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Abstract—This work studies and defines the problem of pro-
viding extensive and opportunistic Edge AI-based area coverage
in smart city application scenarios, by researching and deter-
mining the optimal configuration of sensing and computational
resources for minimizing the environmental/technology footprint
of the solution. A typical smart city computing continuum
consists of statically installed multimodal sensing Internet-of-
Things (IoT) nodes at various city locations, accompanied by
interconnected computational Cloud/Edge/IoT nodes. This paper
presents Optimal Trustworthy EdgeAI (OTE), an entirely novel
research pipeline, that complements existing smart city infras-
tructure with intelligent drone Edge/IoT nodes (in the form of
modularly equipped unmanned aerial vehicles), capable of au-
tonomous repositioning according to individual/collective sensing
and coverage criteria. Thereby, we envisage the emerging cutting-
edge technologies of trustworthy sensing, perceiving, modelling
technologies for predicting the behavior of moving targets (e.g.,
citizens/vehicles/objects), understanding natural phenomena (e.g.,
sea wave motion, urban flora/fauna, biodiversity) in order to
anticipate events (people’s bad habits, environmental changes),
by exploiting novel continuous data processing services across
the whole span of the enhanced Cloud-Edge-IoT computing
continuum.

Index Terms—EdgeAI, Trustworthy-AI, Smart city, Cloud-
Edge-IoT intelligence, UAVs

I. INTRODUCTION

Optimal Trustworthy EdgeAI (OTE), is a research pipeline

aiming to lay down the groundwork for research in tech-

nologies for complementing existing static Cloud/Edge/IoT

infrastructures in smart city environments, for providing a)

increased intelligence in the data acquisition phase, b) en-

hanced coverage, perception, cognition, and understanding of

the dynamically changing city environment, and c) increased

data acquisition and data processing efficiency. The research

challenges are organised in three different elements.

First, it focuses on obtaining increased IoT intelligence.

We assume that there are some existing statically installed

IoT nodes at the Edge, mainly used as sensors and have

some (but limited) computational capacity, that are utilized for

semantic analysis by developing novel TinyML AI techniques.

In addition, the Edge architecture includes advanced drone

IoT nodes in the form of Unmanned Aerial Vehicles (UAV),

having cognitive abilities for understanding and autonomously

operating in the smart city environment, featuring automatic

repositioning and perching in locations opportunistically, in

order to save energy and provide enhanced coverage in areas

not covered by the statically deployed sensor nodes.

Second, IoT intelligence is leveraged towards developing

Trustworthy AI functionalities, ranging from collective se-

mantic visual analysis and physics-informed machine learning

processes, that can be used to analyse the inputs/outputs of

all the available sensors. Smart sensor fusion technologies

are studied in a two-fold purpose: a) to provide a robust

understanding and modelling of the urban environment, and

b) to optimally derive and propose the optimal drone IoT

sensor locations, for enhanced and efficient area coverage.

These technologies combined will lead to significant compu-

tational/memory reduction and huge energy savings.

Finally, these Trustworthy AI functionalities are orches-

trated in a centralized fashion by increased Cloud intelligence,

consisting of innovative data streaming and interoperability

services at the Cloud layer. Artificial Intelligence will be the

common denominator to harmonize the resource provisioning

and services deployment, and distribute intelligence across the

Cloud-Edge-IoT continuum. This methodology will lead to

build fully adaptable and resilient intelligent ecosystems.

OTE envisions a complete Cloud/Edge/IoT system, summa-

rized in Figure 1, that provides rich semantic analysis of static

and moving targets and flows of items of interest in urban

environments. The semantic analysis outputs can be opened

up to the general public for supporting new innovative city-

wide applications beyond OTE scope, for offering services to

a) the municipality and b) to the citizens. The components and

research challenges of the proposed pipeline are analysed in

Sections II-IV. Conclusions are drawn in Section V.
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Fig. 1. OTE conceptual block diagram. Interplay between IoT intelligence (Green), Trustworthy Edge AI technologies (Blue) and Cloud Intelligence (Grey)

II. IOT INTELLIGENCE

A. Privacy-by-design EdgeAI

Smart city environments require the installation and oper-

ation of IoT nodes in public environments, thus IoT sensors

unavoidably capture sensitive information that may be used

to infringe an individual’s privacy. Such sensitive data infor-

mation might include human facial images or other biometric

identifiers, including clothes, tattoos etc, or even people on

vehicles wearing helmets, or the vehicle plates. Assuming

that we have the outputs of human detection algorithms, the

privacy preservation task requires the generation of gender-

neutral image samples that will be used to replace the detected

ones. This problem can be viewed as determining an iterative

transformation f(·) : X �→ X , such that the images in the

resulting (same) space are no longer identifiable, according

to k-anonymity principles [1]. De-identification technologies

in existing products (see Google Maps, media industry) apply

face/plate detection and aggressively corrupt the images using

blurring. In general, privacy and gender neutrality are not

guaranteed. Generative Adversarial Networks (GAN)-based

methods which employ style transfer [2] are the state-of-

the-art approach for privacy protection, but have only been

evaluated in experimental datasets, in limited viewing angles.

Gender/Race/Body related [3], [4], de-identification have been

considered by individual efforts. Data utility has only been

evaluated qualitatively.

The main research challenge is to design novel k-

anonymity-based deep Neural Network (DNN) approaches

that will be trained by incorporating novel-joint optimization

criteria for de-identification performance, gender neutrality

and data utility. The technology must provide continuous on-

the-fly video de-identification in real-world city-captured data

and different viewing angles. Such methodology could be

based on embedded generative DNN approaches optimized

for creating aesthetically pleasing and utilizable results for the

remainder analysis, carried out by the rest of the system (e.g.,

human detection will still work). Focus should be given on

real-time operation. To this end, research efforts may consider

employing only the outputs of a human detection algorithm

(in the form of a human localized in the 2D spatial domain)

as input, and will reduce the resolution until reaching some

acceptable execution time levels. If that fails, alterations in

the employed DNN architecture, DNN compression, should

be considered as well.

B. IoT Node sensing for seamless and safe operation

We envision autonomous IoT nodes that will seamlessly

and safely operate in urban environments, by combining
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embedded knowledge about their assigned use-case task of

interest (e.g., traffic monitoring) with the ability to sense

and understand potential mobility constraints prior to/during

(re-)deployment (e.g., flight is not permitted above humans).

Such tasks require the localization of moving targets (e.g.,

human crowd, humans, cars) that might freely roam around

the environment, thus appearing from different viewpoints, in

various scales, different lighting conditions or perhaps even

occluding each other. Additional challenges are introduced

when considering the mobilization (e.g., flying) phase, related

due to camera vibrations and and/or the parallax problem. The

design of such techniques must also take into consideration

the computational and memory constraints imposed by the

embedded IoT computational units. Taking into account the

above challenges, the sensing modules should be based on

DNNs, similar to those applied on human crowd detection [5]

and top-down person detection [6], safe-landing spot detection

[7] and embedded DNN implementation. The research focus

should be to further decrease execution times, by using e.g.,

DNN compression or knowledge-transfer methods to transfer

knowledge from deep complex architectures to lighter ones

[8].

C. IoE infrastructure for data space

Distributing IoT nodes all over the cities causes a daily

production and storage of huge amounts of data coming from

different stakeholders. Data format and shape is therefore

different because based on non-standard protocols and data

models, thus preventing knowledge exchange with external

users, projects and systems. Interoperability and integration

of data from various sources is a key challenge that has

to be tackled to extract insight and give an understandable

value with the purpose to build new and precious services.

For this reason, it is necessary to have adequate technologies

that allow breaking the silos where data stay, enabling the

possibility to access, fuse, and consume cross-domain and

multi-scale data, models, and observations independently from

data sources, enabling data analysis and tools for data-driven

decision making.

In the next few years, advances in technology should

produce mechanisms specifically developed to provide cost-

effective mechanisms for data management and AI also over

the Edge in line with the distributed [9] and federated ar-

chitecture paradigms [10]. Additional capabilities must be

implemented to facilitate the discovery and evaluation of Edge

AI data and any other useful data sources available online

(as example, Earth Observation repositories, apps for citizen

science initiatives), as well as their federation and easy “plug-

in”. Innovative modelling tools based on “no coding” approach

will assist and make semi-automated the activities required to

fuse, transform, refine, and harmonise raw and unstructured

data in the standard data models, in order to be used by any

data consumer. New data models for biodiversity information

must be defined to contribute to the reference standardisation

programs, such as FIWARE [11].

D. Drone IoT node mobility

OTE pipeline envisions a fleet of intelligent aerial robots

that will continuously and non-invasively survey the city

autonomously building accurate maps, detecting, localizing,

and tracking target objects/events of interest [12]. In order

to operate in a city environment, each aerial robot must be

endowed with all required onboard sensors, computational

resources, and functionalities for fully autonomous operation

including take-off, perch on safe locations to save energy e.g.,

on traffic lights, safe navigation, trajectory planning, flight

control, and advanced intelligent perception methods. In order

to achieve safe and autonomous navigation of aerial robots,

the platforms should include propeller protections and energy-

absorption components. Also, they must be endowed with

flight safety supervision that will detect mechanical, sensor,

or software malfunctioning, to timely take safety actions.

Aerial robots should also endowed with fully autonomous

navigation capabilities including mission planning, trajectory

planning, obstacle detection and avoidance, and autonomous

takeoff/perching. Although all of these challenges have been

studied individually, implementing everything in the same

platform remains a challenge.

The second challenge is how to organise the fleet or aerial

robots as a team. Centralized optimal zone partition robot

fleet planning methods should be used to coordinate the

aerial robots deployed in the site, each assigned with an area

depending on the site geometrical or monitoring requirements.

Multi-robot trajectory planning methods must be used to

define optimal aerial robot trajectories. Obstacle detection and

avoidance methods will monitor the pose and velocity of

each robot to detect risks and timely change trajectories or

command safety actions [13]. Perception-aware aerial robot

planning methods must be developed to optimize the amount

of information gathered during the flight for (a) target tracking

and for (b) map building. During target tracking missions, the

trajectories and planning of the aerial robots of the fleet should

be performed using the real-time greedy optimization of a

utility function that considers the target tracking uncertainty

and also the energy consumption required by the aerial robots.

During mapping missions, the aerial robot trajectories must

be optimized using entirely novel cost-reward utility functions

that trade between the time in building an accurate map and the

energy consumed by the drone fleet. Finally, the robots must

be endowed with autonomous takeoff/perching functionalities

based on visual servoing.

III. TRUSTWORTHY EDGE AI FOR WORLD MODELLING

A. Distributed static 3D world modelling

Smart city missions require accurate real-time updated

large-scale georeferenced maps with geometrical and photo-

realistic content. Cities are complex, unstructured and highly

dynamic environments with poor Global navigation satellite

system (GNSS) reception which poses significant challenges

for autonomous real-time mapping using aerial robots. Dy-

namic objects pose particularly challenging issues in map-

ping [14]. Differentiating between static and dynamic objects
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for mapping requires providing semantic information to the

objects in the map. Besides, since several drones will be

used in smart cities, multi-drone mapping techniques are

necessary, which also will allow faster mapping of large-

scale environments and will enable sharing the maps between

different drones to improve mapping accuracy.

The research challenge is to develop multi-drone mapping

functionalities with advanced AI-based object recognition that

will provide semantic content. The local mapping method on

each IoT drone node should be based on a multisensor Simul-

taneous Localization and Mapping (SLAM) scheme capable

of fusing robot 6-DoF location (e.g., computed by GNSS

& inertial measurement unit (IMU)), 3D light detection and

ranging (LIDAR) scans, and image features (e.g. SIFT, SURF,

ORB) [15]. Multisensor optimal data registering methods may

be used to generate minimum-drift georeferenced maps with

geometrical and pixel information. Multisensor SLAM meth-

ods are naturally robust to lack of features, and may integrate

GNSS measurements if available. In case of lack of GNSS, the

SLAM must integrate LIDAR and cameras providing maps of

sufficient accuracy. Next, the semantic information provided

by the AI perception methods must be added to the map.

Finally, local map sharing and merging techniques must be

developed in order to enable creating an unique global map

resulting from the entire drone fleet. The IoT nodes can be

also localized and mapped by the drones using radio range

information, see e.g., [16]. The identifiers and locations of

these IoT nodes may be used as reference to improve the

accuracy of local map merging.

B. Semantic video instance segmentation

The dynamic/static node operational environment will have

to be on-the-fly-analyzed from a semantic standpoint, us-

ing dynamically acquired camera input and AI methods for

computer vision. The research challenge includes the devel-

opment of corresponding DNN modules that will perform

video instance segmentation, in real-time. The state-of-the-

art approach is to employ Transformer [17] or CNN neural

architectures [18] and to exploit adversarial learning strategies

to compensate for occlusions or distortions [19] and/or employ

novel training goals that augment regular supervised training

with unsupervised [20] or adversarial objectives [5], in order to

increase accuracy in potential use-cases. Another challenge is

to accelerate those algorithms for on-board execution without

sacrificing accuracy, e.g., by combining multitask training

on auxiliary tasks (such as scene geometry extraction by

unsupervised depth map estimation).

C. Dynamic Multi-view Target detection/recognition

A global 3D map can be derived after fusing/merging

information from the instance segmentation performed by each

camera-equipped IoT node. It should contain the location of

each tracked target in a common 3D coordinate system at

all times. This can be exploited in repeated post-hoc steps

of fine-tuning the instance segmentation models in the IoT

nodes, using on-line continual learning [21], during mission

execution. For example, the 3D location of each target can

be prospectively projected using the camera parameters of

each IoT node, while the spatial difference of the resulting

target 2D location (in pixel coordinates) from the last instance

segmentation map prediction can be used to form a loss value,

to be back-propagated through the corresponding instance seg-

mentation DNN. The end-result will be a gradual building of

increased DNN robustness at each operating drone IoT node,

through indirectly exploiting the collective fleet intelligence.

D. Robustness in edge node perception

One definition of robustness refers to the ability of a system

to withstand or overcome input or parameter perturbation

(hardware malfunction, data acquisition/transmission noise,

adversarial attacks etc.). Assuming a system y = f(x;θ)
(model f with inputs x, parameters θ and outputs y), ro-

bustness is quantified by determining its tolerance to per-

turbation ‖p‖ < ǫ per se, i.e., f(x;θ) = f(x + p;θ) or

f(x;θ) = f(x;θ + p). Recently, particular interest has been

paid to the problem of adversarial robustness, that involves

studying and addressing the inherent model weaknesses that

allow adversaries to easily fool a neural network classifier by

carefully crafting input perturbations, the so-called adversarial

attacks.

In urban environments, there are also adversarial threats

present in the physical world [22] (e.g., stickers, people

hats/masks, dirty road signs etc.). The root causes of DNN

model weaknesses that make them vulnerable to adversarial

threats, have not been properly identified yet, however, they are

somehow related with the unified deep learning optimization

procedure that involves feature learning and classifier learning

at the same time. Robustness to adversarial attacks in visual

classification problems can be achieved both by detecting

them by exploiting one-class classification models [1], or

by robustifying the DNN learning process by incorporating

geometrically-inspired optimization criteria in the training

phase [23]. Nevertheless, the problem remains far to be solved,

especially in relevant visual perception tasks (e.g., object

detection, semantic segmentation), which lie in the core of

OTE pipeline. In the near future, the problem variants in visual

perception tasks must be addressed in order to devise entirely

novel neural network training strategies, robust to adversarial

threats.

E. Explainable event detection/recognition

In environmental monitoring scenarios there is a need to

identify changes/events related to e.g., garbage disposal in

a previously clean environment. The challenge of this task

is that both the environment and the event are very difficult

to model/predict, i.e., no easily identifiable features can be

extracted in some cases (e.g., at the sea), or the exact opposite

may happen in other cases (places at the peripheral districts

of the city parks). Assuming that a distribution about the

relevant environment has been captured using an appropriate

neural architecture e.g., neural autoencoders based on 3D

convolutional, Long short-term memory (LSTM) [24] and/or
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Transformer-based architectures [17], events can be identified

in the cases where the perceived distribution changes dramat-

ically.

For the modelling part, two different classes of algorith-

mic approaches may be employed, i.e., (a) the unsupervised

modelling case and (b), the supervised modelling case. In

the former case, it is assumed that the instances of “nor-

mal” sensed data can be used to reconstruct a significantly

longer temporal sequence (e.g., video), while an event can

be detected when the sensed data no longer reconstructs the

previous sequence with the same quality. This problem is

typically known as the Out-of-distribution detection [25]. For

the latter case, one-class classification methods [26], [27]

may be employed to model the normal distribution of the

sensed data. Events can thereby be identified by the output

of the novelty detector (i.e., the one-class classifier). One

of the most important challenges is that the analysis of the

temporal axis introduces significant computational/memory

burdens to the modelling problem. This can be addressed by

many different approaches e.g., clipping similar sensing inputs,

designing tailor-made lightweight modelling architectures and

optimization options, as well as by offloading computations to

stronger computational grid units (e.g., to the Cloud).

F. Model-based AI: modeling spatial dynamics

In many applications the processes of interest, such as

city traffic density, or concentration of air pollutants over a

residential area, vary both in time and space. A brute-force

approach to capture these variations typically implies a high-

resolution spatial and temporal sampling of such processes.

Unfortunately, such an approach turns out to be quite im-

practical: while in some cases temporal sampling can be real-

ized thanks to modern high-speed processing and acquisition,

spatial sampling can be very costly. For instance, air quality

monitoring in the city relies on sparsely distributed measure-

ment stations equipped with chemical sensors that provide

only in-situ measurements. Moreover, non-visual sensors, and

in particular chemical sensors, such as those used for gas

or particle measurements, are often characterized by a low

information acquisition rate. Specifically, measurements with

a frequency in fractions of Hz per sampling point are not

uncommon. This is a challenge for a robotic system relying

on such sensors for decision making and inference.

The solution investigated in OTE pipeline foresees augmen-

tation of the available fixed sensing networks with intelligent

drone-based IoT sensor carrying platforms. These can be dis-

patched to optimal measurement locations and augment fixed

sensor networks. For a successful and efficient deployment

of such drone IoT sensors for these purposes, deficiencies of

sensors must be compensated by prior information in terms of

process models describing the dynamics of the phenomenon of

interest and related inverse modeling approaches. The choice

of the model is essential for this purpose.

Two approaches can be typically used for this purpose. On

the one hand, it is (a) data-driven approaches [28], where

neural networks or other non-parametric techniques are used.

These methods are quite versatile and powerful provided suf-

ficient training data is available, which is not always the case.

On the other hand, (b) physics-based models [29] can be used.

For instance, for modeling a distribution of chemicals/particles

in the air, a model based on convection-diffusion partial

differential equation can be used. To be precise, the physical

model for the gaseous material propagation in some region

Ω of interest within the time frame (0, T ) can be represented

with a time-dependent convection-diffusion equation in 3D as

∂tu− ǫ∆u+ (βw + βr) · ∇u = qδs, (1)

supplemented by appropriate boundary and initial conditions.

Here, ∂tu denotes a partial time-derivative of a concentration

u ≡ u(x, t) of some material of interest, ǫ is diffusivity

of the material, ∆ is a Laplace operator, βw and βr are

wind velocity fields due to wind and, e.g., a drone taking

the measurements, respectively, and qδs is a function that

models a spatial distribution of material sources. Although (1)

has relatively few parameters and can describe the physics

of the process quite accurately, estimation of these param-

eters from measurements is a numerically complex inverse

problem. Therefore, researchers should combine data-driven

modeling approaches and physics-based models in a unified

framework known as model-based machine learning. Such a

combination either incorporates data trainable elements into

the equations of the spatial dynamics of the process, or trains

the network subject to constraints imposed by the differential

equation (which are also known as Physics-Informed Neural

Networks [30]). For instance, to represent the influence of

the drone on the local wind conditions we will rely on data-

driven models instead of employing physical models, such

as the compressible Navier-Stokes equations. The goal is to

obtain numerical representations that are accurate enough, yet

sufficiently tractable to be estimated and learned in real-time

using computing resources on the drone. The latter is an

essential element for deriving optimal sampling strategies for

the robots. This can find application in the cases of air quality

monitoring in a smart city environment.

G. Multimodal robust world sensing and perception

Given models of the process dynamics and sensor data, the

next step is to apply algorithms to cooperatively learn model

parameters and thus “understand” the world as “seen” by the

robots. The intention is not to collect the measurement data at

a central location, but instead use methods of distributed signal

processing and estimation. In this way “locally” collected

measurements or computations can propagate through the

whole network without the need of a central server. The

advantage of such an approach is the absence of single point

of failure of the system. This failure does not need to be

physical breakdown of a component. Network connectivity

to a central computer can disrupt the system functionality

in centralized architectures. Distributed systems are robust to

such disruptions.

The two basic concepts of distributed signal processing that

should be investigated are consensus-based [31] strategies and
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diffusion-based strategies [32]. Consensus strategies are simple

distributed protocols that allow achieving agreement between

multiple entities in a network on some quantity of interest.

It has been studied extensively in the literature and there are

multiple efficient algorithms that implement, e.g., parameter

estimation using consensus. While consensus is useful for

processing batch data, diffusion strategies are handy for online

or streaming data, when constant adaptation is needed. Both

strategies may be used and compared in the project for solving

inference and learning problems in a decentralized manner.

H. Adaptive and optimal IoT node deployment planning

Adaptive and optimal deployment of IoT and drones aims

at finding sampling locations that (a) accelerate and improve

the accuracy of learning under realistic time constraints, and

(b) using as few measurements as possible. The latter is

particularly important when a limited number of IoT or drones

is available for measurements at a particular time. The most

recent approach follows a so-called reactive strategy that

responds in real time to measurements and adapts the decisions

accordingly. One approach to design such an exploration strat-

egy based on optimal sensor placement problem or optimal

experimental design.

The key assumption underlying these approaches lies in the

fact that due to measurement errors, the estimated physical

parameters of the model, e.g., spatial concentrations of the

material determined as solutions to the inverse problems, can

only be approximations. In order to improve the quality of

those estimates, an exploration strategy can be defined as a

solution to a sequential optimal design problem with two-

level structure, where the size of the confidence regions is

minimized with the passing of time around the estimated

parameters by optimizing the measurement or deployment

positions. In this regard, the simpler, yet still realistic, situation

is that the measurements are stationary and the process change

very little during the measuring phase. As a consequence,

determining for each measuring phase only requires a set of

measuring positions in space (but not in time). This can be

done in a sequential manner. Specifically, alternate measure-

ments from mobile sensors and other fixed sensor networks

can be employed, with online fusion of the measurements and

solution to the inverse problem for estimating the parameters

of interest and identifying the measuring points for the next

measuring phase by online solving an optimal design problem.

Hence, the optimal design problem in each step represents the

upper-level problem compared to the inverse problem, which

is the lower-level problem.

IV. EDGE/CLOUD SYSTEMS INTELLIGENCE

A. Services organization, orchestration and provisioning

Production systems of IoT nodes will be often reconfigured

in the future as part of the engineering processes. This aspect

needs to achieve adequate orchestration and security levels

in an automated way, reducing the current static procedures

and manual efforts [33]. Indeed, even though several auto-

mated deployment of applications have been developed, the

management of deployed applications in a multi-cloud and/or

IoT-Edge environment is only partially covered by existing

approaches [34]. For example, MEDAL [35] is an intelligent

solution that facilitates building and managing data workflows

on top of existing flexible and composable data services,

seamlessly exploiting and federating IaaS/PaaS/SaaS resources

across different Cloud and Edge environments. Another so-

lution in literature is [36] establishing a dynamic network

virtualization technique enabled Service Function Chain (SFC)

orchestration framework. It operates maximizing the total

utility and decomposing it into two sub-problems, i.e., SFC

selection and dynamic SFC orchestration.

In OTE, we aim to harmonize the resource provisioning

and services deployment over both Cloud and Edge, proposing

a methodology based on cost functions driven by AI-models

[37]–[39]. Microservice abstractions enable the support of a

virtual environment that can be adapted on the basis of the

available hardware equipment, where each microservice is

autonomous from a development and deployment standpoint.

Scaling and managing these types of systems, given the re-

source heterogeneity and the privacy and security constraints,

is complex, so a novel orchestrator is necessary to leverage

such dynamic and heterogeneous computing infrastructures.

Therefore, one should extend the traditional “cloud-only”

notion of run-time control and reconfiguration to resources that

are deployed and available at the Cloud-Edge-IoT continuum.

This requires the utilization of Machine Learning techniques

for developing predictive models to forecast workload inputs

and performance metrics across multiple, co-located micro-

service on Cloud-Edge-IoT resources, in order to understand

the nature of their composition and decide which micro-service

can coexist and can be deployed together.

B. Distributed data analysis in the Cloud-Edge-IoT continuum

In a data siloed world, most of the infrastructures, services

and applications adopted a self-centered design criterion ad-

dressing only their specific challenges and needs deferring any

issues related to the interaction with other services. Conse-

quently, the data silos can operate only within a predefined

set of protocols, technologies, and data models. This lack of

interoperability gets the solutions in a closed (or semi closed)

ecosystem and hampers the effective interaction with new

services and solutions that could tackle innovative operational

purposes. In the continuum, the above-mentioned issues are

furtherly stressed and made more complex to address by the

dynamic and hybrid contexts that the continuum represents,

where the focus is to make inter-operable entities (i.e., data

producer nodes) forming Distributed Data Ecosystems (DDE).

In this sense, we can identify local data interoperability issues

at data producer node level and global data interoperability

issues that require the gathering and the processing of data

from different heterogeneous data producer nodes (i.e., dif-

ferent cloud nodes of a federation, edge nodes). Therefore,

nowadays there is more and more the need to build solutions

that “enable” the data interoperability among distributed het-

erogeneous data provider nodes (both edge and cloud nodes) in
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the continuum exchanging harmonized and normalized data in

a secure and fair manner for the common good, using standard

data models, tools for data quality and data integration incor-

porating augmented data catalogues in multidomain trusted

data spaces. In this regards, Reinforcement Learning (RL) is

often used as main methodology. Indeed, it was used to build

a distributed-learning-based vehicle routing decision algorithm

to adaptively adjust vehicle routing online [40], as well as to

make a distributed Multi-Armed Bandits (MAB) model for

developing a dynamic network topology change [41].

In OTE, the DDE approach allows manipulating and pro-

cessing the data (also applying AI) in several “mid-points”

located between the data producer and the cloud. Some

of these mid-points can be the edge, the fog or, still, the

cloud. The DDE architecture allows exchanging harmonized

and normalized data in the continuum in a secure and fair

manner according to interoperable data structures compliant

with common and standardised data models.

C. Security and privacy concerns over services and data

Nowadays, with the exponential growth of connected de-

vices over the Internet, security is one of the major concerns

for network communications between heterogeneous parties

(i.e., people, devices, etc.). Security is not just about protecting

the confidentiality of messages exchanged between parties,

but it also involves integrity, and availability. Most secure

communications rely, among others, on a centralized trusted

server (or a group of servers) architecture. This carries an

important security bottleneck: the server delegated to provide

services represents a single point of failure (SPoF), being

exposed to well-known Distributed Denial of Service (DDOS)

attacks. To mitigate such a risk, multiple strategies have been

proposed, but these cause an increase in costs for maintaining

a security infrastructure. Central server architecture is limited

in terms of security because it is susceptible to Man-in-the-

middle (MITM) attacks. This type of attack can take place in

different forms:

• as a malevolent user who takes the control over the com-

munication channel between legitimate parties sending

altered messages to them;

• as a service malfunction refusing to deliver data to

one of the parties, causing the incomplete exchange of

messages which can drastically alter the meaning of the

communication.

Moreover, this configuration is a SPoF because it is sufficient

to attack the centralized server (or the cluster of servers)

through a DDOS attack, making the entire service unusable.

Although this is a well-known attack and it has origin at the

beginning of the IT era, it is still one of the most used and cru-

cial types of attack. DDOS consists in obtaining the disruption

of services by attempting to limit access to a machine, making

a network incapable of providing normal service by targeting

either the network bandwidth or its connectivity. These attacks

achieve their goal by sending to the victim host a stream

of packets that saturate his network or processing capacity,

denying access to his consumers. Nowadays, using simple and

lightweight tools, malevolent users can use malicious code

into unaware victims to leverage a huge number of machines

ready to run a distributed version of such an attack. These

attacks consume some critical resource at the target and deny

the service to legitimate clients as the attack volume can be

larger than what the system can handle. There are multiple

strategies to prevent such attacks, but these have an immediate

correlation with the increase of cost to maintain the secure

infrastructure. During a DDOS attack, the malevolent user can

gain root permission to the system or database and add or

remove data from the system making it difficult to identify

what is legitimate and what is altered. DDOS is just an

example of possible distributed attacks, but the same principle

applies for almost all of them.

D. Streaming data analysis on Edge/IoT computing resources

Although data stream processing is a paradigm with a

long tradition [42], traditional systems like Apache Storm and

Flink, which have a wide popularity and support continuous

streaming, target homogeneous clusters and clouds and are

not designed for the Edge [43]. As a matter of fact, the

shift to the Edge/IoT advocates new software engineering

techniques to develop efficient streaming runtime systems,

which should exhibit a high-degree of reconfigurability of

the underlying implementation to leverage different kinds of

resource-constrained hardware components in an efficient way

and in face of dynamic workload, networking, and energy

conditions. Recent attempts [44] enhance traditional systems

to fit the constraints of edge resources, by re-implementing

parts of their runtime system introducing explicit scheduling of

streamed data analysis tasks using custom scheduling policies.

However, they represent custom prototypes which require to

be maintained together with the standard code base of the

traditional systems. OTE aims to identify parallel/concurrent

building blocks that can be composed to build complex

streaming applications, and whose internal implementation can

leverage different kinds of resources transparently to the end

user. This idea percolates the consolidated approach of Parallel

Patterns and Algorithmic Skeletons [45] at the implementation

level of the runtime system design of a framework, where each

block describes a recurrent computation or communication

pattern, which can be implemented with efficient mechanisms

and with special focus on the constraints of embedded devices.

V. CONCLUSION

This work described the main research and development

challenges that will arise in the next few years, towards

incorporating trustworthiness in smart city applications. The

research pipeline prescribed technical solutions and all the

components that need to be integrated along the whole span

of Cloud-Edge-IoT computing continuum. Such include the

most recent hardware and software breakthrough technologies

in edge sensing, combined with novel smart city robotics. We

have defined the components of IoT intelligence and how they

can be accompanied with trustworthy AI in order to provide

rich multimodal and collective intelligence, at a fleet level.
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In addition, recent advances in cloud computing will allow

the streamlining of the semantic metadata extraction, sensor

processing, services organisation, system orchestration, and

provisioning, considering security and privacy concerns.

The findings of this work can be exploited for designing

entirely novel smart city solutions that tackle a wide range

of important applications, notably in traffic monitoring and

management, human flow monitoring, traffic flow optimiza-

tion, and even for addressing environmental challenges such

as air quality assessment, pollution monitoring, urban-flora

health estimation, and many others. This paper may serve as

a guideline for researchers for assessing their current research

interests within a general purpose smart-city pipeline, that can

also stimulate new ideas for innovators.
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[12] J. P. Rodrı́guez-Gómez, A. G. Eguı́luz, J. R. Martı́nez-De Dios, and
A. Ollero, “Auto-tuned event-based perception scheme for intrusion
monitoring with uas,” IEEE Access, vol. 9, pp. 44840–44854, 2021.

[13] F. J. Fernández-Jiménez and J. R. Martı́nez-de Dios, “A robot-sensor
network security architecture for monitoring applications,” IEEE Internet

of Things Journal, 2021.

[14] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE

Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[15] J. L. Paneque, J. Martı́nez-de Dios, and A. Ollero, “Multi-sensor 6-dof
localization for aerial robots in complex gnss-denied environments,” in
2019 IEEE/RSJ Int. Conf on Intelligent Robots and Systems (IROS),
pp. 1978–1984, IEEE, 2019.

[16] F. J. Perez-Grau, J. R. Martinez-de Dios, J. L. Paneque, J. J. Acevedo,
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itgand, “MEDAL: An AI-driven data fabric concept for elastic cloud-
to-edge intelligence,” in Advanced Information Networking and Appli-

cations, pp. 561–571, Springer International Publishing, 2021.
[36] H. Chen, S. Wang, G. Li, L. Nie, X. Wang, and Z. Ning, “Distributed

orchestration of service function chains for edge intelligence in the in-
dustrial internet of things,” IEEE Transactions on Industrial Informatics,
pp. 1–1, 2021.

[37] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud

Computing, vol. 3, no. 6, pp. 76–83, 2016.
[38] M. Villari, A. Celesti, and M. Fazio, “Towards osmotic computing:

Looking at basic principles and technologies,” in Advances in Intelligent

Systems and Computing, pp. 906–915, Springer International Publishing,
July 2017.

[39] M. Villari, A. Galletta, A. Celesti, L. Carnevale, and M. Fazio, “Os-
motic computing: Software defined membranes meet private/federated
blockchains,” in 2018 IEEE Symposium on Computers and Communi-

cations (ISCC), pp. 01292–01297, 2018.
[40] K. Lin, C. Li, Y. Li, C. Savaglio, and G. Fortino, “Distributed learning

for vehicle routing decision in software defined internet of vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6,
pp. 3730–3741, 2021.

[41] S. Chen, Y. Tao, D. Yu, F. Li, and B. Gong, “Distributed learning
dynamics of multi-armed bandits for edge intelligence,” Journal of

Systems Architecture, vol. 114, p. 101919, 2021.
[42] H. C. M. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of Stream

Processing: Application Design, Systems, and Analytics. Cambridge
University Press, 2014.

[43] M. Dias de Assunção, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1–17, 2018.

[44] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “EdgeWise: A better stream
processing engine for the edge,” in 2019 USENIX Annual Technical

Conference (USENIX ATC 19), (Renton, WA), pp. 929–946, USENIX
Association, July 2019.

[45] F. A. Rabhi and S. Gorlatch, eds., Patterns and Skeletons for Parallel

and Distributed Computing. Springer London, 2003.

850

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 05,2023 at 19:07:06 UTC from IEEE Xplore.  Restrictions apply. 


