOR enable that kind of performance tuning
for every application written against their APIs and every HPC
platform with local storage on the compute nodes.

Fig. 6a shows the distribution of docking times of approx-
imately 126 × 106 ligands from the mcule-ultimate-
-200204-VJL library to a single protein, using OpenEye
on Frontera. Note that the distribution is highly dependent on

(a)

(b)

(c)

Fig. 6. Experiment 2: (a) docking time distribution; (b) docking concurrency;
and (c) docking rate for a single protein and 126 × 106 ligands. Executed
with 158 coordinators, each using ∼50 nodes/2800 cores on Frontera.

the protein being used: for the specific protein used in this run,
we measured a max of 14985.8 seconds and a mean of 61.5
seconds (Tab. I). The set of proteins available to us varied in
mean docking time from ∼3 to ∼70 seconds.

Fig. 6c shows the docking rate for a single pilot with 7650
compute nodes. Compared to experiment 1, the rate does not
fluctuate over time and is consistently near ∼ 40×103 docks/s
(∼ 144 × 106 docks/h—see Tab. I). Note that the long tail
distribution of runtimes results in a long tail of docking calls
and causes the “cooldown” phase. That phase and the startup
time ultimately lower utilization from 98.3% in the steady-
state (before cooldown starts) to a total average of 90.0%.
The time taken to create the task was reduced to 35s from the
55s required in experiment 1, mainly due to using the more
efficient local storage. The time taken to execute the first task
from when resources become available marginally increased
to 140s compared to the 120s of experiment 1.

As discussed, the docking times depend on the proteins
used. Thus, the docking rate inversely depends on that protein
choice and, ultimately, not on RAPTOR’s design and capabili-
ties. The range of rates is very wide: for the proteins available
to us, we observed a mean docking rate between ∼ 14× 106

and ∼ 300× 106, for runs of the same size.



C. Experiment 3
One of RAPTOR’s distinguishing capability is executing

function and executable tasks concurrently. In experiment 3,
we launched executable tasks alongside the OpenEye dock-
ing function tasks, thus emulating an heterogeneous workload.
Each executable task run the stress command.

As with experiment 2, we used only one pilot but with 8336
compute nodes, for a total of 466,816 cores. On that pilot, we
launched 8 coordinators and each coordinator launched 1041
workers. As we use MPI to launch the workers, we created a
total of 8328 ranks, utilizing all the available compute nodes
(reserving 8 nodes for the coordinator’s tasks). We tested larger
numbers of coordinators/workers but without measurable im-
provements. That implies that the communication system is
not a bottleneck in this setup. More experiments are needed
but, currently, we believe we reached the limit of the plat-
form’s performance.

Executing experiments on whole machines of the size of
Frontera requires special agreements and support. We worked
with Frontera staff at TACC to use the whole machine for 3
hours after a maintenance period. Our runs uncovered issues
with a switch, triggered two faults in the shared file system
and ultimately overwhelmed the telemetry system of the ma-
chine. That reduced the time we had for each run to 1200s
and reduced the number of runs we were able to perform.

With short runs, the startup and cooldown periods have a
relatively large impact on the performance and utilization num-
bers presented here. Note that, in production, users run RAP-
TOR for up to the maximal walltime allowed—usually be-
tween 24 and 48 hours. RAPTOR startup time happens only
once per run so, as far as startup costs few minutes, it will be
negligible from a RAPTOR’s efficiency point of view. On the
contrary, filesystem slow downs and bottlenecks recur across
the whole run, greatly affecting overall resource utilization.
Thus, trading off slower startup time for better filesystem per-
formance benefits the overall run efficiency.

Despite the optimizations done to reduce the load on the
shared file system in experiments 2 and 3, most workers’ task
collection stalled for ∼150 seconds after running as expected
for ∼800 seconds. That stall led to longer task runtimes vis-
ible in Fig. 7b, where several tasks run significantly longer
beyond their nominal 60s cutoff time. The average utilization
listed in Tab. I was lowered significantly due to the stalls. Our
traces show no errors, delays or overloads and TACC teleme-
try service did not provide conclusive data.

The startup time in experiment 3 is non-negligible: 451s.
That amount of time can be separated into 6 contributions: (1)
pilot bootstrapping and (2) staging to node storage overlap,
contributing 78s; (3) coordinator startup that contributes 1s;
(4) input data pre-processing in the coordinators contributes
42s; (5) worker startup (all ranks) and (6) bootstrapping of
communication system overlap, contributing 330s.

Fig. 7a shows a histogram of the startup times for all
ranks, and one for the communication channel setup which
the worker ranks can only initiate once the ranks are up. In-
terestingly, the first worker rank for each coordinator took only

(a)

(b)

Fig. 7. Experiment 3: worker rank startup times.

∼10 seconds to start, but the startup of the remaining ranks
was significantly slower, with the last worker to come alive
only after 330 seconds. These times depended on the perfor-
mance of MPI on Frontera and it calls for further optimization.

As soon as each coordinator and its workers become ac-
tive, they started executing bulks of 128 mixed function and
executable tasks. The first worker began executing tasks 142s
after the job started; the last worker however executed its first
task at 368s, leading to a total ramp up time of 374s observed
in Fig. 7a. Only then, RAPTOR could begin to utilize the full
system.

Fig. 7b shows the task runtime distribution for this run
for 6,685,316 ligands from the Orderable-zinc-db-
-enaHLL library that are docked to the protein 3CLPro-
-6LU7-A-1-F which is particularly relevant to study the
binding of drugs to the spike of SARS-CoV-2. The figure
shows durations between 3 and 60s and then a certain number
of tasks that have been terminated at 60s. This is the thresh-
old used by the scientists to determine when a ligand should
be stopped to be computed, either because it would not be
relevant or because, more commonly, the simulation stalled.

Fig. 7b also shows the distribution of the additional
6,685,316 executable tasks. We drew the tasks runtimes from
a uniform distribution between 0s and 20s. Note that both
distributions show several tasks running for longer than the
60s cutoff, up to a runtime of 360s. Those tasks were pre-
dominantly observed during the performance dip after 800s
of runtime discussed above.

Fig. 8a shows the task completion rate for experiment 3.
The rate shows a ramp up of ∼360s (see discussion above) fol-
lowed by a peak of ∼25,000 tasks/s and an average of 22,000
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Fig. 8. Experiment 3: task completion rate and task concurrency.
tasks/s for most of the remaining time of the run. This is equiv-
alent to a peak ∼ 90×106 tasks/h and an average ∼ 79×106

tasks/h. The plot also shows the individual completion rate of
the executable and function tasks. Both rate and behavior over
time are comparable for function and executable tasks. After
the ramp up phase, the execution rate peaks at ∼13,000 task/s
to then stabilize at an average of ∼11,000 task/s.

As discussed, we observe some stalling at around 800s and
then a rate peak of ∼25,000 task/s at ∼1000s that includes
the tasks completed after the stalling period. We observe an
cooldown phase in which the number of remaining tasks pro-
gressively decreases until no tasks are left to be executed. The
consistency of behavior for function and executable tasks in-
dicates that RAPTOR can concurrently execute both types of
task in isolation, without affecting overall performance.

D. Experiment 4

Figure 9a shows the distribution of docking times of ∼
57 × 106 ligands from the mcule-ultimate-200-204-
-VJL database, using AutoDock-GPU on Summit. The dis-
tribution has a max/mean of 263.9/36.2s (Tab. I). Compared
to experiment 1, Fig. 4, max docking time is shorter, but the
mean is longer. Compared to experiments 2 and 3, both max
and mean are shorter. As observed, those differences are due
to specific properties of the docked ligands and the protein.

Fig. 9b shows the docking rate for one pilot with 1000 nodes
(6000 GPUs). Different from experiments 1, 2 and especially
3, the rate peaks very rapidly at ∼ 11 × 106 docks/h, show-
ing a very short startup time. RAPTOR maintains that steady
rate until the end of the execution, with a very rapid cooldown
phase compared to the other experiments. We explain the ob-
served sustained dock rate with an interplay between the scor-
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Fig. 9. Experiment 3: (a) Distribution of docking time and (b) docking rate
for a single protein and 57 × 106 ligands. A pilot is concurrently executed
on Summit with 6000 GPUs.

ing function and its implementation in AutoDock-GPU, and
specific features of the 57× 106 docked ligands.

Different from OpenEye on Frontera, AutoDock-GPU bun-
dles 16 ligands into one GPU computation in order to effi-
ciently use the GPU memory, reaching an average docking
rate of 11.1 × 106 docks/h (Tab. I). Currently, our profiling
capabilities allow us to measure GPU utilization with 5% rel-
ative error. Based on our profiling, we utilized between 93 and
98% of the available GPU resources.

Experiment 4 shows how RAPTOR can manage resource
and executable tasks heterogeneities. Moving from Frontera
to Summit required few changes in the pilot description and
a new task description for AutoDock-GPU executable tasks
instead of OpenEye function tasks. RAPTOR coordinator and
worker also required minimal configuration changes to account
for different number of resources available per node but, im-
portantly, no change was required to manage executable tasks
instead of function tasks. Both RP and RAPTOR are agnostic
towards the type of code executed by each task.

Together, experiments 1–4 show how RAPTOR manages 6
types of heterogeneity: (1) different number of pilots per run;
(2) different types of tasks concurrently executed on the same
pilot, coordinator and worker; (3) different task runtimes; (4)
different type of task executable; (5) different type of HPC
platform; and (6) different type of computing resource, CPU
cores and GPUs. Across these heterogeneities, RAPTOR man-
ages to reach more than 90% peak resource utilization and



unprecedented scales for the docking calculations.
By supporting heterogeneity, flexible API and scale, RP and

RAPTOR enable users to write more general-purpose and flex-
ible applications, abstracting resource provisioning and man-
agement, and task scheduling. Ultimately, the goal is to avoid
having to write special purpose applications that support a sin-
gle use case on a specific platform and at a specific scale. This
is what the COVID19 use case required: rapid deployment at
scale on diverse platforms to efficiently and effectively lever-
age all the computational capacity across multiple institutions,
to obtain results in the shortest possible amount of time.

V. RELATED WORK

We discussed the performance and scale that RAPTOR
achieves for the computational docking problem relative to
similar efforts (Sec. §II) that represent the state-of-the-art.
RAPTOR achieves at least a factor of two greater through-
put on any platform than published results. We attribute this
to the combination of the of the coordinator/worker and pilot
paradigms [18] and their scalable implementations.

Coordinator/worker is one of the most common paradigms
in distributed computing and programming [23]. Many classes
of algorithms naturally fit the coordinator/worker paradigm,
making it useful both for writing user-facing applications
and scheduler components for middleware systems, especially
in presence of heterogeneous resources and a dynamic run-
time environment. Coordinator/worker is commonly adopted
by middleware to enable the execution of many-task applica-
tions on distributed computing infrastructures [24].

In HPC, coordinator/worker is commonly used to coordinate
the concurrent execution of processes and tasks across multiple
resources and compute nodes. At programming level, coordi-
nator/worker is used with MPI libraries [25], [26] and language
extensions like Charm++ [27], [28] or COMPSs [29], to imple-
ment large-scale, single-executable applications. At task-level,
diverse frameworks use workers coordinated by a coordinator
to distribute and then execute tasks across HPC resources. For
example, Dask [30], Parsl [21], Spark [31] and Arkouda [32]
all use the coordinator/worker paradigm but many single-point
solutions for domain-specific use cases also use coordinator/-
worker [33]–[35].

While in this paper we present experiments specific to the
problem described in Sec. §II, via the , RAPTOR supports the
development of domain-independent applications with homo-
geneous and heterogeneous tasks. This is because the coordi-
nator/worker paradigm is domain-independent and RAPTOR
poses no constraints on the type of computation performed by
the functions or executable of the workload. Further, RAP-
TOR supports extreme scale on HPC platforms with diverse
architectures and resource usage policies.

VI. DISCUSSION AND CONCLUSIONS

HTVS pipelines are used in a variety of disciplines, ranging
from materials design [10] to molecular design [11]. In partic-
ular, multi-scale biophysics-based HTVS pipelines are an im-
portant strategy for computational drug development. While

HTVS can be considerably faster than experimental screen-
ing, until now, it has been too slow to explore libraries with
billions of molecules, even on the fastest machines.

In this paper we describe the design and implementation
of RAPTOR, and offer a performance evaluation of RAPTOR
when used to perform computational docking at scale. Docking
is often the first stage of multi-scale, biophysics-based HTVS
pipelines and we report progress towards addressing the per-
formance challenges of computational docking at scale. This,
in turn, provides a path towards an overall improvement of
throughput of computational drug discovery, in terms of size
of libraries screened, and the possibility of integrating machine
learning components with physics-based components.

RAPTOR extends the Pilot abstraction with the coordina-
tor/worker paradigm, and offers a general-purpose, task-level
application programming interface (API) to code distributed
applications. RAPTOR supports: executing function and ex-
ecutable tasks; achieving high throughput and high resource
utilization with arbitrary short running tasks; arbitrary parti-
tioning of resources and tasks; multilevel scheduling in which
workloads are partitioned and then subsets of tasks are lo-
cally scheduled to subset of resources; and partitioning of tasks
across multiple, independent executors.

RAPTOR offers three main advantages compared to existing
frameworks for multi-task applications: (1) users do not have
to explicitly manage task concurrency when coding multi-task
workloads; (2) user applications can execute up to 100×106 ar-
bitrary Python functions on up to 500×103 cores and 24×103

GPUs; and (3) users can avoid coding resource management
and task coordination. Additionally, RAPTOR abstracts away
the notion of task concurrency from the users, while supporting
unprecedented scale and managing 6 types of heterogeneity:
(1) number of pilots per run; (2) types of tasks concurrently ex-
ecuted on the same pilot, coordinator and worker; (3) task run-
times; (4) type of task executable; (5) type of HPC platform;
and (6) type of computing resource, CPU cores and GPUs.
Overall, RAPTOR enables pilot-based execution of multi-task
workloads on most DoE and NSF HPC platforms, indepen-
dent of the type of executable launched by each task and,
ultimately, of the use case supported.

RAPTOR allows users to implement rich control logic for
their applications, expressed as an implementation of the coor-
dinator/worker pattern. This will become increasingly impor-
tant as emerging platforms offer progressively more heteroge-
neous resources and execution environments. Consistently, we
plan to extend RAPTOR with workload management features
such as: enacting failure management policies; making deci-
sions based on state or output of tasks, both during runtime
or after task completion; satisfy data dependencies, enabling
both data and control flow management.
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