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Abstract—The recent advances in DNA sequencing technology
triggered next-generation sequencing (NGS) research in full
scale. Big Data (BD) is becoming the main driver in analyzing
these large-scale bioinformatics data. However, this complicated
process has become the system bottleneck, requiring an amal-
gamation of scalable approaches to deliver the needed perfor-
mance and hide the deployment complexity. Utilizing cutting-
edge scientific workflows can robustly address these challenges.
This paper presents a Spark-based alignment workflow called
SparkFlow for massive NGS analysis over singularity containers.
SparkFlow is highly scalable, reproducible, and capable of
parallelizing computation by utilizing data-level parallelism and
load balancing techniques in HPC and Cloud environments. The
proposed workflow capitalizes on benchmarking two state-of-art
NGS workflows, i.e., BaseRecalibrator and ApplyBQSR.
SparkFlow realizes the ability to accelerate large-scale cancer
genomic analysis by scaling vertically (HyperThreading) and
horizontally (provisions on-demand). Our result demonstrates a
trade-off inevitably between the targeted applications and proces-
sor architecture. SparkFlow achieves a decisive improvement in
NGS computation performance, throughput, and scalability while
maintaining deployment complexity. The paper’s findings aim to
pave the way for a wide range of revolutionary enhancements
and future trends within the High-performance Data Analytics
(HPDA) genome analysis realm.

Index Terms—Big Data, High-performance Data Analytics,
Apache Spark, Genome Analysis, HPC, Scientific Workflow

I. INTRODUCTION

Given the projected increase in the use of genome analysis

in medical practice, using traditional data analysis methods

may not be sufficient and scalable enough to meet the

modern requirements [4]. Big Data (BD) analytics must be

developed for genomics to automatically handle the massive

amount of data robustly, with speed and flexibility [1]. The

Burrows-Wheeler aligner (BWA) alignment tool is the most

accurate method for searching biological sequence reads to

The work by Dr. Feras M. Awaysheh is funded by the European Regional
Development Funds via the Mobilitas Plus programme (grant MOBTT75) and
European Social Fund via IT Academy programme.

a large reference genome. Unfortunately, BWA stages are

computationally demanding and require a series of quality

control stages (pre-process) under the exponential growth of

bio detests. There is an imperative necessity for integrative

approaches of the BD realm to manage these large-scale

genomics data. However, this demands the progression of

robust processing workflows to ensure that the alignment

process is of the highest quality, speed, and accuracy. In this

context, a workflow is a sequence of operations (by different

tools) that controls the process using a series of steps via

software.

Selecting the most suitable collection of tools and tech-

nologies influences the NGS workflow performance signifi-

cantly. This factor can be decisive in the widespread adoption

and acceptance of such a workflow. BD pipelines aids in

the automation of the genome analysis requirements using

cutting-edge management and orchestration platforms. Such

an effort aims to manage the execution of sequence aligners

data by taking advantage of the BD parallel features with

high performance and accuracy [5]. Apache Spark [11], the

BD de-facto clustering engine, achieves boost performance

by promoting in-memory data execution using its Resilient

Distributed Datasets (RDDs) abstraction [43]. Its architecture

offers easy-to-use APIs that are required when dealing with

large-scale volumes of data. Several trending technologies

have been investigated and examined to address this challenge.

For instance, BD processing engines (i.e., Apache Spark), un-

derlying resources (CPU threading, GPU accelerators, amount

of memory, etc.), containerization technology (i.e., Singu-

larity), and different deployment architectures support high-

throughput infrastructures.

A new paradigm that compiles high-performance computing

and big data analytics in bio-discovery is spearheaded known

as High-performance Data Analytics (HPDA) [6], [7]. In

this work, we have focused on improving the ease of use

and scalability of the genomic cancer analysis by provid-
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Fig. 1: Overview on the main stages of cancer analysis pipeline.

Fig. 2: SparkFlow genome analysis reference architecture.

ing a new container-enabled workflow for fully automated

HPDA in the ‘alignment’ step. This paper benchmarks two

computing-intensive tools used in the workflow’s recalibra-

tion step (Figure 1). Namely, BaseRecalibrator and

ApplyBQSR, i.e., provided by GATK to measure their perfor-

mance under different settings and computational infrastruc-

tures. BaseRecalibrator recalculates systematic errors

made by the sequencer when it estimates the quality score of

each base call by applying a machine learning algorithm. This

algorithm uses the known sites file to help distinguish actual

variants from false positives. Next, it computes a recalibrated

table with the adjustments necessary for the whole sequence.

Then, ApplyBQSR applies the recalibrated table to the ini-

tial sequence file and produces a new recalibrated aligned

sequence file for further analysis. This way ensures that the

alignment files produced are of the highest quality and several

more to guarantee the variants are called correctly. Both stages

compromise a series of intermediately computing and data-

intensive steps that often are handcrafted by researchers and

analysts.

SparkFlow provides a basis for building an interoperable

genome data analysis scheme that includes all major steps and

reflects specifics in the recalibration process. The contributions

of this paper are four-fold:

• Introducing SparkFlow, a Spark-based workflow to scale-

up and out cancer genomic analysis by providing a new

alignment pipeline for fully automated high throughput

micro-batch analysis in the ‘alignment’ stage.

• Improving the portability, parallelism, and agility of

the GATK best practices by addressing the scalability

bottlenecks and allowing full advantage of the HPDA

capabilities, i.e., Spark and MPI using Singularity.

• Comparing the performance of SparkFlow with and with-

out the HyperThreading technology for the benefit

of cancer genomic analysis over different deployment

architecture and providing insight into the trade-offs

among these configurations.

• An in-depth investigation of two leading tools in the

NGS recalibration quality control in the alignment stage,

i.e., BaseRecalibrator and ApplyBQSR, to im-

prove ease of use and scalability of the approach under

container-based environment.

The remainder of this paper is organized as follows. Section

II provides an overview of the background. Section III details

the design of SparkFlow and introduces its implementation.

The experiments and evaluation of SparkFlow are presented

in Sections IV. Our reflection on the experiment results are

discussed in section V and the related work are presented in

Section VI. Finally, we conclude in Section VII.

II. BACKGROUND

Typically in a cancer genomics analysis, both a tumor sam-

ple (TS) and a normal sample (NS) from the same individual

are first sequenced using NGS systems [2] and compare using

a series of quality control stages. These stages utilize sequenc-

ing technologies to generate massively distributed and hetero-

geneous datasets. These datasets are predominantly composed

of billions of nucleotides stored as plain text files in gigabytes

(GBs) over a distributed file system. Figure 2 demonstrates a

general overview of the cancer analysis pipeline’s main stages

for high throughput sequencing data. The first control stage in

a cancer genomics analysis, ‘Sequence Quality Control,’ is op-

tional to check sequence quality and performs some trimming.

While the second one, ‘Alignment,’ involves several phases,
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such as alignment, indexing, and recalibration, to ensure that

the alignment files produced are of the highest quality and

several more to guarantee the variants are called correctly.

Both stages compromise a series of intermediately computing

and data-intensive steps that researchers and analysts often

handcraft.

Cancer NGS complexity and characteristics are fairly dis-

tinct from genomics analysis quality control stages. For ex-

ample, they often comprise multiple stages such as alignment,

indexing, and recalibration to ensure that the alignment files

produced are of the highest quality and several more to guar-

antee the variants are called correctly. These stages are range

from I/O intensive to compute- and memory-intensive. The dif-

ferent genome analysis stages can be bound with different data

access patterns, i.e., random and sequential of pre-processing

and advanced analytics. In this way, the alignment process

remains a bottleneck in bioinformatics pipelines. MapReduce

was considered the primary data processing framework in

this stage. However, the access model to data file systems

that required saving the hard disk’s metadata harmed the

MapReduce-based solutions. Apache Spark RDD model has

emerged as the new alignment data process trend [19].

A. Bioinformatics Workflow Systems

In the large-scale and complex scientific analysis era, han-

dling large pipelines of different processing tools is called

workflows. These workflows aim to orchestrate the pipeline

tools automatically, efficiently, and in a time/cost-effective

manner. Workflow management systems are designed to allow

these workflows expressed formally and provide the required

environment for setting up, executing, and monitoring the

processes. Hence, scientists can share and reuse them and

effectively verify results and compare the performance of

different published works. These workflows can be classified

based on their execution model, heterogeneous computing

environments, and data access methods [24].

Many platforms and standards aim to improve the inter-

operability among them. A leading example is the com-

mon workflow language (CWL) initiative [13]. Cutting-edge

workflow systems, such as COMPSs [14], Apache Taverna

[47], and Galaxy [15], can also be described graphically,

allowing communication with domain scientists and map the

best practices over on-premise HPC or cloud-based infrastruc-

ture. In this context, the bioinformatics workflow is a formal

representation of multi-sequential tasks of a repeatable pattern

systematically designed to carry out bioinformatics analysis.

A fundamental tenet of these bioinformatics workflows is to

provide a common ground between the practitioners by sharing

and reusing the workflow’s components. Also, it provides an

easy-to-use media for NGS pipeline deployment and tracks

the provenance of the workflow execution results. Hence,

it provides an interactive tool for scientists to execute their

workflows, view, and share their results in real-time. As they

represent a series of sequential stages, the outputs of one

stage work as inputs to the next one. Moreover, bioinformatics

workflow systems seek to facilitate the evaluation of different

NGS computational and data execution series by comparing

and contrasting their methodologies in terms of performance,

scalability, cost, etc [12] [5].

B. Containerization Technology

Targeting a native clustering approach was the primary goal

of Kubernetes. It aims to coordinate clusters of nodes at scale

in production with efficiency [28]. Nevertheless, Kubernetes

and Docker expect root privileges to orchestrate processes.

HPC is typically a shared runtime environment that requires

robust isolation with a user ID and iterative access to the file

system. These limitations were making them impractical for

BD applications over HPC. Singularity, i.e., a native HPC

container engine, was proposed by Gregory M. Kurtzer at

LBNL [16] to overcome these limitations. Singularity empha-

sizes the mobility of computing and takes advantage of the

high-end note capabilities. Also, Singularity gains automatic

access to the host filesystem ($HOME, $PWD, and /tmp
are mounted automatically) and run as the current user-id

and group id. Hence, Singularity does not require a daemon

process, as the user context is always maintained at the

container launch time (run in userspace). besides, it does not

use layers to build their containers nor requires setting up

the read-write layer. Singularity also has native support for

HPC architectures for MPI, making containers’ execution at

scale over OpenMPI with near bare-metal performance [17].

Figure 4 shows a comparison of different OS startup times

using Docker and Singularity.

Aiming to provide an empirical analysis of Singularity per-

formance against a native (Bare-metal) in HPC environments,

we conduct a series of evaluations in Figure 3. We used a

cloud instance runs CentOS over a Lustre file system with

up to 64 VCPU, 32GB memory, and 40GB total disk. We

study Singularity performance against a bare-metal cluster

using CPU-intensive and I/O intensive Intel HiBench suite

benchmarks1.

In Figure 3a we conduct a Spark TeraSort that includes three

applications Teragen, a MapReduce program to generate input

data, TeraSort to sort the input data, and TeraValidata, which

can be used to check the output. We can see that the bare-

metal accelerates the execution substantially, e.g., when using

four processors/executors , the improvement of the bare-metal

version over Singularity is bigger than a factor of 2×. How-

ever, when the number of processes/executors is increased,

Singularity’s improvement exhibited almost the same perfor-

mance within the 64 processors/executors . Meanwhile, Figure

3b demonstrates a SparkSQL throughput (transactions/s) vs

concurrency where throughput increases with load until the

machine is saturated using different number of threads without

using the HyperThreading. Singularity shows a similar

performance compared to the bare-metal with asymptotically

2% peak difference. Finally, a read/write benchmark from the

Lustre Object Storage Servers (OSS) in Figure 3c. Singularity

uses a single image container which means that the container

1https://github.com/Intel-bigdata/HiBench
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(a) Spark execution time (b) SparkSQL throughput (c) I/O from OSS (MB)

Fig. 3: Performance comparison of bare-metal vs. Singularity settings.

Fig. 4: Overview of different OS image startup times latency

in containerization environments.

is wrapped in a single image file with minimum read/write

overhead with a similar performance to the bare-metal.

III. SPARKFLOW: ARCHITECTURAL DESIGN

This section introduces our novel Spark-based align-

ment workflow called SparkFlow. SparkFlow integrates high-

performance data analytics environments into the Spark frame-

work by utilizing containerization technology in a pilot-

abstraction model over HPC infrastructure. SparkFlow design

and methods are discussed, as well as its algorithms and

components.

A. SparkFlow Methods and Design

Figure 5 illustrates the basic structure of SparkFlow that

consists of three abstracted layers.

SparkFlow was designed with the ability to automatically

handle the parallel placement of workloads across the cluster

nodes. It performs data-level parallelism as it adapts well by

elastically scaling with the sample requirement in a multi-

node approach. SparkFlow, hence, supports job arrays; its

workload manager copes with the boost increase in analyzing

large datasets and the number of jobs —by provisioning

the workflow with new containers in a PBS job. SparkFlow

is isolated and lightweight by deploying a container-based

Fig. 5: A high-level overview of SparkFlow abstraction layers.

(Docker) environment that leverages kernel namespaces to

isolate the application. Hence, SparkFlow affords an easy way

to implement existing genome analysis tools. Its container-

enabled feature also eliminates the need for managing complex

software delivery processes and dependency management.

SparkFlow was designed with the following objectives in

mind:

1) Integrity: the workflow has to be compatible with the

GATK tool and different BAW distributions without sig-

nificant modification to their original design.

2) Agility: the workflow must be implemented over any

underlying computation (infrastructure) to utilize stan-

dalone machines and clusters of commodity hardware and

HPC systems over both on-premise and cloud deployment

architectures.

3) Scalability: the workflow must keep high scalability

and provisioning the computation elastically to meet the

application requirements on-demand.

4) Performance: the workflow must enhance the overall
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Fig. 6: Recalibration step of the Alignment workflow that uses two GATK spark-based tools in Table II.

Algorithm 1: Elastic resource provisioning on-demand
of Spark-based environment over HPC using PBS job

1 Let M and Ws be a Master and a finite set of Worker

nodes respectively.

2 Let SFc = SparkFlow cluster.

3 Configure Spark parameters and & URL.

4 Input: number of active nodes (α) and project budget
β

5 Output: multinode Spark standalone cluster within a

PBS-job

6 if α �= 0 ‖β � 0 then
7 for ∀(α) ∈Cirrus, SFc* → resource allocation do
8 Lunch PBS job to start Spark M
9 if HOSTNAME �= hostmaster ∪ HOSTNAME

�= hostdriver then
10 Started Ws on hostname;

11 echo HOSTNAME → worker.log

12 else
13 Master or driver node do not launch Ws on

HOSTNAME
14 end
15 end
16 PBS job BaseRecalibrator and ApplyBQSR//

SparkFlow pipeline in Algo 2

17 return SparkFlow = true;

18 else
19 return SparkFlow = failure;

20 terminate;

21 end

performance and improve the throughput with minimal

cost of deployment.

5) Automation: The workflow must be designed for au-

tomation and agonistic to content and infrastructure. This

automation feature addresses many time-consuming and

error-prone human efforts, which results in a fast process

and more efficient as well.

In Figure 6 The BaseRecalibrator tool recalculates

systematic errors made by the sequencer. It distinguishes true

variants from false positives by applying a machine learning

algorithm. The BaseRecalibrator tool also computes a

recalibrated table with the adjustments necessary. In contrast,

the ApplyBQSR tool produces a new adjusted/recalibrated

aligned sequence file and applies the recalibrated table to

the initial sequence file. It is worth mentioning that the

Algorithm 2: SparkFlow pipeline process using Spark-

based approach

1 Module load anaconda and mpt

2 Set Genome sample = RFF

3 Set genetic variation data base = DBSNP

4 for Each recalibration stage in the pipeline do
5 export SPARK HOME;

6 export REF= gatk/GRCh37;

7 export DBSNP= gatk/dbsnp-147;

8 for BaseRecalibrator ‖ ApplyBQSR do
9 pass ∑ ( executor-cores )

10 pass ∑ ( executor-memory )

11 if SFc∗ = true then
12 Phase 1 κ = RDD Join { ∃ RDD unsorted};
13 Phase 2 λ = RDD sort 
 by key; // Basic

sets and functions # 3 & 4

14 Phase 3 μ = Apply Merg;

15 else
16 return failure;

17 terminate;

18 end
19 Write bins in the File System (FS)

20 end
21 Evaluate model performance // Basic sets and

functions # 2

22 Callculate the efficiency* [ BQSR = κ +λ +μ ]

23 end
24

25 Basic Sets and Functions
26 1- SFc∗ (SparkFlow cluster)

27 2- * efficiency = Sp/p, parallel speedup (Sp) divided

by the parallelism (p). Where efficiency is better the

closer it gets to 1.

28 3- RDD arranged as <binID, content>
mappedInfo runMapper(fileName)

29 4- Return information. RDD is of type <binID,
numReads>

whole Alignment workflow includes a stage before this di-

agram, using other tools like BWA-Mem, Samblaster,
and SAMtools to perform the alignment itself. The recali-

bration process involves two key steps that can be summarised

as follows.

For an aligned sequence data file, the

BaseRecalibrator tool recalculates systematic errors
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made by the sequencer when it estimates the quality score

of each base call by applying a machine learning algorithm,

which uses the known sites file to help distinguish true

variants from false positives.

Moreover, it computes a recalibrated table with the ad-

justments necessary for the whole sequence. Then the

ApplyBQSR tool applies the recalibrated table to the initial

sequence file and produces a new adjusted/recalibrated aligned

sequence file for further analysis.

With the GATK’s latest release, both tools have been

completely reengineered to support an open-source model that

relies on Apache Spark to provide single-node multithreading

and multi-node scaling capabilities to increase their speed

and scalability. In prior versions, these tools were limited to

running on a single-node shared-memory environment.

It is unnecessary to have a Spark cluster configured to run

these new Spark-based tools in parallel using a single-node

(multithreading). The GATK engine can still use Spark to

create a single-node standalone cluster dynamically in place,

using as many cores as available on a node. However, in

our case, we were interested in testing the scalability of

BaseRecalibrator and ApplyBQSR using a multi-node

Spark Cluster.

B. Implementation

In general, SparkFlow provides a systematic way to dynam-

ically provision the application demands with elastic resources

over a shared infrastructure using PBS jobs. Algorithm 1

demonstrates the elastic resource provisioning mechanism that

match-make the active cluster nodes with the required con-

tainer instances. On the other hand, Algorithm 2 illustrates the

Apache Spark pipeline that employees BaseRecalibrator
and ApplyBQSR with the speedup technique.

The base recalibration process of our workflow consists

of two tools, BaseRecalibrator and ApplyBQSR. The
BaseRecalibrator read data whose base quality scores

need to be assessed. It also provides a recalibration table by

the reading group, all the optional covariates, and the quality

score with a list of arguments to be aligned to the reference

genome. The efficiency of BaseRecalibrator, however,
is proportional to the number of base pairs provided.

ApplyBQSR, on the other hand, represents the second

pass of the Base Quality Score Recalibration (BQSR). It has

replaced the prior PrintReads in the GATK 3.x distribution in

a two-stage process. At first, it recalibrates the base qualities

of the input reads based on the recalibration table produced by

the BaseRecalibrator tool. Next, recalibrated the outputs
of a BAM or CRAM file.

The use of SparkFlow in launching a spark-based cluster

within a PBS job is described in Figure 7 as follow:

1) A client initially submit a job in the job pool.

2) SparkFlow will request the available resources from the

cluster resource manager on behalf of clients.

3) the cluster resource manager response by allow/denial of

the operation.

Fig. 7: A simplified diagram of the SparkFlow mechanisms.

4) Spin up an ad-hoc multi-node standalone Spark-based

cluster within a PBS-job. This PBS-job provisions on-

demand and for a specific time the desired Spark cluster

by starting the master, workers, and registering all work-

ers against master.

5) finally, the client application can access the allocated

resources using the granted permission and run its ap-

plication.

C. Data structure

Based on the previously mentioned problem statement and

in light of the SparkFlow design primitives. We extend the

problem formulation to be in line with the proposed solution

in this work. Herein, we describe the data construction (prepa-

ration phase) centered on the Apache Spark approach. We

then show how to utilize this approach on large-scale genome

datasets. It is important to note that the literature lacks a

reference model when designing a Spark-based NGS workflow

to the best of the authors’ knowledge. It is also worth noting

that Spark supports different storage backends for reading

and writing data. Typically, Spark’s physical plan starts by

scanning data sources for reading purposes. This process leads
to different read latency requirements with various storage

backends and with different file formats. In our experiments,

we use the Hadoop Distributed File System (HDFS) backend
over Lustre. Typically, HDFS partitions the data into blocks.

Each data partition on HDFS is equal to the default block

size (128MB). HDFS also manages the replication of these

partitioned blocks according to a configurable replication
factor (RF) (we used the default one RF = 3). Our experiments

also used the baseline partitioning technique that depends on

the default HDFS partitioning of the cluster nodes’ datasets.

The data construction formulation considers a collection C
of g genomicsequences (reference genomes). Each of which

is divided into chunks (data blocks) n of size s that overlap by
L 1 base-pairs. As in a default Spark runtime environment,

the anticipated read length of similar size s = 128MB for

data as default. For each chunk, a sketch is calculated using

MinHash (i.e., estimating how two sets are similar). A strand-

neutral canonical representation of that sketch contains a x 1

hash function with s as the smallest L-mers. Therefore, the

sketching procedure selects only a subset of L-mers inserted
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TABLE I: SparkFlow validation computing environments.

Cluster name Nodes Number Cores per node Memory Storage File System Resource Manager HyperThreading
Cray Urika-GX 12 36 Broadwall 256 GB 60 TB HDFS & Lustre Apache Mesos X
Cirrus 280 36 Intell Xeon 256 GB 406 TB Lustre PBS �
Common criteria 1 Gbps network connection, Ubuntu 16.04 LTS OS

In Cirrus each node has 72 virtual cores using the HyperThreading technology.
Urika-GX has pre-integrated stack of popular analytics packages: Apache Spark, Apache Hadoop, Jupyter Notebooks, etc.

TABLE II: SparkFlow aligners scalability evaluation.

Tool Input files/size Output files/size
BaseRecalibrator Aligned file 145GB,

Known sites files 3MB
Recalibrated table 260KB

ApplyBQSR Aligned file 145GB,
Recalibrated table 260kb

Recalibrated aligned file 230GB

into the HDFS (can be later stored in Avro and Parquet formats

for further analysis queries) used for similarity computation.

The subsampling factor can be determined as M = sL+1
m

(assuming unique L-mers). Where m, L, and s are 8, 16,

and 128, respectively, and data reduction magnitude (M =

14.125). Also, MinHash shows a desirable mathematical fea-

ture when matching two sketches and provides data reduction.

The relative intersection ratio between two sketched chunks

approximates the accurate Jaccard index evaluated on the

whole L-mer space.

IV. EVALUATION AND RESULTS

Herein, SparkFlow is evaluated regarding its performance

and scalability. A complete description of the experimental

setup is provided. Following, we analyze SparkFlow results in

detail.

A. Experiment setup

SparkFlow was tested using data from the BioExcel

Genomes Project. To demonstrate SparkFlow abilities, we

carry out the experiments in two different HPC environments,

i.e., Cray Urika-GX 2 system and Cirrus 3. The validation

computing environment and experiment setup are detailed in

Table I.

The Urika-GX system is a high-performance analytics clus-

ter with a pre-integrated stack of popular analytics packages.

Little work was required to run the recalibration step of the

Alignment workflow in Urika-GX using several nodes. The

Urika-GX software stack includes a fault-tolerant Spark cluster

configured and deployed to run under Apache Mesos [41],

which acts as the cluster manager. Therefore, we just needed

to adjust four Spark parameters. Namely, Spark master with

the URL of the Mesos master node; the number of executors

(worker nodes’ processes in charge of running individual

Spark tasks); the number of cores per executor (up to 36

cores); and the amount of memory to be allocated to each

executor (up to 250GB).

2ATI HPC ATI cluster: https://www.cray.com/products/analytics/
3EPCC HPC cluster: https://www.epcc.ed.ac.uk/facilities/demand-

computing/cirrus

On the other hand, to run the same recalibration step in

Cirrus, we had first to spin up an ad-hoc multi-node standalone

Spark cluster within a PBS-job. This PBS-job provisions on-

demand and the desired Spark cluster for a specific period

by starting the master, workers, and registering all workers

against master. We decided to configure the Spark cluster

with one node as the master and 30 nodes as workers.

Each node in Cirrus has 36 physical cores (or 72 virtual

cores using HyperThreading). Therefore we decided to

test the performance of GATK Spark-based tools in Cirrus

configuring workers with and without HyperThreading,
which means that each worker was configured with 250GB

of memory and either with 36 cores or 72 virtual cores.

Therefore, we had 1080 cores (or 2160 virtual cores) available

for our experiments. After setting up the Spark cluster in

Cirrus, the same parameters (spark master URL, number of

executors, number of cores per executors, memory) needed to

be configured for running both Spark-based tools within the

workflow. The main characteristics of the SparkFlow aligners

scalability input datasets are shown in Table II.

It is worth mentioning that for both computing environ-

ments, each Spark-executor runs in a different worker node.

Moreover, each executor can be configured with 36 cores (in

Urika and Cirrus without HyperThreading) or with 72

cores (in Cirrus with HyperThreading).

B. Performance Evaluation

For our evaluations, we configured the recalibration step (In

Table II) to use an initial sequence file (145GB) and known

site files (3MB), and it produced a recalibrated table (260KB)

and a new recalibrated file (230GB) as output files. We

performed several recalibration runs to capture each execution

time by varying the total-executor-cores flag in our Spark-

jobs. This flag represents the total amount of cores (of all

executors) assigned to a Spark application. So increasing

the total-executor-cores automatically increases the number

of executors for our runs. For example, if we set up in our

Spark-job the total-executor-cores to 144, it will automatically

use two executors in Cirrus if HyperThreading is enabled

(144/72) while it will use four executors in Urika-GX and

Cirrus if HyperThreading is not enabled (144/36).
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(a) BaseRecalibrator execution time (b) ApplyBQRSpark execution time

Fig. 8: Graph of the relationship between the execution time of the two benchmarks with varying number of nodes used

(a) BaseRecalibrator SpeedUp

(b) ApplyBQRSpark SpeedUp

Fig. 9: Graph of the speedup in execution time

Figure 8 shows the execution times in minutes (axis Y) of

GATK Spark-based tools on Cirrus with HyperThreading
(orange), without HyperThreading (blue), and Urika-GX

(grey) modifying the number of executors (axis X). The

number of executors used is calculated by dividing the total-

executor-cores by the number of cores (72 in Cirrus with

HyperThreading and 36 in Urika-GX and Cirrus without

HyperThreading) available per node. It is worth mention-
ing that the Urika system is limited to 9 nodes ony.

Figure 9 shows the speedup (axis Y) is calculated dividing

the execution time using one executor (T1) between the

execution time using P executors (Tp). Axis X represents the

number of executors.

S = T1/T p (1)

V. DISCUSSION

Genome analysis in biomedical genomics research is pro-

jected to increase exponentially. Using high-performance data

analytic frameworks and computing environments is vital to

robustly handle this vast amount of data. This work has

focused on improving the ease of use and scalability of

the genomic cancer analysis by providing a new Alignment

workflow for fully automated high throughput analysis in the

‘alignment’ stage. This work resulted in benchmarking two

computing-intensive tools used in the recalibration step (Figure

6) of the workflow, BaseRecalibrator, and ApplyBQSR
(provided by GATK tool), to measure their performance under

different settings and computational infrastructures.

This paper represents an in-depth investigation of Spark-

based workflow, architectural components associated with the

deployment of biomedical genomics research, and scalability

and performance benchmarking. SparkFlow also addresses

many technical aspects that optimize the context-specific de-

sign in the bioinformatics pipelines. Thus, SparkFlow provides

a basis for building an interoperable large-scale genome data

analysis scheme that includes all significant stages. It also

reflects specifics in providing a new alignment workflow for

fully automated high throughput analysis in the ‘alignment’

stage. This work resulted in benchmarking two computing-

intensive tools used in the recalibration step of the workflow.

The BaseRecalibrator and ApplyBQSR (provided by

GATK [20]) measure their performance under different set-

tings and computational infrastructures in HPC and Cloud

environments.

In this work, we have focused on improving the ease of use

and scalability of the genomic cancer analysis by providing a
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new Alignment workflow for fully automated high throughput

analysis in the ‘alignment’ step. SparkFlow was designed to

handle a large amount of data automatically and robustly,

with speed, scalability, and flexibility for biomedical genomics

research. Its core philosophy meets three main requirements

of next-generation sequencing. First, SparkFlow should be

compatible with the GATK tools and keep agnostic to BWA

versions to meet compliance and governance demands. Sec-

ond, efficiently hide the workflow complexity to perform

sequence alignments with both performance and scalability.

The final requirement is improved portability, security, and

cost of deployment (with a better return on infrastructure

investment). This study concludes that genome analysis in

medical practice is characterized by:

1) elastically paralyzing NGS data execution at scale,

2) accelerated computation provisioning on-demand,

3) flexibility for adapting to the application requirements

4) compatibility with the different BWA functionalities and

algorithms without modifications of its source code,

5) efficiently perform sequence alignments with ease of use

by hidden the deployment complexity,

Since we used the standalone mode (in cirrus), the master

is used for scheduling resources and distributing data across

the Spark cluster, making it lightweight (without a scheduler

like Yarn or Mesos), but on the other hand, creating a single

point of failure. We also ran several tests in both environments

modifying the memory available per executor, but a slight

improvement was achieved by using values higher than 20GB.

Shortly, we will extend this effort by testing more complex

settings in the datasets Optimizations (e.g., different Schema)

[48], storage systems, and utilizing SparkSQL [49], and archi-

tecture deployments [50].

VI. RELATED WORK

Recently, there have been approaches to tackle the scalabil-

ity problem of the DNA analysis pipeline using BD techniques

and frameworks. Many of these solutions are Apache Hadoop

based like [30] [31]. However, the recent advancement in BD

science has focused on improving the ease of use and scala-

bility using the Apache Spark platform. One such example is

SparkRA, a scale-up pipeline for the GATK RNA-seq variant

to efficiently analyze multiple cores. SparkRA divides the data

files into chunks and processes them in parallel based on the

Apache Spark platform [18]. Another example is SparkGA

[21] that employs static and dynamic load balancing to spread

the input data more uniformly across the cluster nodes aiming

for greater scalability. However, SparkGA creates too many

files in the Hadoop distributed file system after the mapping

phase, affecting overall performance. To address this draw-

back, SparkGA2 [22] aims at reducing the copied data in

memory and reducing the memory footprint. SparKGA adapts

the amount of generated files from the mapping phase in the

cluster by analyzing the available memory.

Other frameworks sharpened the computational load re-

quired in each chromosome by keeping data active in the

memory between the map and reduce rounds [23]. This

way, optimize the performance using runtime statistics of the

active workloads that dynamically balance the load. A Spark-

based implementation of the most widely adopted aligner,

the burrows-wheeler aligner, was proposed in SparkBWA

[25]. SparkBAW aims to boost the process of the alignment

phase in the DNA sequence analysis by targeting the short-

read mapping. Another multiple sequence alignment Spark-

based implementation are PASTASpark [26] and [27] with a

with supervised learning approach. Also, utilizing in-memory

data analytics applications that process columnar data as for

ArrowSAM [29] that employes Apache Arrow reported in

the literature. In PipeMEM [33], a pipeline parallel pattern

that ensures no local disk access, the authors’ optimized

the computation phase by employing standard stream and

PipeRDD. In Spark-DNAligning [38], the authors’ proposed a

short reads alignment problem for the NGS.

The genome analysis community has made great efforts in

the literature to use a wide variety of hardware-accelerated

methods, such as GPU and FPGA [34] [37] implementations

that efficiently proved to manage GATK workloads.

Against the previous literature, SparkFlow provides an in-

depth investigation into the impact of containerization and

HyperThreading technology on genome analysis. Also,

SparkFlow supports dynamic resource allocation over het-

erogeneous compute architecture by employing Singularity

containers in PBS jobs. We keep SparkFlow in an open

source repository [42]. This repository describes all the steps

necesaries to create a multinode Spark standalone cluster

within a PBS-job.

VII. CONCLUSION

The ever-increasing amount of generated data required

advances in data distribution schemes, processing engines, and

communication patterns to meet medical discoveries demands.

Employing high-throughput sequencing frameworks across

High-performance infrastructures has a significant interest in

using advanced Big Data technologies. This trend has sparked

several approaches to deal with large-scale complex genome

datasets using Spark-based workflows. This paper focuses on

providing a new Alignment workflow for fully automated high

throughput analysis in the alignment stage. This paper intro-

duced SparkFlow, a parallelized method for pre-processing

genome sequence data based on High-performance Data Ana-

lytics. SparkFlow reduces the analysis time by utilizing big

data (Apache Spark), containerization technology, and the

high-performance computing cluster (PBS-job abstraction).

Relying on Singularity, a native HPC-enabled container-based

cluster, SparkFLow can scale out elastically towards vast

amounts of datasets, making it suitable for processing broad-

spectrum of NGS applications (Oncology, cancer research,

etc.). Also, this paper represents a showcase of Spark-based

workflow and the architectural components associated with the

deployment of biomedical genomics research.
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