

Lehmann, F., Bader, J., Tschirpke, F., Thamsen, L. and Leser, U. (2023) How
Workflow Engines Should Talk to Resource Managers: A Proposal for a
Common Workflow Scheduling Interface. In: 23rd IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGrid 2023),
Bangalore, India, 1-4 May 2023, pp. 166-179. ISBN
9798350301199 (doi: 10.1109/CCGrid57682.2023.00025)

There may be differences between this version and the published version.
You are advised to consult the published version if you wish to cite from it.

https://eprints.gla.ac.uk/292242/

Deposited on 16 February 2023

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/66347.html
https://doi.org/10.1109/CCGrid57682.2023.00025
https://eprints.gla.ac.uk/292242/
http://eprints.gla.ac.uk/

How Workflow Engines Should Talk to Resource
Managers: A Proposal for a Common Workflow

Scheduling Interface
Fabian Lehmann ∗, Jonathan Bader †, Friedrich Tschirpke ∗, Lauritz Thamsen ‡, and Ulf Leser ∗

∗ {fabian.lehmann, tschirpf, leser}@informatik.hu-berlin.de, Humboldt-Universität zu Berlin, Germany
† jonathan.bader@tu-berlin.de, Technische Universität Berlin, Germany

‡ lauritz.thamsen@glasgow.ac.uk, University of Glasgow, United Kingdom

Abstract—Scientific workflow management systems (SWMSs)
and resource managers together ensure that tasks are scheduled
on provisioned resources so that all dependencies are obeyed,
and some optimization goal, such as makespan minimization, is
achieved. In practice, however, there is no clear separation of
scheduling responsibilities between an SWMS and a resource
manager because there exists no agreed-upon separation of
concerns between their different components. This has two
consequences. First, the lack of a standardized API to exchange
scheduling information between SWMSs and resource managers
hinders portability. It incurs costly adaptations when a compo-
nent should be replaced by a different one (e.g., an SWMS with
another SWMS on the same resource manager). Second, due
to overlapping functionalities, current installations often actually
have two schedulers, both making partial scheduling decisions
under incomplete information, leading to suboptimal workflow
scheduling.

In this paper, we propose a simple REST interface between
SWMSs and resource managers, which allows any SWMS to
pass dynamic workflow information to a resource manager, en-
abling maximally informed scheduling decisions. We provide an
implementation of this API as an example, using Nextflow as an
SWMS and Kubernetes as a resource manager. Our experiments
with nine real-world workflows show that this strategy reduces
makespan by up to 25.1% and 10.8% on average compared to
the standard Nextflow/Kubernetes configuration. Furthermore,
a more widespread implementation of this API would enable
leaner code bases, a simpler exchange of components of workflow
systems, and a unified place to implement new scheduling
algorithms.

Index Terms—Scientific Workflow, Scheduling, Workflow Man-
agement System, Resource Manager, Common Workflow Sched-
uler

I. INTRODUCTION

Working with large amounts of data has become an ev-
eryday task for scientists, especially in the natural sciences.
For example, new machines allowing low-cost DNA and RNA
sequencing today are available in thousands of laboratories
worldwide, each able to generate between several gigabytes
and multiple terabytes of data per day, building an important
cornerstone for personalized medicine [1–3]. In Remote Sens-
ing, Earth observation satellites acquire terabytes of image
data daily, used for applications such as land use change
detection [4–6]. For instance, in 2021, the European Space

Agency’s Sentinel mission of the EU’s Copernicus program
generated 7.34PiB of new data [7].

Natural scientists process such data using pipelines of in-
dependently developed tools. Scientific workflow management
systems (SWMSs), such as Nextflow [8], Snakemake [9], or
Pegasus [10], are software infrastructures that help to organize
the interplay and distributed execution of these individual anal-
ysis steps (also called tasks) [11, 12]. They typically require
the analysis to be described in the form of workflows, where
the dependencies between the individual tasks are defined as
abstract directed acyclic graphs (DAGs). Figure 1a shows an
example of such an abstract DAG with five abstract tasks
represented as nodes and five dependencies represented as
edges. To execute a workflow, an SWMS compiles the abstract
DAG into a physical DAG, controls all data dependencies,
and generates prioritized lists of ready-to-run tasks. Figure 1b
shows the final physical DAG with six concrete tasks and
seven edges.

The lists of tasks are typically communicated to a re-
source manager, such as Kubernetes [13], HTCondor [14], or
Slurm [15], which schedules them across the set of available
nodes, taking into account specific task requirements and the
current node load [16].

However, this setup has considerable drawbacks. First, the
SWMS lacks the resource manager’s knowledge of available
resources and, thus, cannot prioritize tasks optimally. On
the other hand, the resource manager lacks the SWMS’s
knowledge of future tasks and, thus, cannot prioritize tasks
optimally according to their dependent future tasks. This leads
to suboptimal scheduling decisions, such as placing a task on
the critical path on a slow machine simply because the critical
path is unknown to the resource manager.

Example I.1. Assume the physical DAG from Figure 1b is
scheduled on a two-node cluster. The SWMS does not know
about a task until all predecessor tasks have been finished. For
simplicity, assume that all tasks take one time unit on both
Node n1 and Node n2. The critical path of the workflow is
shown in bold. When starting the workflow, the SWMS first
sends t1 to the resource manager, which places the task on

https://orcid.org/0000-0003-0520-0792
https://orcid.org/0000-0003-0391-728X
https://orcid.org/0000-0002-9376-2068
https://orcid.org/0000-0003-3755-1503
https://orcid.org/0000-0003-2166-9582

A

B C

D

E

(a)
Abstract
DAG

t1

t2 t3 t4

t5

t6

(b) Physical DAG

ti
m
e

n1 n2

t1

t2 t3

t4

t5

t6

(c) Schedule 1

ti
m
e

n1 n2

t1

t3 t4

t2 t5

t6

(d) Schedule 2

Fig. 1: An example of an abstract DAG and a belonging
physical DAG instance with six tasks and seven edges; the
critical path is bold; two possible schedule plans to execute
the DAG on two nodes.

either n1 or n2 at the first time unit. After t1 is completed, the
SWMS determines that t2, t3, and t4 are ready for execution
and sends them to the resource manager. Since none of the
three tasks has been finished yet, the SWMS does not know
that t5 will exist. Without knowledge of future tasks, the
SWMS and the resource manager must treat all three tasks
equally. For example, it may schedule t2 and t3 first based on
a FIFO policy. At the third time unit, the resource manager
would schedule t4; when t4 has finished, t5 is submitted and
scheduled. Finally, t6 is submitted and runs on either node n1

or node n2. Figure 1c shows the tasks running in parallel. The
execution takes five time units.

In contrast, the resource manager could make more in-
formed decisions knowing future tasks and their dependencies.
After t1 has finished, it could then prioritize and schedule t3
and t4 in the second step since they are on the critical path
and the scheduler is aware of upcoming tasks from the abstract
task D. Figure 1d depicts this run, which takes only four units
of time.

Today, knowledge exchange between an SWMS and a
resource manager is difficult to achieve because there is no
standardized API between both components. As a result, many
resource managers do not implement schedulers that are able
to consider future and dependent tasks [17].

Further, even resource managers that can take dependency
structures into account, such as Slurm [15] or HTCon-
dor/DAGMan [18], can only do so if they know the entire DAG
at the workflow’s start time. This, however, is not the case for
dynamic workflows as supported by modern SWMSs such as
Nextflow or Parsl [19]. In dynamic workflows, the structure of
the DAG is data dependent; for example, the choice between
two different branches within the DAG may depend on a
property of the input data (conditional), or the breadth of
scatter operations may depend on the size of some intermediate
data file. Besides producing suboptimal schedules, the lack
of a common API also implies that developers of scheduling
algorithms need to implement their ideas anew for every
combination of SWMS and resource manager, which might be
one of the reasons for the rather slow uptake of new scheduling
ideas in practice.

In this paper, we present a proposal for a REST-API between
an SWMS and a resource manager, allowing the resource
manager to become the only place for taking optimally in-
formed scheduling decisions while freeing the SWMS from
any such considerations. We designed the API for SWMSs that
create DAGs dynamically by always conveying all sure future
DAG parts to the resource manager for consideration, but it
also works with static DAGs. We implemented a prototype
for the combination of Nextflow and Kubernetes and showed
that it consistently produces faster schedules than the current
standard configuration across a number of different real-
world workflows. Specifically, our paper makes the following
contributions:

• We propose a simple REST API for the interface be-
tween an SWMS and a resource manager to dynamically
inform the resource manager about future tasks and their
relationship to the currently ready-to-run tasks.

• We provide an open-source prototype implementation
of this API for Nextflow1 and Kubernetes2. Note that
replacing, for example, Nextflow with Airflow in this
configuration would only require adapting Airflow to this
API, while the Kubernetes site could remain unchanged.

• We implemented a total of 21 scheduling algorithms as
an extension to Kubernetes that can take advantage of the
information available through the API.

• We evaluated our prototype and all scheduling algorithms
using nine nf-core [20] workflows, with a total runtime
of approximately eleven days. All nf-core workflows are
executed dynamically. Our results show that the informed
scheduling strategies yield more efficient schedules com-
pared to the standard configuration, with Rank (Min)
Round-robin performing best on average.

• We make all the code, the experimental setup, and results
freely available via GitHub3.

• We developed a plugin4 for Nextflow based on our
prototype that enables the use of the Common Workflow
Scheduler with the official Nextflow version.

II. BACKGROUND

In this section, we illustrate the scheduling model of scien-
tific workflows. We also explain the scheduling component of
the SWMS and the resource manager.

A. Interaction between SWMS and Resource Manager

This section describes the interaction between an SWMS
and a resource manager, as performed by state-of-the-art
systems such as Nextflow, Snakemake, Airflow, and Argo,
which submit tasks to resource managers, e.g., Slurm, Kuber-
netes, or HTCondor. Figure 2 provides an overview of the
execution environment. The figure’s left shows the SWMS
with a workflow represented as a DAG. On the right side,
we see the resource manager abstracting the cluster and its

1https://github.com/CommonWorkflowScheduler/Nextflow
2https://github.com/CommonWorkflowScheduler/KubernetesScheduler
3https://github.com/CommonWorkflowScheduler/ExperimentsAndResults
4https://github.com/CommonWorkflowScheduler/nf-cws

2

https://github.com/CommonWorkflowScheduler/Nextflow
https://github.com/CommonWorkflowScheduler/KubernetesScheduler
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults
https://github.com/CommonWorkflowScheduler/nf-cws

nodes. The figure shows the queue between the SWMS and
the resource manager that the resource manager exposes to
receive tasks.

Nodes in a cluster are often heterogeneous [21, 22]. Het-
erogeneity can mean the same CPU architecture with a dif-
ferent clock speed, a CPU from a different generation or
manufacturer with the same number of cores, or a different
generation of memory. These characteristics must be taken
into account during scheduling because even nodes with the
same number of CPU cores or the same amount of memory
can produce completely different task runtimes; however, the
resource manager abstracts detailed hardware information.

a) SWMS’s scheduling: The SWMS is aware of the
abstract DAG’s structure at any time, i.e., it knows the task
dependencies and the overall workflow structure. However,
not all systems initially know the entire physical DAG. For
example, SWMSs such as Nextflow and Parsl have dynamic
DAGs, and physical instances are created at runtime depending
on the previous results. Accordingly, it is impossible to do
static scheduling at the workflow’s start. Most SWMSs come
with their scheduler to prioritize tasks based on the DAG, as
shown in Figure 2. Other SWMSs, such as Nextflow, submit
a task as soon as it becomes known without prioritizing it.

Example II.1. We use the example from Figure 1 to follow
the data flow in Figure 2. Internally, at the second time unit,
t2, t3, and t4 are ready-to-run and are passed into the SWMS’s
scheduler 1⃝. The SWMS’s scheduler then considers the tasks’
dependencies and requirements to prioritize the tasks and
submit them to the resource manager’s queue 2⃝. The SWMS
does not know the number of nodes in the cluster and the
current resources available on each node. Accordingly, if we
assume that they can all start in parallel, all three tasks t2, t3,
and t4 can be considered equal. With more than two nodes,
the tasks in the DAG in Figure 1b can always finish within
four time units independent of the task order. Since the SWMS
does not know the number of nodes, their attributes, and their
occupation, the SWMS only decides when to submit a task
but not where to run it.

b) Resource manager’s scheduling: The resource man-
ager’s scheduler then handles the queued tasks independently.
However, some resource managers support dependencies so

S
c
h
e
d
u
l
e
r

Resource ManagerSWMS
S
c
h
e
d
u
l
e
r

t4

t1

t2 t3 t4

t5

t6

t3 t3t4

Input DAG Cluster

2
t2 t2 t4

1

t2 4

t3 3
Machine 1

Machine 3

Machine 2

Machine 4

DAG scheduling task placement onto machine

Fig. 2: Architecture overview: two schedulers for the state-of-
the-art interaction between SWMSs and resource managers

that a task will not start until all its predecessors have
finished [17]. While the SWMS has submitted the tasks in the
order t3, t4, and t2 2⃝, the resource manager cannot guarantee
the schedule plan, as shown in Figure 1d. For example, the
resource manager could reorder the tasks. In 3⃝, the resource
manager starts t3 first, and in 4⃝, it starts t2; meanwhile, t4
is still waiting to be executed. This can happen if tasks have
different requirements and there are not enough unallocated
resources on a node for t4 but t2 at the time of scheduling.

B. Kubernetes

Here, we explain the concepts of Kubernetes as it is neces-
sary to follow our prototype implementation presented in Sec-
tion V. Kubernetes5 is an open-source resource manager for
orchestrating large clusters of nodes [23] and is used by many
of today’s SWMSs such as Nextflow, Argo, and Snakemake.
Kubernetes provides a unified view over all managed nodes,
offering an interface to submit, for example, single tasks or
deployments with automatic scaling.

Kubernetes is built around the concept of pods. A pod wraps
one or more containers that Kubernetes executes together. In
the workflow domain, tasks are expressed as pods, mostly
using a single container.

The Kubernetes resource manager follows a declarative
paradigm. Accordingly, all its components write the desired
state into a database, and Kubernetes tries to achieve it.
The use of the declarative paradigm makes extensions and
replacements of Kubernetes components relatively easy, as
only the desired state needs to be defined.

C. Nextflow

Nextflow [8] is an open-source SWMS with a Groovy-
like DSL. We use Nextflow as SWMS in our prototype
in Section V. Nextflow aims to enable reproducible and
scalable workflows in bioinformatics by using lightweight
virtualization platforms such as Docker. However, Nextflow
also gains increasing interest from other domains, such as
remote sensing [6]. Nextflow allows a workflow to be defined
independently of the execution environment and enables the
workflows to run on many resource managers, such as Kuber-
netes, Slurm, HTCondor, and cloud providers, such as Google
and AWS.

The workflow execution in Nextflow is data-flow-
driven [24]. Accordingly, all data exchanged between tasks is
put into channels. Channels allow the automatic determination
of parallelizable tasks. In addition, Nextflow determines tasks
at runtime whenever data is in a channel.

To work with all the different resource managers, Nextflow
abstracts them from the user. Nextflow submits every ready-
to-run task individually for execution. With Kubernetes, each
task is executed as a pod. However, Nextflow neither applies
task ordering nor task placement. Accordingly, Nextflow could
benefit from workflow-aware scheduling.

5https://kubernetes.io/

3

https://kubernetes.io/

III. RELATED WORK

In this section, we will provide an overview of the re-
lated work. First, scheduling algorithms and, second, SWMS
scheduling to resource managers.

A. Workflow Scheduling Algorithms

Many scheduling algorithms exist for scientific workflows.
A well-known representative of workflow scheduling is the
Heterogeneous Earliest-Finish-Time (HEFT) algorithm [16].
HEFT consists of two stages. In the first stage, HEFT priori-
tizes tasks by calculating the average remaining computation
and communication time between a task and the workflow’s
end. In the second stage, all tasks are assigned to nodes,
starting with the highest-ranked task. Many HEFT adaptations
exist, such as BDHEFT [25] and DQ-HEFT [26].

Other scheduling approaches deal with wrong decisions
and readjust the scheduling plan. For example, AHEFT [27]
recalculates the scheduling plan using HEFT once a task fails,
new resources become available, or the performance varies.
However, it still requires the full physical DAG and accurate
runtime predictions.

P-HEFT [28] takes into account the dynamic behavior
of workflows and deals with unknown task arrival times.
Therefore, only the abstract DAG needs to be known a priori
to compute the longest path between a task and an exit task
and to prioritize the tasks accordingly.

Min-Min and Max-Min only consider a batch of ready-to-
run tasks [29]. Min-Min schedules the task with the earliest
expected finish time to the node where it is expected to finish
the earliest. In contrast, the Max-Min strategy schedules the
task with the latest expected completion time to the node
where it will complete the fastest.

Crucially, these theoretical scheduling methods assume
global knowledge, which makes them challenging to imple-
ment in SWMSs that rely on resource managers [30]. As
a result, these methods have been presented mainly using
simulations. They require the knowledge that is currently dis-
tributed between two schedulers. In our approach, we propose
to use a single scheduler that allows knowledge transfer for
a more comprehensive view. Our scheduler API is designed
to support both static and dynamic DAGs. We enable the
SWMS to submit the entire physical DAG at the beginning
or to generate it dynamically.

B. Scheduling of SWMS Tasks on Resource Managers

Shan et al. develop a strategy to use Kubernetes native
functions to schedule workflow tasks [31]. The authors claim
a faster startup time because no SWMS is involved. They
wrap a workflow DAG into tasks and their dependencies, and
Kubernetes starts the successor tasks when all predecessor
tasks have succeeded. However, compared to our approach,
they do not address task placement or ordering and require
the complete DAG in advance. Also, our API-based approach
works for other SWMSs and is not limited to Kubernetes.

Slurm [15] supports task dependencies out of the box.
Again, this only works for static workflows where all tasks

are initially submitted. Rodrigo et al. address the problem that
Slurm does not start prioritizing tasks until all dependencies
are satisfied by reordering the submission queue [17]. Their
approach only addresses task prioritization but not placement.

Flux [32] is a resource manager primarily designed for
exascale workflows. Therefore, it uses hierarchical scheduling,
which supports plugins for specific scheduling strategies at
different hierarchy levels. As with all resource managers, an
SWMS needs to be specifically adapted for Flux.

While some particular resource managers deal with depen-
dencies, other resource managers, such as Kubernetes, assume
that each task is independent of other tasks [17].

Tarema [33] profiles the target infrastructure and clusters
nodes into groups according to their hardware performance.
The SWMS then labels tasks according to their resource uti-
lization characteristics. Based on these labels, Tarema evenly
maps tasks to node groups. Tarema has been implemented
and tested using Nextflow and a custom Kubernetes scheduler.
Unlike our approach, Tarema does not consider the workflow
DAG and treats tasks independently. Also, while Tarema is a
prototype, our API-based approach is more general.

Bux et al. extend Hadoop YARN with their workflow
scheduler HI-WAY [34]. HI-WAY handles DAGMan, Galaxy,
and Cuneiform workflows and provides various scheduling
algorithms such as HEFT. To perform HEFT scheduling,
HI-WAY uses historical provenance data stored in its own
provenance manager. The scheduling plan is adjusted as soon
as new measurements become available. Again, this approach
requires static DAGs.

DAGMan [18] receives a workflow definition that can be
generated by different SWMSs and submits the tasks to HT-
Condor. DAGMan ensures that the workflow’s dependencies
are kept by observing the tasks’ state. Accordingly, DAGMan
takes over the entire workflow execution, excluding SWMSs
from workflow execution. Therefore, DAGMan needs static
DAGs and submits each task to HTCondor as soon as all
dependencies are fulfilled. For example, Pegasus [35] splits hi-
erarchical workflows into smaller sub-workflows and submits
them to DAGMan for execution [36]. Pegasus adds priorities
to the tasks to influence the order of execution.

DAGwoman [37] is a standalone tool in the userspace that
handles DAGMan workflow definitions but executes them on
resource managers other than HTCondor.

State-of-the-art SWMSs such as Nextflow [8], Snake-
make [9], Argo, and Airflow use the scheduler of a resource
manager [31] and at most do some task prioritization.

Unlike our method, the existing schedulers are tightly
coupled between a specific resource manager and a specific
SWMS. In addition, most approaches only work for static
DAGs.

IV. SCHEDULER API

In this section, we will explain what information a resource
manager’s scheduler needs to make good scheduling decisions.
Afterward, we will design a REST-API to exchange this
information.

4

S
c
h
e
d
u
l
e
r

Resource ManagerSWMS

t4

t1

t2 t3 t4

t5

t6

t3 t3t4

Input DAG Cluster

t2 t2 t2

t4

t3
Machine 1

Machine 3

Machine 2

Machine 4

Task submission task placement onto machine using DAG

A

P

I

Passing on information

DAG

Fig. 3: One workflow-aware scheduler with comprehensive
knowledge; information transfer using our API

A. API Requirements

Figure 3 shows an architectural overview of our proposed
system. We have a single scheduler running on the resource
manager’s side that receives all missing information from the
SWMS. With this information, the scheduler can make more
advanced scheduling decisions than before.

First, we transfer the DAG in the available form. The
DAG may change during execution due to conditioning. For
example, new tasks may be added to or removed from the
DAG.

Next, the scheduler needs to know the physical tasks -
concrete tasks that the resource manager needs to execute and
that the resource manager’s scheduler needs to assign to a
node. While some SWMSs know all the concrete tasks at the
start, other SWMSs only know the tasks that are ready to run.
In the first case, the scheduler must know the dependencies
between the concrete tasks. In the second case, a task can
start as soon as it is submitted. In addition, the SWMS can
withdraw a physical task that was not ready to run due to a
condition evaluated later.

The scheduler considers all tasks that have already been
submitted and, thus, might already assign a task to a node
right before a more suitable task arrives. Therefore, we need
a batching mechanism to submit multiple ready-to-run tasks
simultaneously.

In addition, the scheduler needs a link between physical
and abstract tasks to detect similar tasks and apply knowledge
of previous task executions to them. The scheduler can also
leverage a connection between resubmitted physical tasks or
task instances based on the same abstract task for advanced
scheduling. Further, the scheduler must receive the user’s
annotation for CPU, memory, or runtime requirements. In
addition, a task’s input and expected output files will help the
workflow scheduler achieve better task placement [38, 39].

Not only does the resource manager’s scheduler need to
receive information, but the SWMS might request statistics and
progress from the scheduler. Moreover, we can imagine that
the resource manager’s scheduler learns task characteristics
and provides them to the SWMS, overriding imprecise user
annotations. For example, we can learn a task’s memory
requirements [40, 41] or the resource manager’s scheduler
might limit the number of CPUs assigned to a task due to

TABLE I: Scheduler’s REST-API design

Resource Method
1 /{version}/{execution} POST
2 /{version}/{execution} DELETE
3 /{version}/{execution}/DAG/vertices POST
4 /{version}/{execution}/DAG/vertices DELETE
5 /{version}/{execution}/DAG/edges POST
6 /{version}/{execution}/DAG/edges DELETE
7 /{version}/{execution}/startBatch PUT
8 /{version}/{execution}/endBatch PUT
9 /{version}/{execution}/task/{id} POST

10 /{version}/{execution}/task/{id} GET
11 /{version}/{execution}/task/{id} DELETE

capacity constraints.

B. API Design

Algorithm 1 API Interaction from SWMS Perspective
1: Register execution at scheduler (1)
2: Send request: submit all vertices (3)
3: Send request: submit all edges (5)
4: while The workflow has not yet finished do
5: if Create abstract task then
6: Send request: add vertices (3)
7: end if
8: if New connection between two abstract tasks then
9: Send request: add edges (5)

10: end if
11: if Withdrawn abstract task then
12: Send request: remove vertices (4)
13: end if
14: if Withdrawn connection between two abstract tasks then
15: Send request: remove edges (6)
16: end if
17: if Withdrawn physical task instance then
18: Send request: remove task (11)
19: end if
20: if Physical tasks are ready for execution then
21: Send request: start batch (7)
22: for all ready-to-run-tasks do
23: Send request: submit task (9)
24: end for
25: Send request: end batch (8)
26: end if
27: for All submitted tasks do
28: Send request: request state (10)
29: end for
30: end while
31: Delete execution at scheduler (2)

We propose an API between the resource manager and the
SWMS in the form of a REST-API. We chose REST because
any programming language used for SWMSs should support
REST. Also, using REST also makes the implementation on
the resource manager’s side language independent. Table I
shows the REST-API’s resources, access methods, and refer-
ence number. Algorithm 1 illustrates a typical interaction with
our API during workflow execution. Each call is referenced
by its reference number. The REST-API provides twelve
resources and supports versioning. The user or SWMS defines
the execution as a unique identifier of the current workflow
execution.

5

To start a workflow execution, the SWMS calls the REST-
API, registers a new workflow execution, and defines the
scheduling strategy (1). Any additional information is wrapped
in the request body. After the workflow has finished success-
fully, because of a failure, or because of a user’s interruption,
the SWMS deletes the execution (2).

After the workflow is registered, the SWMS submits the
abstract DAG, including a list of abstract processes (3), the
vertices in a DAG, and their dependencies - the edges (5).
Due to conditioned executions, the SWMS can delete abstract
processes (4) and edges (6) during execution.

To submit tasks, the SWMS can optionally start a batch (7).
Then, the resource manager will not start tasks from this batch
until the SWMS closes the batch (8). If the SWMS has not
opened a batch, the batch size is one.

An SWMS can submit physical tasks whenever a batch is
open or whenever no batching is used (9). The SWMS defines
an id for each task. In addition, the request includes input
and output files if known. The SWMS also sends the user-
defined CPU, memory, and runtime requirements. The REST-
API returns the CPU, memory, and runtime it will use for the
task. The SWMS can query the state of a task by its id (10).
Finally, when a task is withdrawn, the SWMS can remove
it (11).

V. EXEMPLARY IMPLEMENTATION

In this section, we will provide an overview of our ref-
erence implementation. We implemented our scheduler API
for Kubernetes as a state-of-the-art resource manager. For the
SWMS, we chose Nextflow as a well-known SWMS. We refer
the reader to the Appendix, where we briefly introduce how
to build and use the two tools.

A. Kubernetes Extension

Initially, the SWMS announces a task using the REST-API
and submits the concrete task to Kubernetes as a pod. The
task is added to an internal queue of unscheduled tasks.

Our Kubernetes scheduler runs in a standard pod next to
the original Kubernetes scheduler and only acts for pods that
explicitly request it. We implemented the scheduler in Java
using Fabric86 to access the Kubernetes API, SpringBoot7 to
expose the REST-API, and OpenAPI8 to document the REST-
API and guide SWMS developers on how to adapt the REST-
API.

Using Fabric8 components, we subscribe to the Kubernetes
API, watch for changes, and define the target state. Tracking
node and pod changes gives us a global view of the clus-
ter. Thus, the scheduler is aware of available and occupied
resources.

The scheduler provides an interface for developers to im-
plement different scheduling strategies. We provide 21 out-of-
the-box scheduling strategies in our scheduler, that are easily
extendable. The scheduler aligns the tasks with the abstract

6https://github.com/fabric8io/kubernetes-client
7https://spring.io/projects/spring-boot
8https://www.swagger.io/

process in the DAG to get the rank of a task. For extensibility,
the Scheduler class keeps track of the resource usage in the
cluster and provides methods that can be overwritten to handle
events in the cluster, such as unreachable nodes and new pods.
The Scheduler class has an abstract method to create a task-
node alignment. Our scheduler prototype can be found on
GitHub2.

B. Nextflow Extension

Nextflow supports Kubernetes out of the box. Accordingly,
we only add the communication to our scheduling API but
no new task submission logic. We adapted and changed the
following aspects.

First, we submit the abstract DAG before any task is
submitted. We then capture any changes to the DAG and
immediately pass them to our scheduler.

Second, Nextflow permanently loops over the list of ready-
to-run but unsubmitted tasks. At the beginning of this loop, we
start a new batch which we close at the end of the loop. The
batch size is configurable using the Nextflow configuration.
Batching prevents the scheduler from starting a ready-to-run
task on a node while a more suitable task arrives at the next
moment.

Third, we submit our task to the scheduler. We include
the path to the input files, the user-defined CPU and memory
requests, and the pod name. The scheduler uses the pod name
to match the submitted task with a submitted pod.

Finally, we wrap the task into a pod. In addition, we define
our new scheduler as the responsible scheduler for the pod.

Our adjusted Nextflow version can be found on GitHub1.

VI. EVALUATION

In our evaluation, we compare the original Nextflow-
Kubernetes setup using the default Kubernetes scheduler with
21 scheduling strategies that we implemented for our sched-
uler.

A. Experimental Setup

We implemented seven prioritization strategies. These
strategies determine which task we assign to a node first.
We provide the following ordering strategies: Random, FIFO,
descending and ascending input size, and task rank. The rank
is the number of following abstract tasks on the longest
path. Since several physical tasks can have the same rank,
we implemented the rank strategy along with three different
breakup strategies. First, we apply FIFO for tasks with the
same rank. Second, we prefer tasks with larger input sizes,
and third, we prefer tasks with smaller input sizes.

For node selection, we have three strategies. We imple-
mented Random, Round-robin, and Fair as node assign-
ment strategies. Next, we combine each prioritization strategy
with each node assignment strategy resulting in 21 different
scheduling approaches.

We executed all 21 and the original strategy five times using
nine of the eleven highest-ranked (number of GitHub stars) nf-
core [20] workflows. We take five runs because the Kubernetes

6

https://github.com/fabric8io/kubernetes-client
https://spring.io/projects/spring-boot
https://www.swagger.io/

TABLE II: Key workflow characteristics and experiment overview on the nine evaluation workflows

Workflow # tasks
instances

generated
data

Strategy with the
best median run

Original
median runtime

Avg. task
runtime

Median
task

runtime

Standard
dev. task
runtime

Best
median
runtime

Improvement

RNA-Seq 415 495.6 MB Rank (Min)-Fair 839.5s 3.2s 1.0s 10.2s 629.1s 25.1%
Sarek 110 536.1 MB Size Asc-Fair 2,121.9s 17.8s 1.0s 158.6s 2,027.5s 4.4%

ChiP-Seq 587 2,636.4 MB Rank (FIFO)-Ran 821.4s 3.1s 1.0s 6.5s 725.2s 11.7%
ATAC-seq 481 5,790.2 MB Rank (Min)-Ran 867.0s 5.5s 2.8s 8.9s 748.8s 13.6%

MAG 1,115 18,557.5 MB Rank (Min)-RR 1,254.4s 5.7s 2.0s 13.1s 1,091.6s 13.0%
AmpliSeq 139 267.5 MB Ran-Ran 1,042.7s 6.6s 4.6s 8.2s 848.1s 18.7%
NanoSeq 600 14,613.8 MB FIFO-Ran 809.9s 2.7s 0.0s 5.5s 747.8s 7.7%

Viralrecon 681 894.1 MB Rank (Min)-Fair 916.4s 2.7s 0.1s 8.3s 783.5s 14.5%
Eager 646 2,383.8 MB Rank (Min)-Ran 708.9s 3.3s 3.2s 2.8s 684.5s 3.5%

startup overhead adds a high variance and the task runtime is
relatively short. Even with more runs, we would not be able to
minimize the variance. We publish the execution scripts and
all collected raw data on GitHub3. We briefly introduce how to
run the experiments in the Appendix. nf-core provides test data
sets for each workflow, which we use accordingly. Further, we
adapted the workflow so that the data were available on the
cluster out of the box to reduce the overhead of downloading
data during the experiments. For all workflows, we targeted
to run for at least ten minutes for reliable measurements.
We skipped the MethylSeq and the RNA Fusion workflows
because they failed with the test data sets provided. Namely,
we use the RNA-Seq, Sarek, ChiP-Seq, ATAC-seq, MAG,
AmpliSeq, NanoSeq, Viralrecon, and Eager workflows.

We ran our experiments on a five-node cluster with 32 CPU
cores and 128 GB of memory each, connected via a ten-
gigabit network. In the cluster, our scheduler and the Nextflow
management pod run on the controller node, which was not
used for task scheduling to avoid interference.

B. Experimental Results

Table II shows the characteristics of the workflow and gives
an overview of the experiment. In particular, the table shows
the number of task instances, the data generated, the best
strategy, the runtimes for the original and the best run, the
median and the average task runtimes, the standard deviation
over all task runtimes, and the improvement between the
original and the best strategy for each workflow. The generated
data varies from 267.5 MB for AmpliSeq to 18.1 GB for the
MAG workflow.

Table III shows aggregated values over the runtimes of all
runs and strategies. The best measured values are indicated
in bold. The best-performing prioritization strategies are the
three rank strategies. The average median-median difference
over all nine workflows is at least 7.7% better for all three
rank strategies. In particular, the Rank (Min) Round-robin
strategy is better than the best original run in 77.8% of the
runs. The Rank (Max) Random strategy is better than the
median original run for all runs. 11 of the 21 strategies had for
all nine workflows a better median than the original median.
Next, the table shows the average difference to the original’s
median (Med. change (avg.)). Again, Rank (Min) Round-robin
performs best, with an average runtime reduction of 10.0%

compared to the original’s median and an average reduction
of 3.8% in runtime compared to the original’s best value.

Figure 4 shows the distribution of the percentage change in
runtime for all nine workflows in comparison to the median
runtime of Nextflow’s original strategy. The runtime is the time
delta between the first and the last timestamp in Nextflow’s log
file. The run using Nextflow’s original strategy is highlighted
in gray on the left. The horizontal lines represent the median
and minimum runtime measured for the original strategy
within the five workflow repetitions. Finally, we highlight all
runs with the same prioritization strategy in the same color.

The plots show a vast variance across all workflows and
strategies. This is due to our small sample size and the very
short runtime of the tasks. Hence, Kubernetes’ initialization
time for each task plays a significant role. In particular,
the Random assignment strategies have the highest average
variance. For prioritization, the average variance of the max
size strategy is slightly higher than the Random prioritization.
Also, the min size strategy has a significantly higher average
variance than all other strategies. Since the sample size does
not vary much, ordering by size alone is more or less random.
The lowest variance is achieved by the Round-robin and Rank
(Min) strategy.

For the Sarek workflow, all strategies perform equally. This
is because the workflow has the lowest number of tasks and
one extremely long-running task that accounts for 80.8% of
the total runtime on average.

The FIFO Round-robin strategy is the closest to the original
strategy. However, the median runtime is always better than
the median runtime of the original strategy. We see two
possible reasons for this. First, Kubernetes only does Round-
robin fashion-like scheduling, and second, Kubernetes might
consider many more node affinities.

In particular, Fair assignments for Rank (Min) and Rank
(Max) often yield a much higher variance than their coun-
terparts. This is again due to the very small samples and
short runtimes, often less than a second. Kubernetes prepares
each pod sequentially. Accordingly, initialization becomes a
significant part of the runtime for short-running tasks. Round-
robin and Random distribute the initialization time better over
the nodes than Fair because Fair compensates one resource-
demanding task on one node with multiple small tasks on
another node.

7

-25.0%

-20.0%

-15.0%

-10.0%

-5.0%

Median

+5.0%

+10.0%

R
un

tim
e

ch
an

ge
 c

om
pa

re
d

to
 o

rig
in

al
 m

ed
ia

n
RNA-Seq

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

Median

+2.0%

+4.0%

+6.0%
Sarek

-12.5%

-10.0%

-7.5%

-5.0%

-2.5%

Median

+2.5%

+5.0%

ChiP-Seq

-15.0%

-10.0%

-5.0%

Median

+5.0%

+10.0%

R
un

tim
e

ch
an

ge
 c

om
pa

re
d

to
 o

rig
in

al
 m

ed
ia

n

ATAC-seq

-15.0%

-10.0%

-5.0%

Median

+5.0%

+10.0%

MAG

-20.0%

-15.0%

-10.0%

-5.0%

Median

+5.0%

+10.0%
AmpliSeq

O
rig

in
al

FI
FO

-R
R

FI
FO

-R
an

FI
FO

-F
ai

r
R

an
-R

R
R

an
-R

an
R

an
-F

ai
r

Si
ze

 D
es

c-
R

R
Si

ze
 D

es
c-

R
an

Si
ze

 D
es

c-
Fa

ir
Si

ze
 A

sc
-R

R
Si

ze
 A

sc
-R

an
Si

ze
 A

sc
-F

ai
r

R
an

k
(F

IF
O

)-R
R

R
an

k
(F

IF
O

)-R
an

R
an

k
(F

IF
O

)-F
ai

r
R

an
k

(M
in

)-R
R

R
an

k
(M

in
)-R

an
R

an
k

(M
in

)-F
ai

r
R

an
k

(M
ax

)-R
R

R
an

k
(M

ax
)-R

an
R

an
k

(M
ax

)-F
ai

r

Scheduling strategy

-10.0%

-7.5%

-5.0%

-2.5%

Median

+2.5%

+5.0%

+7.5%

+10.0%

R
un

tim
e

ch
an

ge
 c

om
pa

re
d

to
 o

rig
in

al
 m

ed
ia

n

NanoSeq

O
rig

in
al

FI
FO

-R
R

FI
FO

-R
an

FI
FO

-F
ai

r
R

an
-R

R
R

an
-R

an
R

an
-F

ai
r

Si
ze

 D
es

c-
R

R
Si

ze
 D

es
c-

R
an

Si
ze

 D
es

c-
Fa

ir
Si

ze
 A

sc
-R

R
Si

ze
 A

sc
-R

an
Si

ze
 A

sc
-F

ai
r

R
an

k
(F

IF
O

)-R
R

R
an

k
(F

IF
O

)-R
an

R
an

k
(F

IF
O

)-F
ai

r
R

an
k

(M
in

)-R
R

R
an

k
(M

in
)-R

an
R

an
k

(M
in

)-F
ai

r
R

an
k

(M
ax

)-R
R

R
an

k
(M

ax
)-R

an
R

an
k

(M
ax

)-F
ai

r

Scheduling strategy

-15.0%

-10.0%

-5.0%

Median

+5.0%

+10.0%

+15.0%
Viralrecon

O
rig

in
al

FI
FO

-R
R

FI
FO

-R
an

FI
FO

-F
ai

r
R

an
-R

R
R

an
-R

an
R

an
-F

ai
r

Si
ze

 D
es

c-
R

R
Si

ze
 D

es
c-

R
an

Si
ze

 D
es

c-
Fa

ir
Si

ze
 A

sc
-R

R
Si

ze
 A

sc
-R

an
Si

ze
 A

sc
-F

ai
r

R
an

k
(F

IF
O

)-R
R

R
an

k
(F

IF
O

)-R
an

R
an

k
(F

IF
O

)-F
ai

r
R

an
k

(M
in

)-R
R

R
an

k
(M

in
)-R

an
R

an
k

(M
in

)-F
ai

r
R

an
k

(M
ax

)-R
R

R
an

k
(M

ax
)-R

an
R

an
k

(M
ax

)-F
ai

r

Scheduling strategy

-5.0%

Median

+5.0%

+10.0%

+15.0%

Eager

Median original run Best original run

Fig. 4: Runtime change by strategy and workflow compared to the median run of Nextflow’s original strategy (left, grey)

Finally, we measure the overhead of our API. Therefore,
we calculate the difference between the median total runtime
and the median makespan (the difference between the first
task submitted and the last task completed). On average, the
median initialization difference for Nextflow was 2.7s, with a
maximum of 5.1s using our API. In contrast, the median total
runtime was reduced by 71.3s on average, 160.0s in the best
case, and at least 9.9s in the worst case. Since this value is
fixed, but the workflow’s runtime is reduced by up to 25.1%,
we argue that the overhead is negligible.

VII. DISCUSSION

In this section, we will first discuss the current limitations
of our prototype. Second, we will look at SWMSs other than

Nextflow and resource managers other than Kubernetes to
outline how to implement our API. Finally, we give a brief
outlook on further improvements to the scheduler in the future.

A. Limitations

One limitation is the additional consumed resources because
the scheduler runs as an individual pod, requesting CPU and
memory. In our experiments, we did not lose any computing
resources because the scheduler ran on a node not used for
task execution to avoid interference. Accordingly, we had the
same memory and CPU available for all strategies. However,
management logic often runs on compute nodes. But the
resources used for the scheduler become negligible as the
cluster size increases.

8

TABLE III: Aggregated values over all runs’ runtime by strategy compared to original in percent; best value in bold.
• Better med.: How often are runs better than the original median
• Better min.: How often are runs better than the best original run
• Med. better med.: How often is the median run better than the original median run
• Med. change (avg.): Average runtime difference compared to the original median run
• Min change (avg.): Average runtime difference compared to the best original run
• Med. med. change (avg.): Average runtime difference compared between the strategy’s and the original’s median
• Med. med. change (best): Biggest improvement of the strategy’s and the original’s median
• Med. med. change (worst): Smallest improvement of the strategy’s and the original’s median
• Worst diff to worst ori.: Difference between the strategy’s and the original’s worst run
• Max impr. to best ori.: Difference between the strategy’s and the original’s best run
• Standard dev. (avg.): Average standard deviation over all workflows
• Standard dev. (best): Smallest standard deviation over all workflows
• Standard dev. (worst): Highest standard deviation over all workflows

Strategies

Metric FI
FO

-R
R

FI
FO

-R
an

FI
FO

-F
ai

r

R
an

-R
R

R
an

-R
an

R
an

-F
ai

r

Si
ze

D
es

c-
R

R

Si
ze

D
es

c-
R

an

Si
ze

D
es

c-
Fa

ir

Si
ze

A
sc

-R
R

Si
ze

A
sc

-R
an

Si
ze

A
sc

-F
ai

r

R
an

k
(F

IF
O

)-
R

R

R
an

k
(F

IF
O

)-
R

an

R
an

k
(F

IF
O

)-
Fa

ir

R
an

k
(M

in
)-

R
R

R
an

k
(M

in
)-

R
an

R
an

k
(M

in
)-

Fa
ir

R
an

k
(M

ax
)-

R
R

R
an

k
(M

ax
)-

R
an

R
an

k
(M

ax
)-

Fa
ir

Better med. 86.7 97.8 93.3 75.6 73.3 73.3 80.0 68.9 75.6 77.8 53.3 75.6 95.6 93.3 97.8 91.1 91.1 93.3 97.8 100.0 86.7
Better min. 48.9 66.7 75.6 48.9 40.0 48.9 40.0 37.8 37.8 24.4 20.0 31.1 71.1 57.8 75.6 77.8 71.1 64.4 62.2 75.6 55.6

Med. better med. 100.0 100.0 100.0 66.7 77.8 66.7 77.8 77.8 88.9 77.8 44.4 77.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.9
Med. change (avg.) -6.0 -7.8 -8.2 -5.4 -4.2 -6.0 -4.7 -3.4 -3.8 -3.5 -2.6 -4.6 -9.1 -7.3 -8.6 -10.0 -9.1 -9.1 -7.8 -9.0 -7.3
Min change (avg.) 0.8 -1.1 -1.7 1.4 2.7 0.6 2.1 3.6 3.1 3.3 4.2 2.1 -2.7 -0.7 -2.2 -3.8 -2.8 -2.8 -1.2 -2.6 -0.6

Med. med. change (avg.) -6.6 -7.6 -9.0 -5.2 -5.5 -6.6 -4.9 -4.8 -4.2 -3.9 -4.0 -4.9 -9.7 -7.7 -9.5 -10.8 -9.8 -10.2 -8.0 -9.2 -7.7
Med. med. change (best) -14.3 -12.5 -21.6 -12.5 -18.7 -19.5 -14.4 -14.3 -9.1 -14.6 -19.0 -14.5 -22.7 -20.6 -22.0 -24.8 -23.9 -25.1 -14.4 -18.6 -20.5

Med. med. change (worst) -2.0 -1.9 -1.3 1.1 1.1 1.2 1.5 0.6 1.5 5.6 2.9 2.7 -2.3 -1.0 -2.4 -1.6 -1.5 -0.5 -1.4 -2.4 0.7
Worst diff to worst ori. 4.1 1.9 7.5 7.5 7.8 5.0 15.0 5.1 5.4 5.7 3.3 2.6 1.3 -0.9 4.6 0.5 1.6 3.6 -0.7 -3.0 -0.4
Max impr. to best ori. -8.3 -10.7 -10.1 -8.1 -8.3 -9.5 -8.4 -5.7 -8.0 -7.1 -8.8 -8.4 -10.7 -10.8 -10.2 -12.9 -11.9 -12.7 -10.5 -10.2 -10.6
Standard dev. (avg.) 4.5 3.8 3.0 4.1 4.5 3.6 4.3 4.6 4.6 3.7 5.2 3.8 3.3 3.7 3.3 3.4 3.3 4.2 3.1 2.2 3.3
Standard dev. (best) 2.2 1.3 0.3 1.3 1.0 0.9 0.4 1.2 2.7 1.2 1.5 1.2 1.0 0.8 0.5 1.2 0.8 0.9 0.6 0.9 1.0

Standard dev. (worst) 6.5 7.7 10.6 8.6 9.4 7.9 8.9 8.1 7.7 6.7 11.3 6.9 5.3 7.0 10.0 5.1 5.1 8.2 7.3 4.9 6.3

The scheduling strategies used in our prototype are very
rudimentary. Prioritization and the node assignment work
independently. As we used a homogeneous cluster, this is not
an issue. However, for heterogeneous clusters, prioritization
and node assignment should go hand in hand. The necessary
information is already available through our API.

Finally, we see barriers to bringing our API into existing
resource managers and scientific management systems. It is
an additional effort and, to some extent, a chicken-and-egg
problem, as support on one side only makes sense if the
other side also supports the API. As we have shown the
benefits of workflow-aware scheduling, implementing the API
could increase interest and reduce the effort to support a
particular system. Further, we also see the possibility that
some resource managers implement different algorithms than
other resource managers, thereby gaining the interest of the
workflow community.

B. Usage with Other SWMSs

In the following, we will discuss the effort and ability to
extend SWMSs. We will discuss this for three well-known
SWMSs.

a) Snakemake: uses the official Python 3 Kubernetes
library for interaction. Therefore, one can configure the target
scheduler, resource limits, and other additional information.
Similar to Nextflow, Snakemake loops over the ready-to-run

tasks. Again, a batching mechanism could be integrated at
this point, and Snakemake could submit the task information.
Further, Snakemake provides a DAG that can be transferred
initially.

b) Airflow: also uses the official Python 3 Kubernetes
library. Airflow uses a heartbeat that triggers the creation of
new jobs and internally uses a queue system for ready-to-run
tasks. Here, the batching mechanism could be integrated, and
the task information could be transferred. One difference to the
previously presented SWMSs is the mandatory SQL database
where Airflow reads the DAG from and could send it to our
API.

c) Argo: uses the Kubernetes client written in Go. The
internal operator executes the DAG and identifies the re-
spective ready-to-run tasks. Here, Argo could pass additional
metadata to our proposed API. This step is followed by
iterating over the ready-to-run tasks where batching could be
applied.

C. Usage with Other Resource Managers

Extending the resource managers requires a deeper dive
into the code base. Especially making our scheduler the only
responsible component for scheduling a task is of interest.

a) Slurm [15]: can be extended with plugins. For exam-
ple, Slurm already offers a REST-API plugin9. In particular,

9https://slurm.schedmd.com/rest.html

9

https://slurm.schedmd.com/rest.html

this plugin can be extended with our proposed REST-API
endpoints to transfer information. Further, Slurm has a central
database to store task information. Here, we can add workflow-
specific data.

Compared to our Kubernetes scheduler, scheduling in Slurm
is divided into two independent tasks. First, Slurm prioritizes
the tasks using a scheduler plugin10. We can extend this to
consider the DAG structure and apply workflow scheduling
algorithms. Second, the node selector plugin11 is responsible
for assigning a task to a concrete machine. Therefore, schedul-
ing strategies, as shown in this paper, are possible.

b) HTCondor [42]: uses bidding logic to assign nodes to
tasks. Accordingly, we must fundamentally change this logic
to implement our own strategies. HTCondor allows the user
to adapt task priorities. Further, HTCondor offers DAGMan,
an extension to schedule DAG structured workflows. To the
best of our knowledge, HTCondor does not offer plugins for
extensibility. DAGMan only supports static workflows, so we
would need another external tool to provide the API, wrap the
tasks for HTCondor, and take care of the priorities. However,
this approach would not support node assignments. Thus,
modifying node assignments would require significant changes
in HTCondor’s code base.

c) Hadoop: uses YARN [43] to schedule and assign tasks
to nodes. YARN provides ApplicationMasters to coordinate
applications. These ApplicationMasters run as a regular con-
tainer, comparable to our Kubernetes scheduler. Hi-Way [34],
for example, uses this concept to implement workflow-aware
scheduling algorithms in Hadoop. To bring our approach to
Hadoop, we could implement our own ApplicationMaster
or extend Hi-Way with our REST-API and use the data
accordingly. Since YARN plugins can be written in Java, it
is possible to reuse most of our Kubernetes implementation.

Today, Nextflow does not support Hadoop because Hadoop
uses HDFS for file storage, which is not POSIX compliant.
However, with task input information, Nextflow could work
with Hadoop as the ApplicationMaster could stage input files
from the HDFS before and after workflow execution. Hi-Way
already does this to enable black-box task execution.

VIII. CONCLUSION

In this paper, we developed a common scheduling interface
between SWMSs and resource managers. First, we extracted
the information needed for workflow-aware scheduling. In the
next step, we designed an API to exchange this information
between an SWMS and a resource manager. With this API,
we effectively decouple the SWMS from a concrete resource
manager. Therefore, we designed a common API that can
simplify access to various resource managers.

In our experiments, we tested our approach for making
the resource manager’s scheduler workflow-aware by using
Nextflow and Kubernetes. We showed that using our API in-
terface to exchange information between SWMSs and resource

10https://elwe.rhrk.uni-kl.de/documentation/schedplugins.html
11https://slurm.schedmd.com/select design.html

managers significantly reduces the makespan. We measured
nine different nf-core workflows with 21 scheduling strategies
in comparison to the default strategy. In our experiments,
we improved the median runtime by up to 25.1%, while
the overhead of the information transfer remains negligible.
The best-performing strategy showed an average makespan
reduction of 10.8%. In our experiments, the more informed
rank strategies significantly outperform FIFO, random, and
ordering by the input size.

In the future, we plan to include more sophisticated schedul-
ing strategies that can take full advantage of the information
provided by our common API. The scheduling algorithms do
not necessarily have to optimize for makespan, other objectives
are also possible. Integrating a provenance storage and a prove-
nance API would further leverage the potential of the scheduler
interface for more advanced scheduling. The prototype can
be a first step toward making scheduling configurable by the
user and for scheduling scientists to validate their scheduling
algorithm with real-world workflows and systems [44].

ACKNOWLEDGMENT

We thank Rafael Ferreira da Silva for his valuable feedback
and input on our initial version of this paper.

This work was funded by the German Research Foundation
(DFG), CRC 1404: ”FONDA: Foundations of Workflows for
Large-Scale Scientific Data Analysis.”

REFERENCES

[1] J. A. F. Yates, T. C. Lamnidis, M. Borry, A. A. Valtue na,
Z. Fagernäs, S. Clayton, M. U. Garcia, J. Neukamm, and
A. Peltzer, “Reproducible, portable, and efficient ancient
genome reconstruction with nf-core/eager,” PeerJ, vol. 9,
2021.

[2] M. Garcia, S. Juhos, M. Larsson, P. I. Olason, M. Martin,
J. Eisfeldt, S. DiLorenzo, J. Sandgren, T. Dı́az De Ståhl,
P. Ewels, V. Wirta, M. Nistér, M. Käller, and B. Nyst-
edt, “Sarek: A portable workflow for whole-genome
sequencing analysis of germline and somatic variants.”
F1000Research, vol. 9, p. 63, 2020.

[3] P. Muir, S. Li, S. Lou, D. Wang, D. J. Spakowicz, L. Sali-
chos, J. Zhang, G. M. Weinstock, F. Isaacs, J. Rozowsky,
and M. Gerstein, “The real cost of sequencing: Scaling
computation to keep pace with data generation,” Genome
Biology, vol. 17, no. 1, Mar. 2016.

[4] M. Schramm, E. Pebesma, M. Milenković, L. Foresta,
J. Dries, A. Jacob, W. Wagner, M. Mohr, M. Neteler,
M. Kadunc, T. Miksa, P. Kempeneers, J. Verbesselt,
B. Gößwein, C. Navacchi, S. Lippens, and J. Reiche,
“The openeo api–harmonising the use of earth observa-
tion cloud services using virtual data cube functionali-
ties,” Remote Sensing, vol. 13, no. 6, 2021.

[5] M. Sudmanns, D. Tiede, H. Augustin, and S. Lang,
“Assessing global sentinel-2 coverage dynamics and data
availability for operational earth observation (eo) appli-
cations using the eo-compass.” International journal of
digital earth, vol. 13, no. 7, Feb 2019.

10

https://elwe.rhrk.uni-kl.de/documentation/schedplugins.html
https://slurm.schedmd.com/select_design.html

[6] F. Lehmann, D. Frantz, S. Becker, U. Leser, and
P. Hostert, “FORCE on Nextflow: Scalable Analysis
of Earth Observation data on Commodity Clusters,” in
Proceedings of the CIKM 2021 Workshops, ser. CEUR
Workshop Proceedings, G. Cong and M. Ramanath, Eds.,
vol. 3052. CEUR-WS.org, Nov. 2021.

[7] A. G. Castriotta. (2022, Mar) Copernicus sentinel data
access annual report y2021. Accessed 24-October-
2022. [Online]. Available: https://scihub.copernicus.
eu/twiki/pub/SciHubWebPortal/AnnualReport2021/
COPE-SERCO-RP-22-1312 - Sentinel Data Access
Annual Report Y2021 merged v1.1.pdf

[8] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja,
E. Palumbo, and C. Notredame, “Nextflow enables re-
producible computational workflows,” Nature Biotech-
nology, vol. 35, no. 4, Apr. 2017.

[9] J. Köster and S. Rahmann, “Snakemake—a scalable
bioinformatics workflow engine,” Bioinformatics, vol. 28,
no. 19, Aug. 2012.

[10] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F.
da Silva, G. Papadimitriou, and M. Livny, “The evolution
of the pegasus workflow management software,” Com-
puting in Science & Engineering, vol. 21, no. 4, 2019.

[11] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A Sur-
vey of Data-Intensive Scientific Workflow Management,”
Journal of Grid Computing, vol. 13, no. 4, Dec. 2015.

[12] R. Ferreira da Silva, H. Casanova, K. Chard, D. Laney,
D. Ahn, S. Jha, C. Goble, L. Ramakrishnan, L. Peterson,
B. Enders, D. Thain, I. Altintas, Y. Babuji, R. Badia,
V. Bonazzi, T. Coleman, M. Crusoe, E. Deelman,
F. Di Natale, P. Di Tommaso, T. Fahringer, R. Filgueira,
G. Fursin, A. Ganose, B. Gruning, D. S. Katz,
O. Kuchar, A. Kupresanin, B. Ludascher, K. Maheshwari,
M. Mattoso, K. Mehta, T. Munson, J. Ozik, T. Peterka,
L. Pottier, T. Randles, S. Soiland-Reyes, B. Tovar,
M. Turilli, T. Uram, K. Vahi, M. Wilde, M. Wolf, and
J. Wozniak, “Workflows community summit: Bringing
the scientific workflows community together,” Tech.
Rep., 2021. [Online]. Available: https://zenodo.org/
record/4606958

[13] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes,” Queue,
vol. 14, no. 1, 2016.

[14] D. Thain, T. Tannenbaum, and M. Livny, “Distributed
computing in practice: the condor experience,” Concur-
rency and computation: practice and experience, vol. 17,
no. 2-4, 2005.

[15] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Sim-
ple linux utility for resource management,” in Workshop
on Job Scheduling Strategies for Parallel Processing.
Springer, 2003.

[16] H. Topcuoglu, S. Hariri, and Min-You Wu,
“Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, Mar. 2002.

[17] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakr-
ishnan, “Enabling Workflow-Aware Scheduling on HPC
Systems,” in Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed
Computing. Washington DC USA: ACM, Jun. 2017.

[18] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger,
“Workflow Management in Condor,” in Workflows for
E-Science, I. J. Taylor, E. Deelman, D. B. Gannon, and
M. Shields, Eds. London: Springer London, 2007.

[19] Y. Babuji, K. Chard, I. Foster, D. S. Katz, M. Wilde,
A. Woodard, and J. Wozniak, “Parsl: Scalable parallel
scripting in python,” 10th International Workshop on
Science Gateways, vol. 2357, 2019.

[20] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg,
A. Wilm, M. U. Garcia, P. Di Tommaso, and S. Nahnsen,
“The nf-core framework for community-curated bioinfor-
matics pipelines,” Nature Biotechnology, vol. 38, no. 3,
Mar. 2020.

[21] K. Hutson, D. Andresen, A. Tygart, and D. Turner,
“Managing a heterogeneous cluster,” in PEARC, 2019.

[22] D. Turner, D. Andresen, K. Hutson, and A. Tygart,
“Application performance on the newest processors and
gpus,” in Proceedings of the Practice and Experience on
Advanced Research Computing. ACM, 2018.

[23] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes,” Communica-
tions of the ACM, vol. 59, no. 5, Apr. 2016.

[24] P. D. Tommaso. (2022, Sep) A quick overview
of nextflow workflow system. Accessed 18-October-
2022. [Online]. Available: https://workflows.community/
stories/2022/09/28/nextflow/

[25] A. Verma and S. Kaushal, “Cost-time efficient scheduling
plan for executing workflows in the cloud,” Journal of
Grid Computing, vol. 13, no. 4, Dec 2015.

[26] A. Kaur, P. Singh, R. Singh Batth, and C. Peng Lim,
“Deep-Q learning-based heterogeneous earliest finish
time scheduling algorithm for scientific workflows in
cloud,” Software: Practice and Experience, vol. 52, no. 3,
2022.

[27] Z. Yu and W. Shi, “An Adaptive Rescheduling Strategy
for Grid Workflow Applications,” in 2007 IEEE Interna-
tional Parallel and Distributed Processing Symposium.
Long Beach, CA, USA: IEEE, 2007.

[28] J. G. Barbosa and B. Moreira, “Dynamic scheduling of
a batch of parallel task jobs on heterogeneous clusters,”
Parallel computing, vol. 37, no. 8, 2011.

[29] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of inde-
pendent tasks onto heterogeneous computing systems,”
Journal of Parallel and Distributed Computing, vol. 59,
no. 2, 1999.

[30] U. Schwiegelshohn, “How to design a job scheduling
algorithm,” in Job Scheduling Strategies for Parallel
Processing, W. Cirne and N. Desai, Eds. Cham: Springer
International Publishing, 2015.

[31] C. Shan, G. Wang, Y. Xia, Y. Zhan, and J. Zhang, “Con-

11

https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2021/COPE-SERCO-RP-22-1312_-_Sentinel_Data_Access_Annual_Report_Y2021_merged_v1.1.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2021/COPE-SERCO-RP-22-1312_-_Sentinel_Data_Access_Annual_Report_Y2021_merged_v1.1.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2021/COPE-SERCO-RP-22-1312_-_Sentinel_Data_Access_Annual_Report_Y2021_merged_v1.1.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2021/COPE-SERCO-RP-22-1312_-_Sentinel_Data_Access_Annual_Report_Y2021_merged_v1.1.pdf
https://zenodo.org/record/4606958
https://zenodo.org/record/4606958
https://workflows.community/stories/2022/09/28/nextflow/
https://workflows.community/stories/2022/09/28/nextflow/

tainerized Workflow Builder for Kubernetes,” in 2021
IEEE 23rd Int Conf on High Performance Computing
& Communications; 7th Int Conf on Data Science &
Systems; 19th Int Conf on Smart City; 7th Int Conf
on Dependability in Sensor, Cloud & Big Data Sys-
tems & Application (HPCC/DSS/SmartCity/DependSys).
Haikou, Hainan, China: IEEE, Dec. 2021.

[32] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona,
S. Herbein, H. I. Ingólfsson, J. Koning, T. Patki, T. R.
Scogland, B. Springmeyer, and M. Taufer, “Flux: Over-
coming scheduling challenges for exascale workflows,”
Future Generation Computer Systems, vol. 110, 2020.

[33] J. Bader, L. Thamsen, S. Kulagina, J. Will, H. Meyer-
henke, and O. Kao, “Tarema: Adaptive resource alloca-
tion for scalable scientific workflows in heterogeneous
clusters,” in 2021 IEEE International Conference on Big
Data (Big Data), 2021.

[34] M. Bux, J. Brandt, C. Witt, J. Dowling, and U. Leser,
“Hi-WAY: Execution of Scientific Workflows on Hadoop
YARN,” in Int. Conf. on Extending Database Technology.
Venice, Italy: OpenProceedings.org, Mar. 2017.

[35] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan,
P. J. Maechling, R. Mayani, W. Chen, R. Ferreira da
Silva, M. Livny, and K. Wenger, “Pegasus, a workflow
management system for science automation,” Future
Generation Computer Systems, vol. 46, 2015.

[36] E. Deelman, M. Livny, G. Mehta, A. Pavlo, G. Singh, M.-
H. Su, K. Vahi, and R. K. Wenger, “Pegasus and dagman
from concept to execution: Mapping scientific workflows
onto today’s cyberinfrastructure,” in High Performance
Computing and Grids in Action. IOS Press, 2008.

[37] T. Tschager and H. A. Schmidt, “DAGwoman: Enabling
DAGMan-like workflows on non-Condor platforms,” in
Proceedings of the 1st ACM SIGMOD Workshop on
Scalable Workflow Execution Engines and Technologies
- SWEET ’12. Scottsdale, Arizona: ACM Press, 2012.

[38] P. Bryk, M. Malawski, G. Juve, and E. Deelman,
“Storage-aware Algorithms for Scheduling of Workflow
Ensembles in Clouds,” Journal of Grid Computing,
vol. 14, no. 2, Jun. 2016.

[39] P. Donnelly, N. Hazekamp, and D. Thain, “Confuga:
Scalable Data Intensive Computing for POSIX Work-
flows,” in 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing. Shenzhen,
China: IEEE, May 2015.

[40] C. Witt, D. Wagner, and U. Leser, “Feedback-based
resource allocation for batch scheduling of scientific
workflows,” in 2019 HPCS. IEEE, 2019.

[41] B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. All-
cock, D. Thain, and M. Livny, “A job sizing strategy
for high-throughput scientific workflows,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 29, no. 2,
Feb 2018.

[42] T. Sterling, Condor: A Distributed Job Scheduler, 2001,
pp. 307–350.

[43] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: Association for Computing Machinery,
2013.

[44] T. Coleman, H. Casanova, K. Maheswari, L. Pottier,
S. Wilkinson, J. Wozniak, F. Suter, M. Shankar, and
R. Ferreira da Silva, “Wfbench: Automated generation
of scientific workflow benchmarks,” Proc. of the 13th In-
ternational Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer
System (PBMS), 2022.

[45] F. Lehmann, J. Bader, F. Tschirpke, L. Thamsen,
and U. Leser, “Common Workflow Scheduler for
Kubernetes,” May 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.7603176

[46] ——, “Nextflow with the Common Workflow Scheduler
Interface for Kubernetes,” May 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7603153

[47] ——, “Common Workflow Scheduler Evaluation with
Nextflow and Kubernetes,” May 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7603196

12

https://doi.org/10.5281/zenodo.7603176
https://doi.org/10.5281/zenodo.7603176
https://doi.org/10.5281/zenodo.7603153
https://doi.org/10.5281/zenodo.7603196

APPENDIX

A. Abstract

In this artifact, we describe how to build the Common
Workflow Scheduler (CWS) for Kubernetes and the adapted
Nextflow version proposed in the paper: “How Workflow
Engines Should Talk to Resource Managers: A Proposal for
a Common Workflow Scheduling Interface”. Moreover, we
describe the experimental setup and how to prepare and get
the input data of the nine presented workflows and run them
with the 22 scheduling strategies.

B. Description
1) Check-list (artifact meta information):
• Algorithm: All seven prioritizing and three assignment strate-

gies are implemented in the Common Workflow Scheduler
(CWS) for Kubernetes.

• Program: CWS for Kubernetes [45] and Nextflow with CWS
extension for Kubernetes [46].

• Compilation: Nextflow with CWS extension for Kubernetes
and Common Workflow Scheduler for Kubernetes as Docker
image.

• Data set: Scripts to download the input data. Traces and logs
of all 990 workflow executions [47].

• Run-time environment: Kubernetes cluster in version 1.23.6.
• Hardware: All nodes were x86-64 machines.
• Runtime state: The cluster was exclusively used for the

experiments.
• Execution: Bash scripts to manage the experiment, Dockerfiles

and scripts to build the two programs.
• Output: Workflow traces and logs of all 990 workflow

executions that are processed to generate the tables and plots in
the paper.

• Experiment workflow: Download the inputs, and run the
execution file.

• Experiment customization: It is possible to use different/ad-
ditional/repeated data samples or to add another workflow to
the experiment.

• Publicly available?: Yes, all code and experimental results are
hosted by us. Input data is obtained from public sources.

2) How software can be obtained: The Common Work-
flow Scheduler for Kubernetes implementation can be cloned
from GitHub https://github.com/CommonWorkflowScheduler
/KubernetesScheduler. Moreover, we provide an already-built
Docker image (commonworkflowscheduler/kubernetessched-
uler:v1.0) starting the Common Workflow Scheduler service.

The adapted Nextflow version can be cloned from
GitHub https://github.com/CommonWorkflowScheduler
/Nextflow. Again, a prebuilt Docker image is available on
DockerHub (commonworkflowscheduler/nextflow:v1.0).

3) Hardware dependencies: All artifacts are tested and
prebuilt with x86-64 machines running Ubuntu 20.04.

4) Software dependencies: Building the software requires
Docker and Java OpenJDK to be installed. CWS uses Maven
as a build system. Maven only needs to be installed if CWS is
not built using Docker. Nextflow uses Gradle as a build system
and make - Gradle does not need to be installed. Moreover,
a running Kubernetes Cluster is required. Alternatively, a
local Kind or Minikube setup will work as well. For our
experiments, we used Ceph as a shared filesystem. However,
any read-write-many filesystem supported by Nextflow will

work. We need kubectl installed to communicate with the
cluster and orchestrate the experiment. Moreover, Nextflow
should be in the PATH.

5) Data sets: For all nine workflows, we use the data set
provided in the test profile that all nf-core workflows offer.
To extend the runtime, we have partially extended these data
sets with data from other profiles or included the same data
multiple times. Input data is prefetched to avoid affecting
experiment runtimes with download times. The download is
performed by executing the fetchdata.sh file provided for all
workflows in https://github.com/CommonWorkflowScheduler
/ExperimentsAndResults/tree/main/inputs. Moreover, we pro-
vide a configuration file for each workflow.

C. Installation

1) Build Nextflow: Before we build Nextflow, we have
to adjust two files. First, in Nextflow’s root directory in the
nextflow file, we add a “return” into the first line of the
“get” method. Otherwise, our build will automatically update,
downloading the newest official Nextflow version. Second,
in the docker folder, the Makefile needs adjustments. Change
the first line of the build target from cp ../nextflow .
to cp ../build/releases/nextflow*-all nextflow.
This is necessary, as we cannot download the jar file. Then replace
the body of the release target with the following two lines. Use your
docker name and define an arbitrary version tag.

docker tag nextflow/nextflow:${version} <
↪→ your docker account>/cws:<version>

docker push <your docker account>/cws:<
↪→ version>

Run the following instructions to build and publish the Nextflow
with CWS Docker image.

$ cd <nextflow root directory>
change the nextflow file as described
$ make compile
$ make pack
$ make install
$ cd ./docker
change the Makefile as described
login to Docker
$ make release

2) Build Common Workflow Scheduler: To build the CWS,
run the following commands.

$ cd <CWS root directory>
$ docker build -t cws .
$ docker tag cws <your docker account>/cws

↪→ :<version>
$ docker push <your docker account>/cws:<

↪→ version>

13

https://github.com/CommonWorkflowScheduler/KubernetesScheduler
https://github.com/CommonWorkflowScheduler/KubernetesScheduler
https://github.com/CommonWorkflowScheduler/Nextflow
https://github.com/CommonWorkflowScheduler/Nextflow
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults/tree/main/inputs
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults/tree/main/inputs

3) Prepare the cluster: To prepare the cluster, download the
following project: https://github.com/CommonWorkflowScheduler
/ExperimentsAndResults. In the setup directory, adjust the pvc.yaml
file. Set the storageClassName to a storage class installed in your
cluster. If you change the experimental setup, you might also change
the storage request. By default, the experiments run in the cws
namespace. To define another namespace, adjust the namespace in
the setup.sh file and in setup/accounts.yaml (two times). Afterward,
run the setup.sh file in the ExperimentsAndResults root directory
bash setup.sh. This script will download the data sets and
workflows and prepare the cluster for the experiments.

4) Local experiment management environment: We highly
recommend running the experiment from a node within the cluster
to avoid connection breaks. First, we limit the number of nodes used
in order to have a scheduling problem. Therefore, we label the nodes
executing the tasks and the node running the scheduler. Both should
be distinct. The number of nodes should be much smaller than the
parallel tasks executed. In our experiments, we used four nodes with
32 cores each. To label the nodes, run the following:

Nodes executing tasks
kubectl label nodes <Node 1> <Node 2>

↪→ cwsexperiment=true
Node that runs the scheduler
kubectl label nodes <Node 0> cwsscheduler=

↪→ true

Next, in the nextflow.config file in the execution directory, set the
namespace to the namespace used before (two times). Moreover,
change the namespace in the runExperiments.sh. The experiment will
create the evaluation folder. Accordingly, you can delete the folder
in the Git project to store new measurements. Existing measurements
are skipped.

D. Experiment Workflow
The experiment is completely orchestrated by a bash script. To

launch the experiment:

cd <root directory of ExperimentsResults>
cd execution
The name could be the cluster to run.
bash runExperiments.sh <name>

The script will do the following:
1) load all required images into Kubernetes’ cache on all nodes
2) run the workflow for all strategies
3) download the results

E. Evaluation and Expected Result
All our measurements can be found in the evaluation/CPU

folder https://github.com/CommonWorkflowScheduler
/ExperimentsAndResults. In our group, we call the experiment
cluster the CPU Cluster. For each of the nine workflows, 22
Strategies with five runs each are executed. For each run, we collect
the trace file, the logs from the Nextflow and the CWS console,
the Nextflow logs, the used config, the generated report, and the
workflow’s dag. Besides the measurements, we provide the Jupyter
script (Evaluation.ipynb) that generated the plots and tables in the
paper.

Different runtimes for the different strategies are expected. If this is
not the case, the setup might use too many nodes. All tasks can start
simultaneously in such a setup, and we do not have a scheduling
problem. Accordingly, the choice of algorithm does not make a
difference, as no algorithm can prioritize tasks better.

F. Experiment Customization
The data sets can be changed or other workflows included.

Therefore, Nextflow’s config has to be adjusted. Moreover, the storage
capacity should be increased.

14

https://github.com/CommonWorkflowScheduler/ExperimentsAndResults
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults
https://github.com/CommonWorkflowScheduler/ExperimentsAndResults

	Enlighten Accepted coversheet
	292242
	Introduction
	Background
	Interaction between SWMS and Resource Manager
	Kubernetes
	Nextflow

	Related Work
	Workflow Scheduling Algorithms
	Scheduling of SWMS Tasks on Resource Managers

	Scheduler API
	API Requirements
	API Design

	Exemplary implementation
	Kubernetes Extension
	Nextflow Extension

	Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Limitations
	Usage with Other SWMSs
	Usage with Other Resource Managers

	Conclusion
	Appendix
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Build Nextflow
	Build Common Workflow Scheduler
	Prepare the cluster
	Local experiment management environment

	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization

