
Serverless Approach to Sensitivity Analysis of
Computational Models

Piotr Kica∗§, Magdalena Otta∗†‡, Krzysztof Czechowicz†‡, Karol Zając∗§,
Piotr Nowakowski∗, Andrew Narracott†‡, Ian Halliday†‡, Maciej Malawski∗§
∗Sano Centre for Computational Medicine, Kraków, Poland (https://sano.science/)

† Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
‡ Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK

§Institute of Computer Science, AGH University of Science and Technology, Kraków, Poland

Abstract—Digital twins are virtual representations of physical
objects or systems used for the purpose of analysis, most often
via computer simulations, in many engineering and scientific
disciplines. Recently, this approach has been introduced to
computational medicine, within the concept of Digital Twin
in Healthcare (DTH). Such research requires verification and
validation of its models, as well as the corresponding sensitivity
analysis and uncertainty quantification (VVUQ).

From the computing perspective, VVUQ is a computationally
intensive process, as it requires numerous runs with variations of
input parameters. Researchers often use high-performance com-
puting (HPC) solutions to run VVUQ studies where the number
of parameter combinations can easily reach tens of thousands.
However, there is a viable alternative to HPC for a substantial
subset of computational models - serverless computing.

In this paper we hypothesize that using the serverless comput-
ing model can be a practical and efficient approach to selected
cases of running VVUQ calculations. We show this on the
example of the EasyVVUQ library, which we extend by providing
support for many serverless services. The resulting library -
CloudVVUQ - is evaluated using two real-world applications
from the computational medicine domain adapted for serverless
execution. Our experiments demonstrate the scalability of the
proposed approach.

Index Terms—Serverless, Digital twins, Computational model-
ing, Sensitivity analysis, Distributed computing, Cloud comput-
ing, AWS, GCP, Lambda, High-Performance Computing

I. INTRODUCTION

Digital twins are virtual representations of physical objects
or systems, which can be used to accurately represent their
counterparts for the purpose of analysis, most often via
computer simulations. Digital twins have been used in many
engineering and scientific disciplines, such as civil engineer-
ing, factory design, manufacturing or environmental studies.
Recently, this approach has been introduced to computational
medicine, within the concept of Digital Twin in Healthcare. A
special case or often a crucial component of a digital twin is
a computational model which we will focus on in this paper.

In computational medicine, modeling and simulation are
becoming increasingly important, with a wide range of meth-
ods being applied to various physiological and pathological
conditions. Examples include physics-based simulations anal-
ogous to those used in engineering such as computational
fluid dynamics (CFD) for blood flow simulation [1] [2],
or finite element method (FEM) modeling for computing

the likelihood of bone fracture [3]. Agent-based modeling
can be used to simulate interactions in the immune system
[4], while multiscale modeling is useful in predicting the
growth of tumors [5]. Other simplified or surrogate models
have been developed to reduce the computational cost of
such simulations, including 0-D and 1-D models to simulate
haemodynamics in the cardiovascular system [6], reduced-
order modeling techniques or machine learning (ML) models,
which are typically inspired by physics-based solutions [7].

The multitude of successful applications of digital twins
in healthcare research, along with medical modeling and
simulation techniques, has led to their potential application
in clinical decision support systems or digital therapeutics
solutions. In order to bring these solutions to the market, a
complex regulatory procedure needs to be followed through
agencies such as the FDA in the US, or the EMA in Europe.
One important stage in the process is performing verification
and validation of the models, along with the corresponding
sensitivity analysis and uncertainty quantification [8]. These
procedures are subject to standards, such as ASME VV40 [9].

From the computing perspective, VVUQ is a computa-
tionally intensive process, as it requires numerous runs of
the model with variations of input parameters. Such studies
are examples of high-throughput computing, involving many
independent tasks of a similar nature but with different input
data or parameter variations. Researchers typically use high-
performance computing machines for running VVUQ studies,
especially when the models are large-scale parallel computing
simulations, as in the case of 3-D models using CFD or FEM
methods, which often require several hours of computing time
on multiple nodes of a cluster. The number of parameter
combinations and therefore the number of tasks can easily
reach tens of thousands, or more.

There are cases, however, when it would be reasonable
to look for other computing infrastructures to solve VVUQ
problems. One involves users who may not have access
to publicly funded research infrastructures, as they are not
affiliated with the academia, but with the industry instead. For
them, public cloud infrastructures represent a natural source
of computing power. On the other hand, there are examples
of models (e.g. 0-D models), which do not require large-
scale HPC for any individual simulation, but still need to

ar
X

iv
:2

30
4.

08
19

0v
1 

 [
cs

.D
C

] 
 1

7 
A

pr
 2

02
3

https://sano.science/


run 10,000s of tasks, each ranging from seconds to minutes.
Running them on a single machine would take hours or days,
while simple parallelization could bring this time down to
minutes, enabling faster iteration of the modeling process and
a more interactive work mode. Such workloads are a good fit
for serverless infrastructures, such as AWS Lambda or Google
Cloud Run, which can run many short tasks in a highly elastic
way, i.e. acquiring thousands of resources very quickly.

In this paper we hypothesize that using a serverless comput-
ing model can be a practical and efficient approach to selected
cases of VVUQ calculations. We show this on the example
of the EasyVVUQ library, a popular tool for running VVUQ
calculations, which we extend by providing support for AWS
Lambda and Google Cloud Run serverless infrastructures. The
resulting library, which we call CloudVVUQ, is then subject
to evaluation, for which we use two real-world applications
from the computational medicine domain, showing how they
can be ported to the serverless infrastructure. Our experiments
demonstrate the scalability of the proposed approach, by
obtaining parallelism with 1500 tasks running concurrently,
and achieving a 723-fold improvement in performance.

The main contributions of the paper are as follows:
• We describe the problem of VVUQ in computational

medicine, its computational requirements and serverless
infrastructure applicability;

• We create a prototype library (named CloudVVUQ) that
accelerates sensitivity analysis of computational models,
by using cloud serverless services such as the afore-
mentioned AWS or Google Cloud solutions for parallel
sample computation;

• We test the performance and behaviour of the serverless
approach to sensitivity analysis in two real-world scenar-
ios from computational medicine.

II. BACKGROUND

A. Serverless model

In recent years the serverless model has become more
efficient and popular. Serverless computing is a cloud exe-
cution model in which the cloud provider is responsible for
provisioning and managing servers. One of the most important
features of this model is auto-scaling, which means that higher
demand triggers an increase in the amount of provisioned
resources. A characteristic feature of serverless solutions is the
pay-per-use billing model which often reduces costs compared
to renting a server, and represents the optimal approach to
matching resource allocation to problem size. However, it is
not a perfect model for long-running jobs.

B. Serverless computing services

Cloud services that offer serverless computing have much
in common with one another. Those services are built in an
event-driven architecture and can respond to HTTP requests.
Under the hood, there is often a Linux container that runs the
application. In general, they are created to respond quickly,
but sometimes before the first requests are processed the
containers take a few seconds to initialize, which is known as a

“cold start”. The most common features are auto-scaling, high
availability, concurrency limits, and security. We selected three
services from the leading cloud providers which we regard as
most suitable for the task. Each has its own strengths and
weaknesses. The chosen services are listed below.

• AWS Lambda [10]
• Google Cloud Functions (GCF) [11]
• Google Cloud Run (GCR) [12]

A more in-depth comparison is presented in Table I.
Maximum execution times specified in the table are essential

for this topic because they restrict the range of models that
are compatible with serverless services. Container support
is also important to enable model execution in customised
environments and dependencies. Languages such as Octave or
Matlab are valued in the scientific and modelling communities,
but they are not supported by default at the time of writing.
AWS Fargate is a service that may enable computing models
without a time limit in a serverless execution environment. It
is a promising area for future work, but we elected to focus
on the services listed above.

C. Computational Models

Real-life systems are complex, and their behavior is difficult
to predict. Physically representing the relationships between
the components is often impossible or cumbersome. Repre-
senting the problem mathematically, in an idealised form,
reduces the crucial aspects to a set of formal numerical
expressions known as a model. Mathematical models de-
scribe the system’s behavior and evolution using algebraic
equations/inequalities, automata and state transition diagrams,
probability distributions or systems of ordinary and partial
differential equations, as explained in detail elsewhere [13].
In the case of computational modelling, computers aid the
modelling process. Typically, a model takes known informa-
tion as input, while data produced by executing the model
(referred to as a simulation) is the output. When the model
is solved analytically, exact results are obtained using well-
known analytical functions. On ther other hand, when the
model is solved numerically, numerous methods are available.
Those most relevant in our context include Euler and Runge-
Kutta methods, and, for spatially distributed models, a finite
difference/element approach [14]. Despite being subject to
approximation, numerical solutions are typically attainable –
in contrast, many models do not have a known analytical
solution.

To tackle any problem of interest, models should be as
simple as possible, yet sufficiently complex to describe the
real phenomenon being modelled. Care must be taken to
define what is anticipated from the model at the start of the
process. Verification, validation, and uncertainty quantification
(VVUQ) are carried out to make sure the modelling choice is
“right” for a given application. Verification is a process of in-
vestigating whether the model has been implemented correctly,
both in terms of logic and coding – in other words, whether
the computer simulation model is consistent with the mathe-
matical/conceptual model it was based on [15]. Validation is

2



TABLE I: Comparison of the selected cloud services.

Service AWS Lambda Google Cloud Functions Google Cloud Run
Execution environment Amazon Linux / Custom Linux Custom
Supported languages Java, Python, Node.js, Go, Ruby, C# Node.js, Python, Go, Java, C#, Ruby Depends on execution environment
Memory allocation 128 MB - 10,240 MB 128 MB - 8192 MB 128 MiB - 32 GiB

CPU allocation Proportional to allocated memory Proportional to allocated memory 1 - 4 CPUs
Disk space Up to 512 MB Uses memory Uses memory

Maximum execution time 15 min 9 min 60 min
Maximum instances 1000 (default quota) Not specified / Unlimited Over 1000 (region-specific)

Deployment unit Zipped code / Container image Zipped code Container image

a process which aims to determine if the model accurately
represents the behaviour of the modelled system, i.e. if the
model output matches observed data. Another crucial and
related component of model development is model sensitivity
evaluation and quantification of uncertainty propagation from
model inputs to model outputs. Sensitivity analysis assesses
the relative importance of different input factors and their
contribution to the output uncertainty [16], as described in
the following section.

D. Sensitivity analysis

“Sensitivity analysis (SA) is the study of how the un-
certainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the
model input” [17]. SA assesses the relative importance of
model parameters. Ranking the parameters according to their
impact on the output helps identify input parameters with
minimal significance, which might then be set to a constant
value, or screened, reducing the overall dimension of the input
parameter space. The computational cost of conducting the
simulation is reduced, together with the complexity of the
model. This is relevant for many applications, for instance in
medicine, where model outputs identify disease bio-markers
[7].

There are two main types of sensitivity analysis - local
and global. Local sensitivity analysis (LSA) evaluates the
effect of a given input parameter on a given output parameter.
Customarily, it relies on computing system derivatives of the
form Sj = ∂Y

∂Xj
, where Xj is the jth input parameter, and Y

is the output of interest [16]. Then, Sj is the sensitivity index.
In LSA, parameters are typically varied, one at a time, about
a single reference state. Consequently, this does not provide
information about parameter interactions.

In global sensitivity analysis (GSA), all input parameters
vary simultaneously. A common type of implementation is
variance-based as described by Saltelli [18]. In such a case, the
output’s variance characterises the uncertainty of the output,
caused by the input variation. For a GSA it is necessary to
consider the appropriate range for all parameters, which is not
a requirement in a LSA as the variation about the reference
state is typically small. Consequently, GSA provides a more
rigorous quantitative tool than LSA for inspecting the model.

In the area of computational models, SA consists mainly
of a few steps. The first is the generation of different model
inputs (samples), from the starting input data or parameter dis-
tributions. Examples of sampling methods include Stochastic

Collocation, Monte Carlo, and Polynomial Chaos Expansion.
Each one provides an n-dimensional input vector (where n
is the number of input parameters) for each simulation. After
executing the model for all samples, the last step is to analyse
the sensitivity. For example, one can plot chosen sensitivity
indices [18] on a treemap or a heatmap, to allow interpretation.
Our implementation of such a workflow can be seen in Fig. 2.

Despite the apparently straightforward nature of the SA
process, as outlined above, each execution of the model is usu-
ally computationally expensive and the dimension of its input
parameter space tends to be very large. GSA, in particular,
requires the generation of a statistically significant number of
output samples to support reliable sensitivity metrics, such as
Sobol indices [18]; as a consequence, SA of even a moderately
complex model is frequently prohibitively expensive.

E. Motivation

Many fields have adopted serverless computation, but most
perform scientific calculations using High-Performance Com-
puting (HPC) infrastructures. Large, long jobs are not suitable
for short-lived serverless containers, but some computational
models do not require such resources and fit within the con-
straints of the serverless model. Examples of such models can
be found in [4], [19]. The former requires low computational
resources - a single computation takes less than a second on
one CPU core. In the latter it is reported that the VVUQ
process for the UISS-TB model requires over 600 simulations.
Each simulation takes one minute using a modern CPU and
32GB RAM. In addition, the serverless approach speeds up
the performance-heavy steps of the sensitivity analysis with
parallel computation. As many companies and scientists lack
access to HPC infrastructure, cloud computing provides an
alternative option for users who do not own a sufficiently
powerful computer. This paper explores how the serverless
approach can be applied to perform VVUQ analysis on models
relevant to the development of a digital twin.

III. RELATED WORK

A. Generic libraries for serverless data processing

The groundwork for serverless computational processing
has been laid with the PyWren library [20]. This prototype
Python library showed that it is possible to create a data
processing system that inherits the elasticity and simplicity
of the serverless model, using stateless functions with remote
storage. PyWren users may not achieve the best parallel
performance, but are significantly at an advantage compared

3



to standalone workstations, while also reducing development
time. PyWren uses AWS Lambda as the execution platform
for serialized Python functions with the CloudPickle library.
There is also an extension called NumPyWren that focuses
on linear algebra. [21]. Recent developments in the scope of
FaaS (Functions as a Service) applications for MapReduce-
like computations are discussed in [22]. Lithops - an open-
source Python library presented in this publication - can be
described as a PyWren successor. It improves performance
at both the invocation phase and the result collection phase,
and adds many new features such as nested composability of
functions or Jupyter Notebook integration. Lithops is a cloud-
agnostic library which is probably its most important feature.
It supports many cloud providers, and also offers support for
Kubernetes [23].

B. Serverless approach in science

In [24] the authors discuss the advantages and limitations
of serverless containers. Their work focuses on the usefulness
of such solutions for scientific workflows. They present the re-
sults of performance and cost evaluation of chosen services in
the CaaS (Container-as-a-Service) model (e.g. Cloud Run) and
AWS Lambda. They conclude that using containers for short
tasks (taking less than several minutes) is not recommended
due to initial overhead. Furthermore, they agree that AWS
Lambda is more cost-efficient than CaaS services, as long as
the task matches the Lambda limits. Another insight from this
publication is that a hybrid approach is feasible and effective
(note that by “hybrid” the authors mean using AWS Lambda
for fine-grained tasks while relying e.g. on AWS Fargate for
more demanding tasks). The authors of [25] developed a FaaS
platform for scientific computing - funcX. Their work shows
that it is possible to make use of diverse computing resources
such as HPC and cloud, as well as to create a federated FaaS
system. For testing purposes they used scientific case studies
such as machine learning interference, real-time data analysis
for High Energy Physics, Synchrotron Serial Crystallography
and X-ray Photon Correlation Spectroscopy. There are other
examples of using the serverless model for scientific or en-
gineering applications, but VVUQ has not heretofore been
supported in this way.

C. VVUQ libraries

Many frameworks and libraries have been created to facil-
itate VVUQ processes and provide necessary methods. Ex-
amples include SALib [26], Uncertainpy [27], UQTk [28] for
Python and UQLab [29] for Matlab. We focus on EasyVVUQ,
which is an open-source Python library designed to facilitate
verification, validation and uncertainty quantification for a
wide variety of simulations. The goal of EasyVVUQ is to
make it easier to implement advanced VVUQ techniques
for existing application codes or workflows [30]. It exposes
these features mainly for simulation codes running on HPC.
However, this library, like others mentioned earlier, does not
support serverless execution by design.

IV. CLOUDVVUQ LIBRARY

A. Base library and design goals

Our new CloudVVUQ library is based on EasyVVUQ be-
cause it provides the necessary sampling and analysis methods
for VVUQ. A Campaign is the main object in the EasyVVUQ
library, responsible for running simulations, results collection
and storage, and retrieving data for analysis. This object has
a method to insert external runs which we use to substitute
other types of computation (HPC) by inserting results from
cloud executions. In this way, we can compute samples in
a serverless manner and use existing sampling mechanisms
and analysis methods available for the Campaign. Although
CloudVVUQ uses EasyVVUQ methods internally, it is still
compatible with other Python libraries designed for sensitivity
analysis (e.g. SALib) due to its use of inheritance functionality.
There is no requirement to use EasyVVUQ code if the only
goal is to distribute the sampling calculation on the cloud and
to gather results. With this approach, a scientist does not need
to translate existing code to use CloudVVUQ, but this option
remains available for sample generation and post-simulation
analysis. Our library is released on an open-source basis in
Sano’s Github organization [31].

The main design goals of CloudVVUQ are:
• extending EasyVVUQ library with cloud computing
• support for multiple serverless infrastructures
• achieving high parallelism and fault tolerance
• compatibility with other existing SA libraries
CloudVVUQ was primarily designed to extend EasyVVUQ

by allowing sample computation on serverless cloud services.
However, this does not limit its usage for VVUQ applications:
its base Executor class is generic enough to support sending
any json-type payload to cloud services. We also adapted three
EasyVVUQ tutorial examples and received identical results
using CloudVVUQ.

B. Tools used in the implementation

CloudVVUQ distributes work to the cloud by sending HTTP
requests asynchronously. To achieve this, we used the popu-
lar combination of two libraries, Aiohttp and Asyncio. The
former provides all the necessary features to send HTTP/1.1
requests in a fast and secure manner with a great deal of
customizability, while the latter is part of the Python Standard
Library to handle asynchronous processing. To improve fault
tolerance and deal with the unreliable nature of communication
or processing errors, the Backoff library is used to add retry
functionality. To handle authorization with AWS and Google
Cloud, the respective SDKs (Software Development Kits) are
integrated to sign requests using user-provided credentials.

C. Constraints on computational models and assumptions

Not every model is suitable for the considered cloud ser-
vices. The processing time of the most time-consuming sample
must be within the specified timeout constraint. In addition,
services such as Google Cloud Functions have a limited
range of runtime languages. If the model language is not

4



supported, then it is necessary to create a container image
and deploy it to services such as Cloud Run or AWS Lambda.
The deployed model must set optimal values for provisioned
memory, number of vCPUs, and maximum instances limits.
Otherwise, the cloud provider may throttle the calculations if
the limit is reached, or a timeout will occur if the provisioned
resources are insufficient.

In most cases, the user will be a scientist with little to
no experience with cloud technology. Therefore, we assume
that by following guidelines provided in the documentation, a
scientist will be able to prepare the model for the deployment.
Then a cloud administrator/DevOps would deploy the model
to the service and provide the configuration details (url,
credentials) to the scientist.

D. Model deployment considerations

Deployment details differ between serverless services, but
there are top-level similarities. In order to successfully deploy
a computational model to the cloud a scientist (or devops
engineer) must first choose the suitable service. The next step
is to prepare a service-compatible API in front of the model
that can handle incoming requests, pass the sample data to
the model, receive the output and return the response back
to the client. Then, depending on the service deployment
type, we pack the code in the zip file or create a container
image. In the latter case we also have to create a Dockerfile,
build and image and upload it to a container registry service.
Finally, we follow the steps in the Cloud Console to create
a function, specify its parameters and choose the container
image or upload our zip package. There are many ways to
deploy code to cloud services, e.g. using CI/CD pipelines,
CLI, SDKs. The described steps present one of the possible
implementations.

E. CloudVVUQ architecture and simplified usage example

The CloudVVUQ architecture is presented in Fig. 1 and
the API details can be found in the documentation in the
repository.

Input data
Multiple

TCP connections

Authorizer

- sign_request()

EasyExecutor
- set_sampler()
- draw_samples()
- create_campaign()

Cloud
Functions

Cloud
Run

Endpoint

Cloud provider

CloudConnector

Semaphore

- send_all()
- send_one()

Executor
- run()
- find_inputs_to_rerun()

Fig. 1: Diagram of CloudVVUQ architecture and classes.

To use CloudVVUQ users do not need to change their
existing EasyVVUQ code in any significant way - this was
one of the design goals. The example below shows a simplified
CloudVVUQ script which can be used as a template.

import easyvvuq as uq
from cloudvvuq import EasyExecutor

load_credentials()

params = define_parameters_and_ranges()
vary = define_variance_distributions()

sampler = uq.sampling.SCSampler(vary)
executor = EasyExecutor(url)
executor.set_sampler(sampler, params)
samples = executor.draw_samples()

executor.run(samples, max_load=256)

campaign = executor.create_campaign()
campaign.apply_analysis()

results = campaign.get_last_analysis()
results.plot_sobols_treemap()

V. CLOUDVVUQ WORKFLOW

A. Client-side workflow description
Once the model has been deployed to the cloud service

according to the requirements mentioned above, it is time to
send samples for computation using the CloudVVUQ library.
The CloudVVUQ workflow, presented in Fig. 2, consists of
three phases. The first is to generate samples and prepare
them for transport. If we already have samples from some
external source, we can use them instead of generating new
ones. Then, in the following phase, we use asynchronous
processing to keep sending multiple requests to an endpoint
with a deployed model in the cloud. This step is inspired by
the MapReduce programming model. The detailed algorithm
used in the library is presented as Algorithm 1. The most
important aspect of the algorithm is that the client must
use fault tolerance mechanisms, such as retries, to handle
errors and connection issues and limit the number of outgoing
requests to an endpoint. The final phase is to perform an
analysis based on simulation data. Our library provides the
user with EasyVVUQ methods created for this task.

B. Cloud provider-side workflow description
The CloudVVUQ library requires the computational model

to be deployed in the cloud. The model must be adapted for
this purpose (see section IV-D). Each cloud provider requires
that the deployed function or container have an API for
receiving requests and returning responses. Usually, for every
request received at a given endpoint, the cloud provider starts
a new container or reuses containers that are not processing
anything at the moment. Therefore, computational models
need to expose a method to calculate only one given sample
that will be sent with the request. The pseudocode for this
simple workflow is presented in Algorithm 2 and Fig.3.

5



Samples

Executor
parameters

Executor

HTTPS
requests

with
payload

Simulations results

Asynchronous
invocations
with model
parameters

Fault tolerance
+ QoS (retry
mechanism,

max load limit,
timeout,

authorization) Cloud 
Functions

Cloud 
Run

Deployed model

Post-simulation
analysis

Parameters
distributions

Samples
 generation

Ph
as

e 
1

(E
as

yV
VU

Q
)

Ph
as

e 
2

(C
lo

ud
VV

U
Q

)
Ph

as
e 

3
(E

as
yV

VU
Q

) 

Fig. 2: Diagram of client-side workflow

Endpoint

Instance
. . . Instance Autoscaling

Sample

API

Simulation result

Computational model and
simulation process

InstanceInstance

Cloud service with deployed model

Fig. 3: Diagram of cloud provider-side workflow

C. Sample generation

The EasyVVUQ library provides a useful API to generate
samples. The user can specify the distribution and range for
each parameter and pass it on to one of the many sampling
methods implemented in this library. Depending on the sam-
pling method and method-specific arguments, the number of
samples may vary. The result is an array of samples ready
to be calculated. Other libraries, such as SALib, provide an
alternative and are based on similar logic.

D. Concurrency and limits

To achieve maximum speed-up of sample calculations, it is
necessary to keep our cloud deployment saturated with sam-
ples. Cloud services usually have concurrency and maximum
instances limits, and it is considered good practice to cus-
tomize these limits during deployment. Containers, unlike 1st
generation Cloud Functions, can process more than one request

Algorithm 1 CloudVVUQ client-side workflow

credentials← Load user credentials
samples← Generate samples from distributions and using
a given sampling method
requestsQueue← Prepare samples to send
semaphore ← counting-semaphore to control the number
of requests sent concurrently to the cloud
begin Async Thread (length(requestsQueue))
while requestsQueue is not Empty do

if There are no responses to process then
if semaphore is not full then

semaphore = semaphore+ 1
request← Pop request from queue
request← Sign request using credentials
Send request to given endpoint
Release Async Thread

else if semaphore is full then
continue

end if
else if There are responses to process then

response← Load request response
if response status != 200 or Error code then

Append request again to requestQueue
else if response status == 200 then

result← response payload
Save result to file
end Async Thread

end if
semaphore = semaphore− 1

end if
end while
simulationsResults← Load results from files
Analyze simulationsResults

Algorithm 2 CloudVVUQ cloud provider-side workflow

request← Receive request
sample← Extract parameters from request payload
process← Set up a new process with computational model
simulation
results← Pass sample to process and wait for results
response ← Create request with simulation results as a
payload
Send response to the client

at a time. Therefore, it is necessary to set an optimal limit
for concurrent processing to avoid overloading the container.
Container concurrency and maximum instance limit together
give us an upper bound for the maximum concurrency that we
can achieve with CloudVVUQ.

The client has other limits that we need to be aware of.
One of them is the number of open TCP connections, which
varies between individual computers and operating systems.
CloudVVUQ uses the HTTP/1.1 protocol to send requests that
require a TCP connection for each outstanding request, result-

6



ing in a connection pool size which runs into the hundreds or
thousands. Another consideration is the speed of the client-side
network, which can be a communication bottleneck. The final
aspect relates to the CPU performance on the user’s computer.
Taking all these into account, we obtain another upper bound
for maximum concurrency we can achieve - this time, from a
client-side perspective.

E. Fault tolerance

Communication problems occur – the server can drop the
TCP connection, a packet may get lost, and the response
status code may be other than 200 (success). This cannot
cause stopping or terminating a workflow. To address this
issue, a retry mechanism has been implemented. Whenever
one of those situations arises, another request is en-queued to
send with the same payload. Clearly, this should not happen
indefinitely, therefore, we can specify a maximum number
of tries. The downside of retries is that, in the worst-case
scenario, they can significantly slow down the simulation
results. An example of this could be a long-to-compute model
with all samples being computed in parallel when a retry
happens, then computation time is at least doubled (assuming
each sample processing time is very similar).

Client-side timeouts are also essential to handle situations
in which the TCP connection is kept alive, but no request was
returned in the specified time, e.g. maximum processing time
for a given service.

As mentioned above, cloud deployment has a limit for
concurrent requests. The total number of samples we can
calculate on the cloud is simply the number of instances
multiplied by the instance concurrency limit, which for AWS
Lambda or 1st Generation Google Cloud Functions is one
request. Cloud Run container can process more than 1 request
at a time, but it is only viable if the model is not resource-
heavy and load-tuning tests verify this. In order not to overload
the cloud deployment with requests, the client library uses
a counting semaphore mechanism (see Algorithm 1) to limit
sent requests. In this way, we ensure that we process as many
samples as possible without unnecessary errors from the cloud
service and improve overall stability.

VI. EXPERIMENTS

The goals of the experiments are the following:
• to test the CloudVVUQ with real-life applications from

the computational medicine field,
• to show the scalability and parallel computing perfor-

mance,
• to demonstrate fault tolerance mechanisms,
• to identify the performance limits and bottlenecks.
To test our approach we used two real-world computational

models. The first is a Lower Limb Haemodynamics model. Its
calculation is relatively fast (150 ms). The second model is a
modified CellML Ten Tusscher, Nobel, Nobel, Panfilov [32]
model of ventricular tissue with a much longer calculation
time (4 min). By choosing these two models, we can test

the CloudVVUQ and the serverless approach in two scenarios
differing in granularity of computing tasks.

A. Testing platform and configuration

For testing purposes the CloudVVUQ library was installed
on a modern laptop computer with specification listed below.
Also a high-speed, High-throughput connection was used to
minimize possibility and impact of network bottleneck.

• CPU - Intel Core i7-10510U
• RAM - 16 GB
• OS - Windows 10 Pro
• Connection - 960 Mb/s download, 900 Mb/s upload
• TCP connections limit - 2000
The full configuration of model deployments, along with

testing parameters is specified in Table II. We decided to
include cold starts in the tests for more realistic results and
links to the source codes for reproducibility purposes.

TABLE II: Description and configuration of tests.

Model Lower Limb
Haemodynamics Ten Tusscher et al

Written in Python Octave/Matlab

Cloud Service Cloud Functions
(1st gen) Cloud Run

Average simulation time 150 ms 4 min
Memory allocation 2 GB 512MiB

CPU allocation 1 vCPU 1 vCPU
Instance concurrency 1 1
Maximum instances 4500 1200

Region europe-west1 europe-west1
Provider-side timeout 30 s 25 min
Client-side max load 600 500

Max TCP connections 1200 1000
Test size 54272 samples 1000 samples

Payload size
(send / receive) 2.6 KB / 7.2 KB 7.25 KB / 1.8 KB

Warm-up No No
Link to the source code https:// ... https:// ...

B. Lower Limb Haemodynamics model description

A steady-state 0D model of lower limb haemodynamics
was taken from [19]. It is a reduced-order model based on
the electric-hydraulic analogy, where the vascular network is
represented by an electrical circuit. The model characterises
the global pressure-flow distribution in blood vessels of the
lower limb. It is informed by 42 input parameters (vessel radii)
and produces 50 output parameters (flow rates in vessels). The
model was used to perform a formal global sensitivity analysis
with input parameter deviation of up to 50%. In the original
paper, the sampling method used was Saltelli’s extension of
the Sobol sequence implemented in the SALib library. More
than 100,000 samples were required to achieve convergence
of the first-order Sobol indices. For testing purposes we used
a smaller but still meaningful set of 54272 samples.

C. Ten Tusscher model description

The Ten Tusscher, Nobel, Nobel, Panfilov model [33] is an
established model of the human heart ventricle cells designed
to represent the electrical potential in the cell. It is based

7



on the transfer of ions through the cell membrane. The code
representing the model was taken from the CellML repository
[34] [35] and modified to run the full heart cycle and output
averages and/or extremes of values of some model states. The
model was used to perform a local sensitivity analysis. Three
(out of 63) main model parameters were sampled from a
normal distribution resulting in up to 45% deviation, the others
were set to default values. The polynomial order parameter for
Stochastic Collocation Sampler was set to 9, effectively giving
us 1000 samples.

D. Testing Lower Limb Haemodynamics model

This model (implemented in Python) was used to test the
performance of CloudVVUQ and Google Cloud Functions
for relatively quick calculations. Computational models rarely
have such short execution times but this case is interest-
ing from the implementation perspective and by using the
CloudVVUQ library the user can work in almost interactive
mode – thanks to reduction of time-to-result we can achieve by
parallelism and dynamic provisioning capabilities of serverless
infrastructure. Fig. 4 shows distributions for communication
overhead. About 96% of the results have overheads of less than
1 second. About half of the remaining 4% - seen as outliers
in Fig. 4 - can be attributed to starting overhead, such as cold
starts, which can add even 2 seconds overhead or setting up
one TCP connection for each concurrent request as required
by the HTTP/1.1 protocol.

Although the maximum client-side load limit was 1000
concurrent requests, we see in Fig. 5 that the testing platform
was not able to fully utilize the service. The load kept
oscillating between 400 and 1000 sent requests (submitted
states). The explanation is that responses have precedence over
sending new requests. An improvement for quick simulations
would be to merge a few samples into one request, split them
in the function, then calculate each sample sequentially or in
parallel and finally return a response with respective outputs.

The maximum concurrency achieved on the provider side
was 983 simulations. Fig. 6 also shows high variability in the
number of samples processed simultaneously. This is due to
the transport latency and the very fast simulation time. Despite
this, in Fig. 6 we can see a steady increase in completed
simulations, and Fig. 7 shows that no throttles occurred during
the entire workflow.

Performing those calculations locally could easily take
three hours (depending on the platform). The total serverless
workflow execution took about 48 seconds and the sum of
all simulation times (excluding overhead) in the cloud was
about 2.6 hours. Using CloudVVUQ on our platform, we can
speed-up the sample calculation phase at least 195 times for
this quick-to-compute model. During the workflow a total of
7 retries occurred for requests with IDs = [1052, 882, 528,
787, 358, 306, 522] which were successfully executed last.
Such low ID values suggest that the reason is related to initial
provisioning of instances in the cloud.

overhead
0

5

10

15

20

Ti
m

e 
[s

]

Communication overhead

simulation_code

0.2

0.3

0.4

0.5

Ti
m

e 
[s

]

Simulation time distribution

Fig. 4: Communication overhead and simulation time for the
Lower Limb Haemodynamics model executions using GCF.

0 10 20 30 40 50
Time [s]

0

10000

20000

30000

40000

50000

Co
un

t

Client-side states over time

Submitted
Completed
Waiting

0 10 20 30 40 50
Time [s]

0

200

400

600

800

1000

Co
un

t

Client-side active state over time

Submitted

Fig. 5: Client-side samples’ states for the Lower Limb
Haemodynamics model executions using GCF.

10 20 30 40 50
Time [s]

0

10000

20000

30000

40000

50000

Co
un

t

Provider-side states over time

Active
Completed
Waiting

10 20 30 40 50
Time [s]

0

200

400

600

800

1000

Co
un

t

Provider-side active state over time
Active

Fig. 6: Cloud provider-side samples’ states for the Lower
Limb Haemodynamics model executions using GCF.

Plotted results are sorted by the time a container received a request

Fig. 7: Runtime plot for the Lower Limb Haemodynamics
model executions using GCF.

8



E. Testing the Ten Tusscher model

This model is written in Octave, thus a container is required
for the deployment, making Cloud Run a suitable service. The
mean simulation time is about 4 minutes, therefore our testing
platform should be able to saturate the cloud with requests
and achieve an almost arbitrary number of parallel simulations
(compared to the previous model). As we see in Fig. 8, the
mean communication overhead is 2.2s and higher times can
be linked to cold starts, with some outliers waiting for over
50s to be processed.

Fig. 11 shows that as soon as a response is received, another
request is sent to make full use of the service without exceed-
ing the limit. Because this model takes longer to compute and
the concurrency limit is lower compared to the Lower Limb
Model test, this platform has no problem with keeping the
maximum load of 500 and the provider side reflects that in
Fig. 10. Also it shows that the service almost immediately
provisioned the required number of containers. The similarity
of Fig. 10 and Fig. 9 means that the communication overhead
is negligible in this case. Because this model takes longer to
compute, we could achieve greater speed-up than the previous
model. The calculation time was 366 times shorter than the
sum of only simulation times in the cloud, which approximates
sequential processing.

overhead
0

50

100

150

200

Ti
m

e 
[s

]

Communication overhead

simulation_code

200

250

300

350

400

450

500

Ti
m

e 
[s

]

Simulation time distribution

Fig. 8: Communication overhead and simulation time for the
Ten Tusscher model executions using Cloud Run.

0 200 400 600
Time [s]

0

200

400

600

800

1000

Co
un

t

Client-side states over time
Submitted
Completed
Waiting

0 200 400 600
Time [s]

0

100

200

300

400

500

Co
un

t

Client-side active state over time
Submitted

Fig. 9: Client-side samples’ states for the Ten Tusscher
model executions using Cloud Run.

0 200 400 600
Time [s]

0

200

400

600

800

1000

Co
un

t

Provider-side states over time
Active
Completed
Waiting

0 200 400 600
Time [s]

0

100

200

300

400

500

Co
un

t

Provider-side active state over time
Active

Fig. 10: Cloud provider-side samples’ states for the Ten
Tusscher model executions using Cloud Run.

Plotted results are sorted by the time a container received a request

Fig. 11: Runtime plot for the Ten Tusscher model executions
using Cloud Run.

F. Full parallelization experiment

It is possible to calculate all samples in parallel if the current
resources and limits allow it. We performed another test for
the Ten Tusscher model with the same configuration except
for an increased number of samples (1728) along with client-
and provider-side limits above 2000. In this way we achieved
up to 1536 active containers, as seen in Fig. 12 and a 723-fold
improvement in sample processing time.

0 200 400 600
Time [s]

0

250

500

750

1000

1250

1500

1750

Co
un

t

Client-side states over time

Submitted
Completed
Waiting

0 200 400 600
Time [s]

0

250

500

750

1000

1250

1500

1750

Co
un

t

Provider-side states over time

Active
Completed
Waiting

Fig. 12: Samples’ states for fully parallel execution test of
Ten Tussher model using Cloud Run.

G. Testing Ten Tusscher model on AWS Lambda

The last test is performed once again on a Ten Tusscher
model, this time using the AWS Lambda service. We recreated
the configuration to be as similar to the one defined in Table
II. In particular, 1800MB of memory was provisioned. The

9



model uses less than 300MB, however, memory in AWS
Lambda is strictly tied to provisioned CPU and our value
grants approximately 1 vCPU [36]. In Fig. 13 we can see
nearly perfect execution results. Almost instantly, the required
number of instances was provisioned. Overhead remained
stable and minimal - the first half of requests involved cold-
start overhead of approximately 2 seconds, while the second
half reused warm instances. No outliers occurred. The service
was used at 100% - up to the configured concurrency limits.

overhead
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
[s

]

Communication overhead

(a) Overhead distributions

0 100 200 300 400
Time [s]

0

200

400

600

800

1000

Co
un

t

Provider-side states over time
Active
Completed
Waiting

(b) Provider-side samples’
states

(c) Runtime plot

Fig. 13: Test results for Ten Tusscher model executions
using AWS Lambda

H. Summary of Results

The test’s outcome is a success and we have completed
all our testing goals. We performed computation of samples
using serverless services with a significant speedup. The full
parallelization experiment shows that we can easily control the
number of parallel computations and thus achieve results much
faster. Moreover, we could identify the influence of network
communication and short simulation time on performance.
Most issues that may occur during the second phase involve
the server closing the TCP connection and the client receiving
HTTP-429 (too many requests) statuses, usually due to an
initial lack of instances in the ready state. This was probably
the case for the Lower Limb Model test where retries occurred
and the retry mechanism proved to be a crucial component.
Tests showed that AWS Lambda provides the best performance
compared to other services. The authors of [37] reached the
same conclusion and also identified that Cloud Functions
experience reliability issues.

There is a place for future optimization, e.g. fine-tuning
containers for multiple requests processing, using Google
Cloud Functions 2nd generation that supports concurrent re-
quest processing, improving client-side configuration (optimal
number of TCP connections), finding the best retry strategy,
and performing model-specific optimization.

VII. DISCUSSION

Here we briefly summarize our general observations and
lessons learned from our prototype and experiments.

A. Serverless vs HPC

We proposed serverless computing as an alternative to HPC
for embarrassingly parallel tasks of VVUQ calculations. One
of the main advantages of FaaS services is that the submitted
work is processed almost instantly, while jobs submitted to
the SLURM system are placed in a queue and wait for
resources, which can take a long time if the cluster is under
heavy load. A small disadvantage of our approach is that
we cannot cancel submitted and ongoing computations to
reduce costs and usage, while HPC supports job cancelling.
Nonetheless, in many cases is it much easier to obtain access
to cloud computing in comparison to securing a grant on a
supercomputer.

B. HTTP protocol issues

HTTP/1 is a well-established and mature protocol but has
an important drawback called ’head-of-line blocking’, which
means that only one request can occupy the connection.
HTTP-pipelining introduced in HTTP/1.1 attempts to mitigate
the issue. Launching 500 TCP connections to achieve 500
concurrent simulations is viable if there is no alternative, but
it is very excessive and suboptimal. Our initial tests with the
HTTP/2 protocol show promising results - with a single TCP
connection we can compute Lower Limb Haemodynamics
model’s samples only 5.5 times slower than using HTTP/1.1,
and this can be further improved by distributing samples
among the optimal number of new processes. Furthermore,
with HTTP/2 there are much fewer error responses (HTTP
500 or 429 codes) than when using HTTP/1.1. Unfortunately,
we cannot expect that every endpoint will support this protocol
(e.g. AWS Lambda requires API Gateway for this purpose).

C. Other observations on serverless platforms

During the testing phase we encountered some interesting
behavioral patterns of cloud platforms.

The first one was that after a period of inactivity (e.g. 1
month) within the deployment we should expect degraded
initial performance regarding scalability and a high number
of errors, due to the lack of provisioned instances. In AWS
this is explained by the fact that configured external resources
are reclaimed and the function must be recreated. GCP deploy-
ments also experience this problem, but soon after restoring
traffic (within a few dozen seconds) everything again works
as intended.

The second issue we observed during experiments is that the
Cloud Run service quite often under-provisioned containers
for highly parallel (over 700 instances) simulation workflows.
Instead of provisioning 1 container for each request as ex-
pected, the active state plots show that the service provisioned
approximately 90% of the required value (submitted), as seen
in Fig. 12.

10



We estimate that running our VVUQ experiments using
serverless services was 2-2.5 times more expensive than using
a virtual machine of a similar size.

VIII. CONCLUSIONS

The use case presented in this publication shows efficient
facilitation of short-task computation for scientific workloads
using serverless services in the digital twin domain, in par-
ticular in computational medicine. It is a promising approach
for easy attainment of high parallelization for embarrassingly
parallel jobs, and a viable alternative to HPC for all users who
can access cloud resources. Our experiments prove that it is
possible to acquire thousands of parallel sample computations
and, as a result, speed up the calculation phase hundreds of
times. We are certain that with an increase in limits, users
will be able to achieve even better results. However, the
range of supported models is restricted by service-specific
considerations and there are various bottlenecks (network,
CPU) that affect computational performance. Nevertheless,
experiments show that communication overhead is a concern
only for exceptionally quick tasks, becoming negligible with
longer tasks.

IX. FUTURE WORK

This particular implementation can be improved in many
areas. One is to use multiplexing techniques (e.g. HTTP-
pipelining or its successors in the newer versions of HTTP)
whenever possible to minimize the number of open TCP
connections. Another idea is to distribute the input data among
many processes running the CloudVVUQ Executor, which
could improve performance for IO-heavy workflows. As noted
earlier, the possibility to collate an arbitrary number of inputs
in a single request can accelerate the workflow for quick
simulations by reducing overhead. Very promising results may
be acquired by using SQS → Lambda → DynamoDB
architecture. Initial tests validate the approach and this archi-
tecture solved the issues of keeping alive TCP connections
and using HTTP/1. Another noteworthy extension of our
research could involve cost evaluation for serverless services
as compared to HPC.

ACKNOWLEDGMENT

This publication is supported by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement Sano No 857533 and carried out within the In-
ternational Research Agendas programme of the Foundation
for Polish Science, co-financed by the European Union under
the European Regional Development Fund. This publication is
also partly supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement
ISW No 101016503.
We thank Marek Konieczny from AGH for useful discussion
and technical advice.

REFERENCES

[1] P. D. Morris, A. Narracott, H. von Tengg-Kobligk, et
al., “Computational fluid dynamics modelling in car-
diovascular medicine,” Heart, 2015, ISSN: 1355-6037.
DOI: 10 .1136 /heartjnl - 2015- 308044. eprint: https : / /
heart.bmj.com/content/early/2015/10/28/heartjnl-2015-
308044.full.pdf. [Online]. Available: https://heart.bmj.
com/content/early/2015/10/28/heartjnl-2015-308044.

[2] P. Morris, R. Gosling, I. Zwierzak, et al., “A novel
method for measuring absolute coronary blood flow
& microvascular resistance in patients with ischaemic
heart disease,” Cardiovascular research, vol. 117, Jul.
2020. DOI: 10.1093/cvr/cvaa220.

[3] I. Benemerito, W. Griffiths, J. Allsopp, et al., “De-
livering computationally-intensive digital patient appli-
cations to the clinic: An exemplar solution to predict
femoral bone strength from ct data,” Computer Methods
and Programs in Biomedicine, vol. 208, p. 106 200,
2021, ISSN: 0169-2607. DOI: https : / / doi . org / 10 .
1016 / j . cmpb . 2021 . 106200. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S0169260721002741.

[4] C. Curreli, V. Di Salvatore, G. Russo, F. Pappalardo, and
M. Viceconti, “A credibility assessment plan for an in
silico model that predicts the dose–response relationship
of new tuberculosis treatments,” Annals of Biomedical
Engineering, pp. 1–11, Sep. 2022. DOI: 10 . 1007 /
s10439-022-03078-w.

[5] V. Varella, B. d. M. Quintela, M. Kasztelnik, and
M. Viceconti, “Effect of particularisation size on the
accuracy and efficiency of a multiscale tumours’ growth
model,” International Journal for Numerical Methods
in Biomedical Engineering, vol. n/a, no. n/a, e3657,
DOI: https://doi.org/10.1002/cnm.3657. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3657.
[Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cnm.3657.

[6] Y. Shi, P. Lawford, and R. Hose, “Review of zero-d
and 1-d models of blood flow in the cardiovascular
system,” Biomedical engineering online, vol. 10, p. 33,
Apr. 2011. DOI: 10.1186/1475-925X-10-33.

[7] I. Benemerito et al., “Determining Clinically-Viable
Biomarkers for Ischaemic Stroke Through a Mechanis-
tic and Machine Learning Approach,” Ann Biomed Eng,
vol. 50, no. 6, pp. 740–750, 2022. DOI: 10.1007/s10439-
022-02956-7. [Online]. Available: https://pubmed.ncbi.
nlm.nih.gov/35364704/.

[8] W. Huberts, S. G. Heinen, N. Zonnebeld, et al., “What
is needed to make cardiovascular models suitable for
clinical decision support? a viewpoint paper,” Journal of
Computational Science, vol. 24, pp. 68–84, 2018, ISSN:
1877-7503. DOI: https://doi.org/10.1016/j.jocs.2017.
07.006. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877750317307901.

11

https://doi.org/10.1136/heartjnl-2015-308044
https://heart.bmj.com/content/early/2015/10/28/heartjnl-2015-308044.full.pdf
https://heart.bmj.com/content/early/2015/10/28/heartjnl-2015-308044.full.pdf
https://heart.bmj.com/content/early/2015/10/28/heartjnl-2015-308044.full.pdf
https://heart.bmj.com/content/early/2015/10/28/heartjnl-2015-308044
https://heart.bmj.com/content/early/2015/10/28/heartjnl-2015-308044
https://doi.org/10.1093/cvr/cvaa220
https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106200
https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106200
https://www.sciencedirect.com/science/article/pii/S0169260721002741
https://www.sciencedirect.com/science/article/pii/S0169260721002741
https://doi.org/10.1007/s10439-022-03078-w
https://doi.org/10.1007/s10439-022-03078-w
https://doi.org/https://doi.org/10.1002/cnm.3657
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3657
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3657
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3657
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3657
https://doi.org/10.1186/1475-925X-10-33
https://doi.org/10.1007/s10439-022-02956-7
https://doi.org/10.1007/s10439-022-02956-7
https://pubmed.ncbi.nlm.nih.gov/35364704/
https://pubmed.ncbi.nlm.nih.gov/35364704/
https://doi.org/https://doi.org/10.1016/j.jocs.2017.07.006
https://doi.org/https://doi.org/10.1016/j.jocs.2017.07.006
https://www.sciencedirect.com/science/article/pii/S1877750317307901
https://www.sciencedirect.com/science/article/pii/S1877750317307901


[9] ASME, “V&V 40—2018: Assessing Credibility of
Computational Modeling through Verification and Val-
idation: Application to Medical Devices,” 2018.

[10] (2022). “AWS Lambda,” [Online]. Available: https : / /
aws.amazon.com/lambda (Accessed 10/19/2022).

[11] (2022). “Google Cloud Functions,” [Online]. Avail-
able: https : / / cloud . google . com / functions (Accessed
10/19/2022).

[12] (2022). “Google Cloud Run,” [Online]. Available: https:
//cloud.google.com/run (Accessed 10/19/2022).

[13] Hans-Joachim Bungartz, Stefan Zimmer, Martin Buch-
holz, Dirk Pflüger, Modeling and Simulation.An
Application-Oriented Introduction. Springer Berlin,
Heidelberg, 2014, pp. 1–15, 47–83, ISBN: 978-3-642-
39524-6. DOI: https : / / doi . org /10 .1007 /978 - 3 - 642 -
39524-6.

[14] A. E. Tekkaya and C. Soyarslan, “Finite element
method,” in CIRP Encyclopedia of Production Engi-
neering, L. Laperrière and G. Reinhart, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 508–
514, ISBN: 978-3-642-20617-7. DOI: 10.1007/978- 3-
642-20617-7_16699. [Online]. Available: https://doi.
org/10.1007/978-3-642-20617-7_16699.

[15] D. J. Murray-Smith, “Methods of model verification,” in
Testing and Validation of Computer Simulation Models:
Principles, Methods and Applications. Cham: Springer
International Publishing, 2015, pp. 77–83, ISBN: 978-
3-319-15099-4. DOI: 10.1007/978-3-319-15099-4_6.
[Online]. Available: https://doi.org/10.1007/978-3-319-
15099-4_6.

[16] A. Saltelli, S. Tarantola, C. F., and R. C. M., Sensitivity
Analysis in Practice: A Guide to Assessing Scientific
Models. John Wiley & Sons, Ltd, 2004, pp. 31–61,
ISBN: 0-470-87093-1.

[17] A. Saltelli, “Sensitivity analysis for importance assess-
ment,” Risk analysis : an official publication of the
Society for Risk Analysis, vol. 22, pp. 579–90, Jul. 2002.
DOI: 10.1111/0272-4332.00040.

[18] A. Saltelli et al., “Variance based sensitivity analysis
of model output. Design and estimator for the total
sensitivity index,” Computer Physics Communications,
vol. 181, no. 2, pp. 259–270, 2010, ISSN: 0010-4655.
DOI: https : / / doi . org / 10 . 1016 / j . cpc . 2009 . 09 . 018.
[Online]. Available: https : / / www. sciencedirect . com /
science/article/pii/S0010465509003087.

[19] M. Otta, I. Halliday, J. Tsui, C. Lim, Z. R. Struzik, and
A. Narracott, “Sensitivity analysis of a model of lower
limb haemodynamics,” in Computational Science –
ICCS 2022, D. Groen, C. de Mulatier, M. Paszynski,
V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. A.
Sloot, Eds., Cham: Springer International Publishing,
2022, pp. 65–77, ISBN: 978-3-031-08757-8.

[20] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B.
Recht, “Occupy the cloud: Distributed computing for
the 99%,” in Proceedings of the 2017 Symposium on
Cloud Computing, ser. SoCC ’17, Santa Clara, Cal-

ifornia: Association for Computing Machinery, 2017,
pp. 445–451, ISBN: 9781450350280. DOI: 10 . 1145 /
3127479.3128601. [Online]. Available: https://doi.org/
10.1145/3127479.3128601.

[21] V. Shankar, K. Krauth, K. Vodrahalli, et al., “Serverless
linear algebra,” in Proceedings of the 11th ACM Sym-
posium on Cloud Computing, ser. SoCC ’20, Virtual
Event, USA: Association for Computing Machinery,
2020, pp. 281–295, ISBN: 9781450381376. DOI: 10 .
1145 / 3419111 . 3421287. [Online]. Available: https : / /
doi.org/10.1145/3419111.3421287.

[22] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel,
and P. Garcia-Lopez, “Outsourcing data processing jobs
with lithops,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2021. DOI: 10.1109/TCC.2021.3129000.

[23] (2022). “Kubernetes - production-grade container or-
chestration,” [Online]. Available: https://kubernetes.io
(Accessed 10/19/2022).

[24] K. Burkat, M. Pawlik, B. Balis, et al., “Serverless
containers – rising viable approach to scientific work-
flows,” in 2021 IEEE 17th International Conference on
eScience (eScience), 2021, pp. 40–49. DOI: 10 .1109/
eScience51609.2021.00014.

[25] R. Chard, Y. Babuji, Z. Li, et al., “Funcx: A federated
function serving fabric for science,” in Proceedings of
the 29th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’20,
Stockholm, Sweden: Association for Computing Ma-
chinery, 2020, pp. 65–76, ISBN: 9781450370523. DOI:
10.1145/3369583.3392683. [Online]. Available: https:
//doi.org/10.1145/3369583.3392683.

[26] J. Herman and W. Usher, “Salib: An open-source
python library for sensitivity analysis,” The Journal of
Open Source Software, vol. 2, Jan. 2017. DOI: 10.21105/
joss.00097.

[27] S. Tennøe, G. Halnes, and G. T. Einevoll, “Uncer-
tainpy: A python toolbox for uncertainty quantification
and sensitivity analysis in computational neuroscience,”
Frontiers in Neuroinformatics, vol. 12, 2018, ISSN:
1662-5196. DOI: 10.3389/fninf.2018.00049. [Online].
Available: https://www.frontiersin.org/articles/10.3389/
fninf.2018.00049.

[28] B. Debusschere, K. Sargsyan, C. Safta, and K. Chowd-
hary, “The uncertainty quantification toolkit (uqtk),” in
Handbook of Uncertainty Quantification, R. Ghanem,
D. Higdon, and H. Owhadi, Eds., Springer, 2017,
pp. 1807–1827. [Online]. Available: http : / / www .
springer.com/us/book/9783319123844.

[29] S. Marelli and B. Sudret, “Uqlab: A framework for
uncertainty quantification in matlab,” in Proc. 2nd
Int. Conf. on Vulnerability, Risk Analysis and Man-
agement (ICVRAM2014), Liverpool, United Kingdom,
2014. DOI: 10.1061/9780784413609.257.

[30] R. Richardson, D. Wright, W. Edeling, V. Jancauskas,
J. Lakhlili, and P. Coveney, “Easyvvuq: A library for
verification, validation and uncertainty quantification in

12

https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://cloud.google.com/functions
https://cloud.google.com/run
https://cloud.google.com/run
https://doi.org/https://doi.org/10.1007/978-3-642-39524-6
https://doi.org/https://doi.org/10.1007/978-3-642-39524-6
https://doi.org/10.1007/978-3-642-20617-7_16699
https://doi.org/10.1007/978-3-642-20617-7_16699
https://doi.org/10.1007/978-3-642-20617-7_16699
https://doi.org/10.1007/978-3-642-20617-7_16699
https://doi.org/10.1007/978-3-319-15099-4_6
https://doi.org/10.1007/978-3-319-15099-4_6
https://doi.org/10.1007/978-3-319-15099-4_6
https://doi.org/10.1111/0272-4332.00040
https://doi.org/https://doi.org/10.1016/j.cpc.2009.09.018
https://www.sciencedirect.com/science/article/pii/S0010465509003087
https://www.sciencedirect.com/science/article/pii/S0010465509003087
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1109/TCC.2021.3129000
https://kubernetes.io
https://doi.org/10.1109/eScience51609.2021.00014
https://doi.org/10.1109/eScience51609.2021.00014
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.21105/joss.00097
https://doi.org/10.21105/joss.00097
https://doi.org/10.3389/fninf.2018.00049
https://www.frontiersin.org/articles/10.3389/fninf.2018.00049
https://www.frontiersin.org/articles/10.3389/fninf.2018.00049
http://www.springer.com/us/book/9783319123844
http://www.springer.com/us/book/9783319123844
https://doi.org/10.1061/9780784413609.257


high performance computing,” Journal of Open Re-
search Software, vol. 8, Apr. 2020. DOI: 10.5334/jors.
303.

[31] (2023). “Sano’s GitHub organization,” [Online]. Avail-
able: https : / / github . com / SanoScience (Accessed
03/13/2023).

[32] (2022). “Ten Tusscher, Noble, Noble, Panfilov model
in the CellML repository,” [Online]. Available: https :
//models.cellml.org/e/80c (Accessed 10/19/2022).

[33] K. H. W. J. ten Tusscher, D. Noble, P. J. Noble, and
A. V. Panfilov, “A model for human ventricular tissue,”
American Journal of Physiology-Heart and Circula-
tory Physiology, vol. 286, no. 4, H1573–H1589, 2004,
PMID: 14656705. DOI: 10.1152/ajpheart.00794.2003.

[34] (2022). “Cellml model repository,” [Online]. Available:
https : / /models .physiomeproject .org/cellml (Accessed
10/19/2022).

[35] A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bulli-
vant, D. P. Nickerson, and P. J. Hunter, “An overview
of cellml 1.1, a biological model description language,”
SIMULATION, vol. 79, no. 12, pp. 740–747, 2003. DOI:
10 .1177 /0037549703040939. eprint: https : / / doi .org /
10.1177/0037549703040939. [Online]. Available: https:
//doi.org/10.1177/0037549703040939.

[36] (2022). “Lambda configuration options,” [Online].
Available: https://docs.aws.amazon.com/lambda/latest/
dg / configuration - function - common . html (Accessed
10/19/2022).

[37] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski,
and T. Hoefler, “Sebs: A serverless benchmark suite
for function-as-a-service computing,” in Proceedings
of the 22nd International Middleware Conference,
ser. Middleware ’21, Québec city, Canada: Association
for Computing Machinery, 2021, pp. 64–78, ISBN:
9781450385343. DOI: 10 . 1145 / 3464298 . 3476133.
[Online]. Available: https://doi.org/10.1145/3464298.
3476133.

13

https://doi.org/10.5334/jors.303
https://doi.org/10.5334/jors.303
https://github.com/SanoScience
https://models.cellml.org/e/80c
https://models.cellml.org/e/80c
https://doi.org/10.1152/ajpheart.00794.2003
https://models.physiomeproject.org/cellml
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1177/0037549703040939
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3464298.3476133

	I Introduction
	II Background
	II-A Serverless model
	II-B Serverless computing services
	II-C Computational Models
	II-D Sensitivity analysis
	II-E Motivation

	III Related Work
	III-A Generic libraries for serverless data processing
	III-B Serverless approach in science
	III-C VVUQ libraries

	IV CloudVVUQ library
	IV-A Base library and design goals
	IV-B Tools used in the implementation
	IV-C Constraints on computational models and assumptions
	IV-D Model deployment considerations
	IV-E CloudVVUQ architecture and simplified usage example

	V CloudVVUQ workflow
	V-A Client-side workflow description
	V-B Cloud provider-side workflow description
	V-C Sample generation
	V-D Concurrency and limits
	V-E Fault tolerance

	VI Experiments
	VI-A Testing platform and configuration
	VI-B Lower Limb Haemodynamics model description
	VI-C Ten Tusscher model description
	VI-D Testing Lower Limb Haemodynamics model
	VI-E Testing the Ten Tusscher model
	VI-F Full parallelization experiment
	VI-G Testing Ten Tusscher model on AWS Lambda
	VI-H Summary of Results

	VII Discussion
	VII-A Serverless vs HPC
	VII-B HTTP protocol issues
	VII-C Other observations on serverless platforms

	VIII Conclusions
	IX Future work

