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a b s t r a c t

This work analyzes the propagation the highly transmissible COVID-19 variant Omicron across Spain
via simulation by using EpiGraph. EpiGraph is an agent-based parallel simulator that reproduces the
COVID-19 propagation over wide areas. In this work we consider a population of 19,574,086 individuals
of the 63 most populated cities of Spain, for the time interval between May 15th 2021 and March
6th 2022. The main variants existing at the start of the simulation were the Alpha and Delta, with
prevalence of 4% and 96%. Then, during the second half of November 2021, the Omicron variant
appears in Spain. Due to the higher transmission of this new variant — about 2 times larger than
Delta, it quickly spreads through all the cities and becomes the dominant strain in the country. In this
work we analyze the propagation of this variant under different mobility restrictions and patient zero
scenarios. We first define a baseline scenario which reproduces the existing conditions of the COVID-
19 propagation in Spain for our period of study. We then consider alternative scenarios for different
starting locations of the propagation. Finally, for each one of these scenarios, we evaluate different
transportation intensities — i.e. movement of individuals between the cities. The main conclusion
is that, independently of the initial location of the Omicron variant and the existing transportation
conditions, the Omicron variant spreads through all the country in a short time interval. The work
presented in this paper also implements and evaluates a power monitoring and optimization system
aimed at reducing the energy consumption of such massive simulations as the ones performed in
EpiGraph.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the first COVID-19 waves, transmission has been shown
o diminish when following a combination of vaccination and
on-pharmaceutical interventions such as the use of the face
asks and social distancing measures. The degree of effectiveness
f these measures is unclear for the more recent COVID-19
ariants, which are much more contagious than the original
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strain. For instance, the Delta variant is about 1.8 times more
transmissible than the original COVID-19 and the Omicron variant
is nearly 2 times more transmissible than the Delta variant. In this
work we use our EpiGraph simulator to evaluate the effectiveness
of different policies meant to restrict the movement of people
between different cities in Spain for the time interval comprised
between May 2021 and March 2022. At this time the Delta and
Omicron variants were dominant in Spain.

EpiGraph is an agent-based parallel simulator that models the
propagation of influenza and COVID-19, including their variants.
It connects various models that realistically reproduce the envi-
ronment where the infection occurs, e.g. a highly-detailed social
model, a vaccination model, or a transportation model, which
modulate the inter-individual spread while each individual tran-
sitions through the states of an extended SEIR epidemic model.
EpiGraph also considers non-pharmaceutical interventions, in-
cluding population testing, use of mask and different degrees of
social-distancing measures.

Agent-based approaches have the potential to model each
individual’s characteristics and interaction patterns, which can
result in much more realistic simulations compared to other
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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approaches [1,2]. One of the distinguishing features of EpiGraph
is that it relies on realistic data for both individuals and their
interaction patterns, which we extract by scaling from existing
social networks and contact matrices. To realistically capture the
temporal nature of interactions and the specifics or each pro-
fession or social activity, interconnections are time-dependent.
EpiGraph takes different heterogeneous data sources as input by
mapping them to the different parameters of the agent model [3].

This work includes three contributions. On one hand, we aim
eproduce the propagation of the Delta and Omicron COVID-190’s
ariants in Spain in order to contribute to a better understand-
ng on the modeling for the epidemic simulation to coronavirus
andemic. We perform large-scale simulations, considering 63
ifferent cities in Spain and 19,574,086 individuals. On the other
and, we analyze the impact of the movement of people be-
ween different cities on the variant propagation, considering
oth the existing conditions at this time in Spain, as well as
ther hypothetical scenarios with more restrictive social dis-
ancing measures. To model more realistically the movement
f individuals between cities in post-COVID-19 conditions, we
mprove the transportation model used in EpiGraph. As a result
f our experiments, we conclude that independently of the initial
ocation of the Omicron variant and the existing transportation
onditions, the Omicron variant spreads though all the country
n a short time interval.

To be able to report statistically significant results we need
o average over many simulations. We repeat the country-wide
imulation 600 times; given that each simulation takes about
h and runs over 110 cores, in total we use about 200 Khours
f CPU time. Our third contribution therefore targets the per-
ormance of EpiGraph, with specific focus on how to reduce
he energy consumption of the execution. To do this, we use
IMITLESS – our scalable monitoring tool – to collect perfor-
ance metrics for the compute nodes where EpiGraph is running.
ased on these, LIMITLESS generates a profile that can be used
o tune the Dynamic Voltage and Frequency Scaling (DVFS) dy-
amically to reduce energy consumption. DVFS is an extensively
sed technique for CPU power management, which allows fixing
pecific frequency/voltage for each core. We leverage this func-
ionality to reduce the energy depending on the current resource
equirements of the application.

The structure of this paper is the following: Section 2 provides
description of EpiGraph. The transportation model, tuned in

his work for COVID-19, is presented in Section 3. Section 4
escribes the simulation environment and the main results. Sec-
ion 5 describes the integration of a monitoring tool for profiling
he application, as well as the methodology we used to provide
n energy-aware optimization by means of tuning the DVFS.
ections 6 and 7 present the related work and main conclusions
f this work.

. Background

Fig. 1 shows the different stages involved in an EpiGraph
imulation. The input data is first acquired from multiple sources
anging from research papers to public and private databases.
hese data are highly heterogeneous and have to be processed in
second pre-processing stage. The next stage corresponds to the
imulation phase; the supplementary material provides details
ot included in this submission. When completed, it generates
collection of trace files with the state of each individual for
ach simulated time step in each urban area. This information is
ery rich in content and includes, in addition to the individual
haracteristics (health, age, occupation, etc.), the actions taken
y or applied to the person (vaccination, use of NPIs, travel, etc.)
t each time step. In order to provide a comprehensive analysis
548
Fig. 1. Stages involved in EpiGraph simulator.

of the simulator results, a post-processing stage (fourth stage)
is carried out. This stage generates specific trace files according
the information that has to be analyzed or displayed. Finally, the
fifth stage uses this information to generate statistical data that
summarize the simulation output and graphically displays the
results.

EpiGraph’s structure is depicted in Algorithm 1. Each city
simulates a population mix based on the Spanish census data [4],
and defines social connections between its individuals. EpiGraph
models each city as a labeled graph in which two individuals
are connected by an edge if they are interconnected, with the
label representing the connection type. This allows us to create
time-dependent connections. For each simulation step (line 1)
and every city in the simulated territory (line 2), the algorithm
updates the health status of each infected individual as indi-
cated by EpiGraph’s Epidemic Model (line 5). The next step Com-
puteSpreadGraph (line 6) computes how the infectious pathogen
spreads through the Social Model. We call non-pharmacological
interventions applied at individual-level (Individual_NPIs, line 8)
a non-pharmacological action taken by an individual to mitigate
the propagation. An example of this kind of intervention is popu-
lation sampling (testing) or using a surgical face mask at work but
not during family time. In the case that sample testing is positive,
the individual is quarantined, i.e. she is isolated from the rest of
the population.

In line 10, dynamic transmissions are evaluated, as opposed to
the static graph-based transmissions of line 6. Dynamic connec-
tions are generated for individuals belonging to certain collectives
in which there are short-duration interactions with (many) differ-
ent people. Examples of these collectives are health professionals
and catering workers that are in contact with different patients or
customers. These momentary connections change over the time,
i.e. some of the individuals involved are different at every time
step.

We call non-pharmacological interventions applied at collec-

tive-level (Collective_NPIs, line 11) an intervention – such as
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school closing or a total or partial lockdown – that is imposed (or
lifted) by the health authorities at a certain time during the simu-
lation and that involves a specific collective. Line 12 of Algorithm
1 simulates the exchange of individuals between cities by calling
the Transportation Model. This model computes the number of
travelers depending on the size of the origin and destination
cities, as well as the geographical distance between them. Finally,
in line 13 the Vaccination Model (depicted in [5]) captures both
the COVID-19 vaccine availability and characteristics as well as
the vaccination policies that determine which individuals are
vaccinated at any time and with a certain vaccine type.

The following sections provide an outline of the different
odels used in the simulator.

.1. Social model

EpiGraph is an agent-based model that captures individuals
ith their attributes, affiliation to different groups of individu-
ls, and interactions patterns. We consider four different main
roup types: students, workers, stay-at-home people, and elders.
group can represent a certain number of individuals that inter-
ct during work hours — for instance, groups represent students
elonging to the same classroom, workers of the same company,
r stay-at-home people and elderly people that perform group
ctivities.
The way the individuals establish social contacts is time-

ependent and reflects the temporal nature of the different types
f interactions that each individual has throughout the day. For
ach one of the group types, we consider three different temporal
istributions of the individual’s activities, those related to week-
ays, Saturdays, and holidays (including Sundays). These patterns
re specific to the place being modeled to correctly capture
ypical work hours, school time, family time, and leisure. Epi-
raph models interaction during all these time intervals, includ-
ng specific interactions of several different professions. See [6,7]
nd Supplementary Material for additional details. Two different
ocial-network graphs are used to generate the contact patterns
f each individual. Additionally, contact matrices extracted from
ublic surveys are used to provide statistical information of the
verage number of contacts between individuals of specific age
anges.

In order to increase the realism of population mixing, the
ork group has been broken down in different professions. We
lso distinguish different sub-collectives for the group of elderly
eople, separately for those living by themselves, attended in
aily centers, or living in nursing homes. This work introduces
d-hoc connections, which are specific connection patterns for
ertain professions and collectives. These connections may be
tatic or dynamic. Static connections are generated during the
ocial model creation and do not change during the simulation.
hey are created when the connection graph is generated, be-
ore the simulator execution. Then, during the simulation these
onnections are evaluated by ComputeSpreadGraph() in Algorithm
(line 6), during certain time slots. Dynamic connections are

enerated during the simulation and change every time that they
re evaluated. They reflect changing communication patterns of
ndividuals who may be in contact with different individuals at
ifferent times.
ComputeSpreadDynamic() in Algorithm 1 (line 10) evaluates:

1) Ad-hoc school static connections, i.e. each educator is in
ontact with all the students of a certain class during work hours;
2) Ad-hoc elderly caregiver static connections, i.e. caregivers are
n contact with a certain group of elderly people at a nursing
ome during work hours; (3) Ad-hoc catering dynamic connec-
ions, i.e. each worker belonging to this sector is in contact with
lients during work hours; (4) Ad-hoc public security dynamic
549
Algorithm 1 EpiGraph transmission algorithm. Variable simulation_time
epresents the simulation duration, simulated_territory is the simulated area
ncluding several cities, each one of them, denoted as city with a social
interaction model for the population. Individual contains characteristics and
ealth status of each individual belonging to each city.

1: for timestep = 1 → simulation_time do
2: for city ∈ simulated_territory do
3: for individual ∈ city do
4: if individual is infectious then
5: UpdateStatus(individual)
6: ComputeSpreadGraph(individual, city)
7: end if
8: Individual_NPIs(individual)
9: end for

10: ComputeSpreadDynamic(city)
11: Collective_NPIs(city)
2: Transportation(city, simulated_territory)

13: Vaccination(city)
14: end for
15: end for

connections, i.e. the police and other security forces has contact
with the general public; (5) Ad-hoc occasional meeting dynamic
connections, that reflect meetings during social events.

Note that all the ad-hoc contacts are complementary to the
existing graph-based contacts. This allows an individual to have
two different types of interactions during work hours: stable con-
nections with work colleagues (for instance, educators belonging
to the same school, health professionals belonging to the same
hospital or catering employees working at the same restaurant)
but also ad-hoc connections with individuals in other group types
(for instance, educators with students, health professional with
patients and catering workers with customers).

2.2. Epidemic model

The epidemic model is a compartmental stochastic SEIR model
extended with latent, asymptomatic, dead, hospitalized and vac-
cinated states. Rather than the more common analytic models
based on differential equations, Epigraph probabilistically decides
the duration of the different compartments and the transitions
between them. In addition, the basic reproduction numbers R0s
re different for each compartment. It is an extended version
f the figure presented in [8]. The different infection phases are
escribed below:

• Incubation stage. At the beginning of this stage, individuals
are infected but they have no symptoms and are not yet able
to transmit the virus. This stage is represented as primary
exposed EP . From this stage the infection can enter one of
two phases, based on a probability PEI : a secondary exposed
stage ES where slight symptoms appear and the individual
becomes infectious with a certain RES

0 , or an asymptomatic
stage.

• In the asymptomatic stage (compartment A), infected in-
dividuals do not notice symptoms but are able to transmit
the disease with a certain RA

0 reproduction number. After
a certain time, they pass to the recovered compartment in
which the subject acquires viral immunity.

• In the first symptomatic stage – called primary infection
state IP – symptoms appear. Individuals will then transition
to phase IS , where symptoms persist. IP , IS and IV have
associated basic reproduction numbers of RIP

0 , RIS
0 and RIV

0 .
• A certain fraction of the individuals are hospitalized (hosp-

italized stage). The probability of entering this stage is
given by the parameter PH (age), which increases with age.
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From this state, an individual may transition to either the
recovered or the dead stage. During hospitalization, we use
RH
0 for modeling the transmission in hospitals.

• The individuals that reach the dead stage are removed from
the simulation. The transition probability, PD(age), is also
age-dependent and is applied over the portion of hospital-
ized individuals.

• The treated stages represent the infection stages for vacci-
nated individuals. A non-infected vaccinated individual is in
the treated Susceptible state (ST ). If infected, he transitions
to the treated Exposed primary (EP

T ). In case of a vaccination
failure, the transition will include the states ES

T , I
P
T , I

S
T and

HT , in a similar way to non-vaccinated individuals. Note that
the probability of vaccination failure is pIT , which depends on
the type of vaccine that has been used, the virus variant that
has infected the individual, and, in some cases, other factors
such as the age of the individual. If there is no vaccina-
tion failure the individual transitions to the Asymptomatic
treated state AT .

The time spent in a given state is generated following a normal
distribution to simulate the time ranges specific to each stage of
the infection and the fact that each individual may go through
phases of different lengths. We also consider that a percentage
of the sick individuals stay in bed, thus reducing the number of
people that they interact with. We have used the same COVID-19
parameters (R0s values, transition probabilities, etc.) as the ones
previously presented in [5,8].

It is worth mentioning that the different COVID-19 variants
are modeled by assigning different values for the parameters of
the epidemic and vaccination models (i.e vaccines have a different
efficacy for each variant).

2.3. NPIs

The risk of infection, given by the specific R0 value of the
infected individual, also depends on two factors that reduce the
transmission risk: the vaccination of the susceptible individual
that is in contact with the infected one, and the use of non-
pharmaceutical intervention (NPIs). This category includes differ-
ent sources of heterogeneous intervention, including the follow-
ing ones.

• Face mask use, that is related to the individual-based NPIs
shown in Algorithm 1. EpiGraph models the use of both sur-
gical and ffp2-grade face masks, with different efficacy [6].

• Social distancing policies are related to collective-based NPIs
shown in Algorithm 1. It considers three distancing mea-
sures collected from the Data on country response measures
to COVID-19 database [9]: closure of schools, closure of pub-
lic spaces of any kind, and workplace closure. In this work
we use the real social distance measures for Spain during
the simulation period. We consider that during Christmas
holidays all schools are closed, as well as a fraction of the
workplaces; also, there are no restrictions in the use of
public spaces or during leisure activities.

• Sampling strategies [7] are related to collective-based NPIs
shown in Algorithm 1. These strategies are modeled by the
number of daily tests that are performed, the minimum
time between two consecutive tests carried out for the
same individual, the quarantine time, and the percentage
of quarantine breakers, i.e. the fraction of people who do
not comply with social distancing during quarantine time.
These data was provided by the Spanish Ministry of Health.
Individuals that are COVID-19 positive in Spain are rec-
ommended to quarantine until at least three days after
symptoms disappear and during at least a 10 days [10].
550
2.4. Vaccination model

In this study a generic COVID19 vaccine was modeled. In the
compartment model used by EpiGraph, a vaccinated individual
that is infected (EP

T state) transitions to either the Asymptomatic
Treated state (AT ) or – if the vaccine was not effective – to the
Exposed Secondary Treated (ES

T ) state, then the infected treated
states IPT and IST , with equal probability of health risks (hos-
pitalization (HT ) or death) as a non-vaccinated individual. The
vaccination efficacy is modeled as the probability of transitioning
to the AT state. For instance, an individual vaccinated with a
vaccine of efficacy 95% means that, if infected, he will have a 95%
probability to transitioning to the AT state.

EpiGraph currently models and simulates the Pfizer-BioNTech,
Moderna, Astra-Zeneca and Janssen vaccines. The model consid-
ers multiple doses including a booster shot. We also consider the
decay of the vaccine effectiveness depending on the vaccine type,
individual characteristics (such as age), and the risk of COVID-19
reinfection among vaccinated and unvaccinated persons for the
Omicron variant. [11] presents the EpiGraph’s vaccination model;
more details are also included in the supplemental material. The
vaccination model includes both the vaccine effectiveness model
that is subjected to waning and depends on the individual age and
the SARS-CoV-2 variant, as well as the vaccination strategy that
is simulated, which defines aspects such as prioritization among
target groups and the time between the administration of the
doses.

3. Transportation model

The transportation model reflects the movement of people
between cities for work, study, or vacation, and it is based on
the gravity model proposed by Viboud et al. [12]. Note that the
movement of people within a city is already captured by the
social model. The transportation model serves the purpose of
moving individuals between different cities, allowing for disease
transmission over large areas. The geographical information that
EpiGraph takes into account includes latitude, longitude, and dis-
tance between urban regions, and was extracted from the Google
Maps web service using the Google Distance Matrix API [13].

(di,j < 120 km) ∆Pi,j =
P0.30
i Pj0.64

d3.05i,j
(1)

(di,j ≥ 120 km) ∆Pi,j =
P0.24
i Pj0.14

d0.29i,j
(2)

This model considers the exchange of individuals between
cities, for each pair of cities i and j. This number (∆Pi, j) depends
on the population size of the two locations (Pi and Pj) as well
as the distance between them (di,j). Eq. (1) refers to travel dis-
tances of less than 120 km — which reflects the daily commute
of students and workers to neighboring cities. Eq. (2) refers to
the long-distance commute of workers that need to reside at
a different location for several days in a row. The equations
come from [12]. Additionally, we consider people from any group
type that move at any distance for several days for vacation
purposes. Once the volume of inter-city commuters is calculated,
we randomly select individuals from specific group types within
the populations and move them for a specific period of time
to other locations. In our experiments, for the short distance
commuters, 70% are workers and 15% are students. The remaining
ones are elderly people and unemployed. For the long-distance
commuters the percentages are 50% workers, 30% students, 15%
retired individuals, and 5% unemployed people.
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Fig. 2. Adjacency matrix A, of mobility values for the 63 cities considered in
the simulation. X and Y axes corresponds to the different cities, thus each entry
A[i][j] represents the number of inhabitants that transit from city i to city j per
ay. Note that in our model we approximate that A[i][j] = A[j][i]. The entry
[i][i] represents the overall number of individuals of city i that transit other
ities.

Fig. 3. Timeline of the average mobility percentages for Spain.

.1. Extending the transportation model

The original transportation model was calibrated for a pre-
andemic situation. In this work we have introduced modification
n the model in order to adapt it to the existing conditions in
andemic Spain. First of all, we scale down inter-city connections.
ig. 2 shows the adjacency matrix related to the baseline scenario.
ell A[i][j] represents the population of city i that travels to city
every day. Take Badalona and Barcelona, two nearby cities in
0th and 12th positions. Due to their large size and close distance,
any individuals commute between them. A similar situation
appens with Madrid (35th position) and the nearby satellite
ities — e.g. Leganes or Getafe. The average percentage of mobility
or the baseline scenario is 16.9%.

Since the transportation model takes into account both short-
istance and long-distance connections (Eqs. (1) and (2)), popu-
ated cities separated by big distances (like Barcelona and Madrid)
lso exchange a significant amount of individuals. In this work,
e have introduced a scale factor to these equations in order
o reflect the reduction in transportation related to the COVID-
9 pandemic (see Fig. 3). Besides the 16.9% of the base scenario,
e have also considered three additional scenarios, which corre-
pond to average mobility values of 2.5%, 11.4% and 20.9%, and we
 c

551
have evaluated the propagation of the Omicron variant in Spain
in the time interval comprised between May 2021 and February
2022, for each of these four scenarios. These percentage values
are chosen to be within the interval inferred from the mobility
analysis we perform, described in the next subsection.

3.2. Mobility analysis

The mobility study [14] has been carried out in Spain before,
during and after the first lock-down period in Spain, in Spring
2020. This study provides daily information on movements be-
tween the 3214 areas that were designed for the project and is
based on information provided by telephone operators. For each
mobile phone, the residence area is found as the one where the
mobile phone is located for the longest time between 00:00 and
06:00 am during the last few months. This methodology approx-
imates the number of terminals (i.e. mobile phones) that leave
the residence area during the day. Fig. 3 shows the percentage
of the population that leaves the residence area every day. We
can observe that, due to the COVID-19 pandemic, there is a sharp
decrease of the mobility at beginning of 2020. These values then
increase but never reach their pre-pandemic values. Note that
these values reflect the average values for Spain, but there are
differences between the regions. For instance, on the 26th of
November 2019 – before the lockdown –, the average national
value was 26.5%, while the maximum value was 36.7% for Madrid.
In contrast, on the 20th of June of 2020 – after the lockdown –
the average value was 16.2%, with a value for Madrid of 18.8%.

4. Scenario simulation

4.1. Simulator configuration

The SARS-CoV-2 infection data were extracted from research
papers. They include the basic reproduction numbers (R0s) re-
lated to each disease stage, the state transition probabilities (for
instance, the probability of an infected individual of being asymp-
tomatic), the hospitalized and death probabilities, and the du-
ration of each infection stage. Please refer to [6] for a detailed
description of these parameters.

We use the Spanish weekly sub-national 14-day notification
rate of new COVID-19 cases [15] to set the initial percentage of
infected population in each urban area (this value is only used at
the beginning of the simulation). We obtain the seroprevalence
information related to each autonomous community from [16].
This information is only needed to set the initial conditions of the
simulation. The vaccination model was obtained from research
papers and the vaccination strategy was provided by the Spanish
Ministry of Health.1 This model takes into account the booster
shots and the vaccination of children. In our scenarios we assume
that 30% of the children, (starting at 5 years old), 84% of the
adults, and 96% of the elderly people have been vaccinated. The
simulation considers a number of daily tests of 0.25% over the
simulated population, and a percentage of positive tests of around
9% (which corresponds to the real testing rate and detection
efficacy).

The Omicron variant was modeled to be 2 times more con-
tagious than the Delta variant, but with a 70% smaller risk of
developing dangerous symptoms. We assume a significant reduc-
tion of 30% in vaccine efficacy for preventing the infection with
Omicron, but maintain the protection for developing dangerous
symptoms. Finally, we consider a 8% risk of reinfection with
Omicron variant among the individuals that have been previously
infected with COVID-19.

1 Note that the vaccination prioritization strategy is similar for all European
ountries.
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4.2. Evaluation

In this section we provide simulation results for a national
cenario related to Spain. We simulate the third wave start-
ng on May 15th 2021. This scenario simulates a population of
9,574,086 individuals related to the 63 most populated cities
f Spain, using 109 processes. The simulations were executed
n the Tirant supercomputer, which is made up of 336 nodes,
ach of them with two Intel Xeon processors Sandy Bridge E5-
670 and 32 GB RAM, interconnected by an Infiniband 40 Gbps
etwork. EpiGraph was compiled with Intel MPI. The execution
ime of each scenario takes a few hours with a memory footprint
f roughly 18 GB of RAM.
The simulated Delta wave starts on May 15th of 2021 with a

.8% of the population infected. The COVID-19 variant distribution
s 4% and 96% prevalence for the Alpha and Delta variants. Then,
round the second half of November 2021, the Omicron variant
s introduced with a initial prevalence of 1%. Due to the higher
ransmissibility of Omicron, it quickly spreads throughout the
ountry and becomes the dominant strain in Spain by the end
f December 2021.
Fig. 4 shows the results for the baseline scenario in Spain,

roken down by province. Real incidence, reported by [15] is
isplayed in red while the simulated values are displayed in blue.
ote that the simulator considers all the active cases, including
he reported, unreported and asymptomatic ones. In order to
ompare the results with the real cases, real incidence cases
ave been scaled in order to consider all the infected individuals
reported, un-reported and asymptomatic cases). The scale factor
s 4, that reflects that for the Omicron wave only the 25% of
he infections were reported. We can observe that the real and
imulated values are similar, although there are some differences
or some of the provinces which are related to the complexity of
he modeling process. Note that for the baseline scenario (average
ransportation percentage of 16.9%) there is no single source of
micron, but rather it is evenly distributed across all the cities at
he beginning of the Omicron outbreak.

Fig. 5 shows the different percentages of COVID-19 variants
uring the simulation period. We can observe that at the time of
ts introduction, the Omicron variant quickly spreads and replaces
elta. Fig. 6 shows the distribution of infections, re-infections
nd hospitalizations broken down per age groups. The children
population under 18) is the collective with more infections, and
he adults (population between 18 and 65) is the collective with
slightly larger percentage of re-infections than the children

ollective.
As a comparison point, we have also evaluated a different

cenario in which only Barcelona has initial cases of Omicron.
arcelona was chosen because it is a large city – −1,950,561
nhabitants – but due to its less central placement it is less
onnected that other cities such as Madrid. Fig. 7 shows the inci-
ence for this new scenario in which the 62 remaining cities are
nly (initially) infected through inter-city movement. Two differ-
nt average transportation percentages are considered, one low
2.5%) and the other high (20.9%). We can observe that, despite
he fact that there is only a single source of Omicron, this new
ariant quickly spreads to all the Spanish territory. The spread
or the smaller mobility is (evidently) slighter slower, shown in
ig. 7 by the blue simulated curves which are a little shifted
o the right compared to the baseline scenario. This effect does
ot happen when higher mobility values are simulated — green
imulated curves. We have carried out experiments choosing
ther patient-zero cities, e.g. Madrid, with similar results.
Fig. 8 shows the (simulated) aggregated values for different

obility percentages for the Barcelona scenario, i.e. Fig. 8 repre-
ents the aggregated values of Fig. 7 with all the values of the
552
subcharts merged into a single figure. Despite the introduction of
severe restrictions in inter-city mobility, the Omicron variant is
able to propagate between the cities obtaining similar incidences
in all the scenarios.

Just like in Figs. 7 and 8 (blue) shows the slight shift of the
infection peak for the lowest mobility. We can also observe that
the final temporal distribution of the infection (i.e. the shape
of the curves) is the same above a certain threshold of mobil-
ity of around 10% – Figs. 8 (green), (orange) and (magenta) –.
This means that a highly transmissible disease, like the Omicron
COVID-19 variant, is able to propagate across regions at the same
rate even under moderate mobility restrictions.

Figs. 9, 10 and 11 compare the incidence when Omicron prop-
agation starts exclusively in Madrid, Barcelona, or A Coruña. A
Coruña was chosen for being a non-central city – like Barcelona
– but a lot less populated at 244,850 inhabitants. We consider the
least restrictive transportation scenario with an average mobility
of 20.9%. We can observe that when comparing a central city
(Madrid) with peripheric cities (Barcelona and a Coruña), there
is again a small shift in the propagation peak. Based on our
experiments, only near-zero mobility values – which is equivalent
to a lockdown scenario – are able to avoid the Omicron to spread
across the country.

Figs. 12 shows the effect of introducing another Delta-variant
wave instead of an Omicron-variant wave. In this case the inci-
dence is much smaller and the infection peak happens after the
Omicron peaks due to the reduced transmissibility of the Delta
variant.

5. Energy-aware optimization

Since 2021, our team has been providing the Spanish Min-
istry of Health with results on COVID-19 incidence. Being able
to report statistically significant numbers requires repeating the
simulations many times. In our tests, we performed about 200 K
hours of simulations over about 110 cores, which implies a non-
negligible amount of resources — especially in terms of energy.
This created a strong motivation to reduce the energy consump-
tion by providing an energy-aware environment that is able to
optimize the application.

This section focuses on the execution environment, which
includes LIMITLESS – a monitoring system which collects Epi-
Graph performance metrics – and Dynamic Voltage Frequency
Scaling (DVFS), a technique for CPU power management. Execut-
ing applications at lower frequency/voltage reduces their power
consumption but this may negatively affect the performance of
the application due to reduced CPU speed. Our objective is to save
energy while maintaining performance, which implies that we
cannot reduce the power in CPU-intensive phases. To do this, we
design energy-aware policies and we use profiling provided by
LIMITLESS to set the DVFS at runtime according to the application
phase that is being executed.

DVFS has been extensively used to reduce energy consumption
at low CPU usage levels. Applications like EpiGraph combine CPU,
Communication and I/O phases, which implies that the optimal
CPU frequency can be different in these phases. Additionally,
reducing the frequency may not necessarily reduce energy due
to a (possibly linear) increase in execution time. In order to deal
with this potential issue, we need to continue monitoring and
profiling the application during the experimentation, identifying
the best configuration.
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Fig. 4. Daily real (in red) and simulated (in blue) number of infections for the baseline scenario. The time interval we simulate is related to the Delta and Omicron
waves that occurred between May 2021 (weeks 20–52) and February 2022 (weeks 1–8). Each one of the sub-charts are the results for a Spanish province. From
top to bottom and left to right the provinces are País Vasco, Madrid, Islas Baleares, Castilla y León, Galicia, Extremadura, Andalucía, Valencia, Cantabria, Cataluña, La
ioja, Principado de Asturias, Islas Canarias, Castilla la Mancha, Comunidad Navarra, Murcia and Aragón.
.1. Execution environment

LIghtweight MonIoring Tool for LargE Scale Systems (LIMITLESS)
s a scalable monitoring system that can provide node-level per-
ormance information every 200 ms, although for this work we
553
only collect it every second. LIMITLESS includes three main com-
ponents (Fig. 13): a system monitor that collects the performance
metrics from the cluster, an ElasticSearch [17] database for persis-
tent storage, and LIMITLESS Analytics, that analyzes the executing
applications and is responsible for the application modeling and
profiling.
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Fig. 5. COVID-19 variant percentage for the simulation period. In this time
nterval, the British, Delta and Omicron variants were the dominant strains.

Fig. 6. Distribution of infections, re-infections and hospitalizations per collective.
The y-axis represents the percentage of each collective that is infected, re-
nfected and hospitalized. Note that infections counts the total number of
ransmissions (including the re-infections) and re-infections only counts the
ndividuals that were infected more than once.

During the EpiGraph simulations, LIMITLESS monitors every
xecution with their different DVFS values to generate application
rofiles. DVFS is configured at runtime depending on the infor-
ation provided by the monitor. The time when DVFS updates

ake place is defined by the user and the environment executes
hem automatically; the overhead of DVFS reconfigurations is
egligible.
The motivation behind generating application profiles is to

dentify if it is feasible to set different frequency/voltage values at
untime to reduce the energy consumption while maintaining the
aximum expected performance. By executing an infection prop-
gation scenario with different DFVS levels, we found that the
aximum frequency level does not obtain the best global perfor-
ance. It corroborates that the maximum CPU frequency/voltage

s not always the best configuration, which rather depends on the
pplications. Besides, it demonstrates that knowing the behavior
f applications it is possible to reduce the energy consumed
hile maintaining execution times (or even improving them) by
xperimenting with the DVFS.

.2. Application profiling

Fig. 14 illustrates the methodology we propose to evaluate
he application performance under different DVFS values. As a
irst stage, we characterize the application by collecting the per-
ormance metrics during its execution. The LIMITLESS system
onitor component is in charge of providing these metrics. The
econd stage consists of storing the performance metrics asso-

iated with each test in the database, which allows the analytic

554
component to generate the application profile. The third and last
stage consists of dynamically updating the DVFS values during the
application execution to consume less energy while maintaining
its execution time.

The profiling process, which includes application execution,
erformance metrics collection and the application profile gener-

ation, is the first of this energy-aware optimization. In order
to generate the application profiles, LIMITLESS provides perfor-
mance data related to CPU, memory, I/O, communications, and
current energy consumption. These performance metrics are pro-
cessed by the analytic component in order to identify those appli-
cation phases that are candidates to work with lower frequency
and voltage. This methodology produces a set of performance-
related metrics that are correlated between them to determine
how to improve the application performance.

Fig. 15 shows the results of application profiling for the sim-
ulation of the infection wave during for Omicron COVID-19, in
Madrid (Spain), during 2022. We can see one infection wave
from day 700 until approximately day 820. We will call this time
interval the infection wave while the rest conforms the pre/post
nfection wave. This figure is closely related to Fig. 16, which
hows the time spent to compute each day of the simulation. Note
hat Fig. 15 starts on simulation day 548, but Fig. 16 takes into
ccount every iteration of the application, since day one. So, we
an see how infection waves impact the performance, increasing
he iteration time at the time of active infections.

Fig. 17 shows the application profiling related to the I/O pat-
ern during the simulation execution. As the main cause of I/O
s checkpointing (EpiGraph performs checkpoints every 6 h), the
xpected behavior is to observe the same peaks during the entire
xecution. However, there is a reduction in the I/O peaks during
he infection wave (when there are many active infections). This
nformation leads us to consider that the performance behavior
f the simulation changes during the infection wave, increas-
ng the computation and iteration time and spacing out the I/O
perations.
Figs. 18, 19, and 20 show the profiled CPU and memory use

uring the baseline simulation, as well as the network band-
idth, and the energy consumed. Sixteen processes are executed
er node, consuming practically all the memory and maintain-
ng a CPU consumption of nearly 80%. There is more network
ommunication at the beginning of the execution due to the syn-
hronization between the running processes. Once the simulation
as been set up, the communications decrease to an average
alue of 400 Kbps (which is slightly lower during the infection
ave). Finally, the energy is directly related to the selected fre-
uency/voltage. Note that the default DVFS configuration sets
he frequency/voltage at the highest level during the EpiGraph
xecution (2.2 GHz).

.3. Evaluation

We run the evaluation on a configuration of six compute nodes
ith Intel(R) Xeon(R) Gold 6212U CPU @ 2.20 GHz, with 24 cores
ach and 315 GB of RAM. The connection between nodes is a
0 Gbps Ethernet and the I/O is based on Gluster parallel file
ystem [18]. Given that main memory performance sees little
r no degradation at reduced processor clock speeds, we allow
emory use close to 100%. Guided by the profiling proposed by
IMITLESS, we propose a set of DVFS configurations for EpiGraph,
hich assign different frequencies for the infection wave and
he pre/post infection waves. These configurations can be seen
n Table 1 and Fig. 21.

The main result of these experiments is that the baseline,
hich uses the maximum frequency/voltage, does not provide
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Fig. 7. New scenario where only Barcelona city has initial cases of Omicron variant: (blue) the average mobility of 2.5%, (green) average mobility of 20.9%. The time
interval is related to the Delta and Omicron waves that occurred between May 2021 (weeks 20–52) and February 2022 (weeks 1–8). Each one of the sub-charts are
the results for a Spanish province.
the best relation between performance and power consumption.
Executing EpiGraph with a frequency of 2.2 GHz (the maximum
frequency allowed by the architecture) requires 7540 s and con-
sumes 874,805 W. Since the CPU speed is directly affected by the
DVFS value and the memory is largely unaffected [19], the check-
pointing is the likely culprit for the performance degradation at
high frequency/voltage values.
555
Figs. 22, 23, and 24 show the performance metrics related to
the test ID 20 in Table 1, which has a lower execution time and
energy consumption than the baseline. The default frequency for
the application is 1.9 GHz, while during the infection wave, the
frequency is fixed at 2.2 GHz (maximum). This test needs 6905 s
and 766,716 W to complete. If we compare the figures with the
baseline, the, Fig. 22 has minimum CPU levels that are almost 20%
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Fig. 8. Simulation aggregated results for a new scenario where only Barcelona
ity has initial cases of Omicron variant. Different mobility values, represented
s the percentage of the city’s population that transit to another city.

Fig. 9. Simulation aggregated results (in blue) for a new scenario where only
adrid city has initial cases of Omicron variant. Official reported cases are
isplayed in red. Average mobility is 20.9%.

etter. This contributes to an increase in the performance of the
pplication. The same reasoning can be applied to Fig. 23, where
he communication bandwidth reaches bigger values at the be-
inning of the application execution. Finally, Fig. 24 shows the
nergy consumed during the simulation. Different from Fig. 20
baseline), the energy consumption is smaller before the infec-
ion wave. Compared to the baseline, reducing the frequency for
he setup, initial, and final phases results in a reduction of the
xecution time of 8.4% and of the energy consumed by 12.3%.

. Related work

There are many approaches to model the COVID-19 propaga-
ion. A starting approach is the SEIR model based on solving the
ifferential equations like in [20]. More complex versions of the
EIR model include, for instance, a quarantine class and a class
f isolated (hospitalized) members [21,22]. The main limitation
f this approach is the lack of details in the simulation. An
556
Fig. 10. Simulation aggregated results (in blue) for a new scenario where only
Barcelona city has initial cases of Omicron variant. Official reported cases are
displayed in red. Average mobility is 20.9%.

Fig. 11. Simulation aggregated results (in blue) for a new scenario where only
A Coruña city has initial cases of Omicron variant. Official reported cases are
displayed in red. Average mobility is 20.9%.

alternative way of modeling the infection spread are the models
based on machine learning [23]. The work in [24], developed in
the Imperial College of London introduces an extension of a semi-
mechanistic Bayesian hierarchical model that infers the impact of
interventions and estimates the number of infections over time.
In [25], the authors use the discrete renewal equation as a latent
process for the modeling of infections and propose a generative
mechanism to connect infections to death data. They use this joint
Bayesian hierarchical model to produce short-term predictions,
and they apply their model to 11 different countries.

The European Centre for Disease Prevention and Control
(ECDC) [26] has built a Monte-Carlo based model of COVID-19
that they use for forecasting. To model the behavior of the people
and how well they are responding to the measures, they compare
the predictions with Google data about mobile phone use and
they use the daily confirmed COVID-19 cases and daily deaths to
calibrate it. It is interesting to note that some models perform
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Fig. 12. Simulation aggregated results (in blue) for a new scenario where only
Madrid city has initial cases of Delta variant (instead of Omicron). Official
reported cases are displayed in red. Average mobility is 20.9%.

Fig. 13. LIMITLESS framework architecture. The monitor collects performance
etrics from the nodes running EpiGraph, stores them into an ElasticSearch
atabase, and processes them to create a profile of the application.

Fig. 14. Methodology to create the profiles based on the monitored data.

Fig. 15. Number of infected people per simulated day. This infection wave
corresponds to the use case of Madrid.
557
Fig. 16. Aggregated iteration time per simulated day. Every simulated day
consists of 1440 iterations. As the iteration time depends on the number of
the existing infected individuals but also on checkpointing, and communication
between the processes, each simulated day has a different computation time.

Fig. 17. I/O pattern during the use case of Madrid. Most of the I/O operations
correspond to checkpointing operations.

Fig. 18. EpiGraph baseline — CPU and memory usage using the DVFS fixed at a
frequency at 2.2 GHz.

forecast, like COFFEE model from Los Alamos National Labora-
tory [27], and other are also capable of performing projections. A
projection involves simulating alternative hypothetical scenarios.
In the case of EpiGraph, this tool belongs to the models that
perform projection.

Studies of the Delta variant before widespread booster vac-
cination are mixed on whether SARS-CoV-2 breakthrough infec-
tions in vaccinated individuals are potentially less infectious [28–
30] or equally infectious [31,32] to primary infections. In more
recent household contact studies during the Omicron variant
wave [33–35], vaccination seems to lead to reduced SARS-CoV-2
infectiousness. In [36], the authors report on the infectiousness of
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Fig. 19. EpiGraph baseline — Network usage using the DVFS fixed at a frequency
f 2.2 GHz.

Fig. 20. EpiGraph baseline — Energy consumed using the DVFS fixed at a
frequency of 2.2 GHz.

Fig. 21. DVFS combinations — For each frequency/voltage combination identified
n Table 1, this figure shows the energy consumption as orange bars and the
xecution time as a blue line.

ARS-CoV-2 infections occurring in vaccinated individuals and/or
hose with prior infection relative to unvaccinated and previously
ninfected individuals who were incarcerated in a US state prison
ystem during the first 5 months of the Omicron wave. They show
hat, irrespective of vaccination and/or prior natural infection,
558
Table 1
Combination of frequencies/voltages for the two main identified application
phases (pre/post infection wave and infection wave). For each test, the first value
corresponds to the frequency established for the pre/post-infection wave and the
second one fixes the frequency during the infection wave. These experiments
have been executed three times in order to avoid occasional discrepancies.
ID Use case Exec. time (s) Energy (Ws)

1 1000000–1000000 12029 1055995
2 1000000–1300000 10978 985835
3 1000000–1600000 10254 937910
4 1000000–1900000 9750 907560
5 1000000–2201000 8865 886050

6 1300000–1000000 11107 997202
7 1300000–1300000 9963 915690
8 1300000–1600000 9262 868980
9 1300000–1900000 8758 839613
10 1300000–2201000 7916 821510

11 1600000–1000000 10491 956779
12 1600000–1300000 9383 882455
13 1600000–1600000 8648 833345
14 1600000–1900000 8153 805137
15 1600000–2201000 7336 789528

16 1900000–1000000 10074 939404
17 1900000–1300000 8955 860864
18 1900000–1600000 8313 819558
19 1900000–1900000 7795 788504
20 1900000–2201000 6905 766716
21 2201000–1000000 9440 959051
22 2201000–1300000 8262 877059
23 2201000–1600000 7554 830169
24 2201000–1900000 6973 791633
25 2201000–2201000 7540 874805

Fig. 22. EpiGraph use case 20 — CPU and memory usage using the DVFS with
a frequency of 1.9 GHz, except between the simulated days 700 and 836,
configured for 2.2 GHz.

SARS-CoV-2 breakthrough infections and reinfections remained
highly infectious and were responsible for 80% of transmission
observed in the population under study, with high levels of both
prior infection and vaccination. The implication is that, by them-
selves, vaccination and prevalent naturally acquired immunity
will not eliminate risk of SARS-CoV-2 infection, although these
results apply for the special case of high density locations without
much internal mobility nor population exchange with other loca-
tions. The public health implication of these findings support the
policy using booster doses of vaccination to lower transmission.

The related work related to energy optimization can be di-
vided into two different points of view: system-level and
application-level methods. Mair et al. [37] quantified the energy
efficiency of the supercomputers using the Top500 and Green500
lists. They proposed a metric that weighs system scale and perfor-
mance to evaluate power efficiency. One of the main conclusions,
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Fig. 23. EpiGraph use case 20 — Network usage using the DVFS with a frequency
of 1.9 GHz, except between the simulated days 700 and 836, configured for
2.2 GHz.

Fig. 24. EpiGraph use case 20 — Energy consumed using the DVFS with
frequency of 1.9 GHz, except between the simulated days 700 and 836,

onfigured for 2.2 GHz.

hich puts the focus on the DVFS and the energy-aware algo-
ithms due to Exascale, is that the most efficient platforms are
mall-scale systems, confirming that large-scale systems rarely
ake into account energy consumption.

An energy-efficient algorithm using per-core DVFS with an
daptive runtime system is presented in [38]. The authors identify
set of three categories of applications that could benefit from

heir solution. However, they test their proposal using a set of
icro-benchmarks and a framework that allows the developer

o identify the different phases of their applications and thus
pply the DVFS changes in a local manner. LIMITLESS creates
n application profile to evaluate the performance instead of
egmenting the code to apply local changes, which makes our
lternative more generic. The authors also discuss the limitations
f using DVFS in HPC environments (for example, DVFS and
yperThreading are incompatible because two threads can share
he same physical core). Bratek et al. [39] study the benefits of
sing dynamic DVFS to improve the power performance of par-
llel applications on multi-core systems. The authors propose a
ethodology to adapt the frequency/voltage dynamically for each
ore in use depending on the work it performs. However, this
ptimization requires a more sophisticated algorithm to manage
he different information about the processes and cores. It con-
umes more resources and requires continuous monitoring of the
pplication and load of every core used by that application. Fol-
owing this research line, Gupta et al. [40] introduce an algorithm
559
to test different DVFS configurations based on a regression model
which increases savings by more than 20% compared to executing
without frequency tuning. However, the authors base their con-
clusions on simulation evaluations, while they do obtain better
results than related works that are also based on simulation. It
is important to say that linear regression-based models are often
less accurate in predicting metrics than other machine learning
models in case of high variability of the metrics — which is the
case for HPC applications [41,42].

7. Conclusion

In this work we use the EpiGraph simulator to evaluate the
propagation of the Omicron COVID-19’s variant for Spain – for
which we consider 63 cities and 19,574,086 individuals – for the
time interval comprised between May of 2021 and March of 2022.
EpiGraph integrates different models that reproduce the existing
conditions in Spain, including the use of face mask, population
testing, vaccination, and social distancing. In our study, we ana-
lyze multiple initial locations of this variant and different levels
of movement of individuals between the cities. To reduce power
consumption and execution time during the execution of the
massive simulations we are running, we implement a monitoring
and optimization system which is able to profile the applications
and update the CPU frequency/voltage dynamically depending
on the profiles. We demonstrate that using the default DVFS
configuration does not always provide the best performance for
the applications. In the case of EpiGraph, reducing the frequency
when the simulation is not computing infection waves reduces
the execution time by 8.4% and the energy consumed by 12.3%
compared with the baseline (maximum CPU frequency allowed).

The main conclusion of this work is that, independently of the
initial location of the Omicron variant, and the existing trans-
portation conditions, the high transmissibility of Omicron variant
– about 2 times larger than Delta, and roughly the 3.6 times
more transmissible than the initial COVID-19 strain –, allows
it to quickly spread throughout the country and become the
dominant strain independently of the initial conditions of the
simulation. The application optimization we have implemented
makes running massive simulations for wide areas (e.g. European
level) more sustainable in terms of time and resource utilization.
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