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Abstract—The next generation of cellular technology, 6G, is
being developed to enable a wide range of new applications and
services for the Internet of Things (IoT). One of 6G’s main
advantages for IoT applications is its ability to support much
higher data rates and bandwidth as well as to support ultra-
low latency. However, with this increased connectivity will come
to an increased risk of cyber threats, as attackers will be able
to exploit the large network of connected devices. Generative
Artificial Intelligence (AI) can be used to detect and prevent
cyber attacks by continuously learning and adapting to new
threats and vulnerabilities. In this paper, we discuss the use
of generative Al for cyber threat-hunting (CTH) in 6G-enabled
IoT networks. Then, we propose a new generative adversarial
network (GAN) and Transformer-based model for CTH in 6G-
enabled IoT Networks. The experimental analysis results with a
new cyber security dataset demonstrate that the Transformer-
based security model for CTH can detect IoT attacks with
a high overall accuracy of 95%. We examine the challenges
and opportunities and conclude by highlighting the potential
of generative Al in enhancing the security of 6G-enabled IoT
networks and call for further research to be conducted in this
area.

Index Terms—Generative Al, Security, GPT, GAN, IoT, 6G.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized how people
interact with the environment around them. With the emer-
gence of 6G technology, the IoT is expected to reach new
levels of connectivity and intelligence [1]], [2]. As shown in
Figure in Fig. |1} the 6G-enabled IoT network comprises four
tiers: the perception tier, the network tier, the edge tier, and
the cloud tier. The perception layer is the first layer of the
6G-enabled IoT network. The layer is in charge of sensing
and collecting data from the physical world. Various sensors,
such as temperature, microphones, and camera sensors, are
embedded in devices such as smartphones, smart home ap-
pliances, and industrial equipment at this layer. The network
layer is the second layer of the 6G-enabled IoT network. It
is responsible for the connection of all the devices in the
network and allowing data transfer between them. The network
layer is composed of various networking technologies, such
as Wi-Fi, Bluetooth, and 6G, which enable the devices to
communicate with each other and with the edge layer. The
edge layer is the third layer of the 6G-enabled IoT network. It’s
responsible for processing and analyzing data at the edge of the
network, rather than in the cloud. The edge layer is composed
of peripheral devices, such as routers, gateways, and servers,

which are equipped with powerful processors and memory.
The cloud layer is responsible for the storage, management,
and analysis of data collected by the perception layer. This
layer consists of cloud servers, located in data centers and
accessible via the Internet.

Generative Al refers to a class of artificial intelligence that
can generate new material, such as music, images, or text
[3l. Those particular systems are constructed to learn the
characteristics and features of a specific dataset and then use
that intelligence to generate new, original content that follows
the same pattern. Generative Al in general has a variety of
different uses, including data synthesis, algorithm Invention,
data augmentation, and anomaly detection. Table [I| presents
the comparison between the Generative Al model and the
Traditional Al

There are, at the same time, limitations on the use of
generative Al for cyber threat hunting. One challenge is that
such systems depend on the completeness and quality of the
data on which they’re trained. If the data being trained is
incomplete or biased, the performance of the system can be
damaged. In addition, generative Al systems can create false
positives, which involves the identification of a threat that
could be occurring when no threat really exists. This can result
in useless testing and resource consumption

Cyber threat hunting is the process of searching for proac-
tive signs of malicious activity within an organization’s net-
works and systems. This is key to finding and minimizing
the threats before they cause serious damage. Over the past
few years, however, an increasing interest has emerged in
the application of generative artificial intelligence (AI) to
cyber threat hunting. There are many different ways to use
generative Al for cyber threat hunting, and one of them is to
analyze large quantities of data to find and identify patterns
and anomalies that could provide an indication of the presence
of a threat. One method of using generative Al for cyber threat
hunting is the report and alert generation. The traditional cyber
threat hunt can often include reviewing massive quantities of
data manually and then generating alerts or reports depending
on the findings. This is time-consuming and can lead to
errors. Generative Al systems, on the other hand, can perform
real-time data analysis and produce reports or alerts directly
depending on the findings. This can contribute to a significant
acceleration of the threat detection process and decrease the
number of missed security threats. Using generative Al for
cyber threat hunting is one technique that is adopted for
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Fig. 1: A 6G-enabled IoT Network.

analyzing large amounts of data in order to find any abnormal
activity patterns and anomalies that might reveal the existence
of a malicious threat. A generative Al system, for example,
might be trained on a network traffic log dataset and then be
employed to recognize abnormal patterns of activity that may
be indicative of a threat adversary.

Motivated by the facts mentioned above, in this article, we
review the use of generative Al for cyber threat-hunting in 6G-
enabled IoT networks. Specifically, we discuss the Generative
Al use cases for IoT applications as well as evaluate three
generative Al models for cyber security, including, the GAN-
based method, GPT-based method, and BERT-based method.
Therefore, we propose a new GAN and Transformer-based
model for Cyber Threat-Hunting in 6G-enabled IoT Networks.
The experimental analysis results with a new cyber security
dataset demonstrate that the Transformer-based security model
for cyber threat-hunting can detect IoT attacks with a high
overall accuracy of 95%. In addition, we provide several
challenges regarding the use of generative Al for cyber threat-
hunting in 6G-enabled [oT networks, including, scalability
issues, decentralized training issues, data quality issues, energy
challenges, privacy-preserving challenges, and tokenization
challenges.

This article is structured as follows: In section [[I, the
generative Al use cases for IoT applications are presented.
Section outlines the methodology of generative Al for
Cyber Security. The proposed GAN and Transformer-based
model is detailed in section while the results of our
experiments are provided in section [V} Section [VI] covers the
open challenges concerning the use of generative Al for cyber
threat-hunting in 6G-enabled IoT networks, and finally, section
concludes the article.

II. GENERATIVE AI USE CASES

As GPT and GAN are two completely different models
with different strengths and weaknesses, they can be combined

to form a more robust system. For example, GPT can be
used to generate text-based synthetic data, which can then be
transmitted through a GAN to generate realistic images. This
combination can be employed to generate more synthetic data
for computer vision models, audio models, security models,
and text models, which can help improve their robustness and
accuracy. In this section, we discuss the Generative Al use
cases for IoT applications, including, visual IoT applications,
audio IoT applications, text-based IoT applications, code-
based IoT applications, and IoT security.

A. Visual IoT Applications

Visual applications can be employed in various types of
IoT contexts, from surveillance and real-time monitoring to
diagnostic and remote maintenance. Specifically, as an exam-
ple, video cameras and other sensors can be embedded in IoT
systems to facilitate the monitoring of equipment or installa-
tions remotely, enabling users to identify and solve problems
quickly before they progress to serious issues. One of the most
well-known applications of generative Al is the application of
generative adversarial networks (GANs) to generate realistic
images. A GAN comprises a pair of neural networks: one is
a generator, which learns to produce novel images, and the
other is a discriminator, which learns to distinguish genuine
from fabricated images. Both networks are trained jointly in a
zero-sum game, where the generator tries to generate images
that are unrecognized from the real ones and the discriminator
tries to categorize the images as real or fake with accuracy.
We consider a visual IoT system used to monitor the status
of crop health in an agricultural field [13]]. Specifically, the
system could employ cameras and sensors to capture data
on the crops’ development and progress. Through the use of
generative Al, however, it is possible to produce pictures or
videos that demonstrate how crops are expected to develop
over time, based on the data that has been collected. This
could be used to assist in helping farmers to better understand
how to properly manage their crops and ensure that they are
making the best use of their resources. As such, Generative
Al will play a key role in the future development of visual
IoT applications.

B. Audio IoT Applications

An example of a voice-based device in the IoT is the
Amazon Echo, which employs the Alexa voice assistant to
enable consumers to monitor smart home equipment and
control and access content via their voice prompts. The device
can be deployed to power on and off lamps, regulate room
thermostats, listen to music, and many others. Additional
examples of voice-activated devices in the IoT include Apple
HomePod, Google Home, ...etc. The use of voice-activated
devices is a one-way audio application that can be imple-
mented in the IoT. Therefore, Generative Al has the power
to transform the way we interact with audio applications in
6G-enabled IoT networks. By employing machine learning
algorithms to generate new audio content, generative Al can
enable a vast number of applications that were not previously
possible. One possible potential application of generative Al



TABLE I: Comparison between Generative Al model and Traditional Al.

[ Metric

[ Generative AT

[ Traditional AI ]

Data Availabil-
ity

Demand large amounts of data to train, which makes it chal-
lenging to use in situations where data is limited

Requires less data to train, which makes them more feasible to
use in situations where data is limited.

Scalability

Generative Al models can be computationally demanding,
which makes them challenging to scale

Traditional ML models are often less computationally demand-
ing, which makes them more scalable

Data Privacy

Generative AI models usually involve access to a large dataset,
which may be owned by a third party

Traditional AT models are based on user or organization-owned
data

Data security

Generative Al models can pose a higher privacy risk since they
generate new data that may not be fully controllable

Traditional Al models use existing data and can be less risky
regarding data privacy

Adversarial Generative Al models can be vulnerable to adversarial attacks, | Traditional Al models are often more resilient to adversarial
Robustness as these models are trained to generate new data rather than | attacks than generative Al, as they are trained to classify the
classify the existing data existing data rather than generate new data

Overfitting Generative Al models can be susceptible to overfitting Traditional Al models are often less susceptible to overfitting
compared to Generative Al models

Transfer The transfer of generative Al models to different tasks or | Traditional Al models are often easier to transfer to new tasks

Learning domains is challenging or domains

Bias Generative Al models can be vulnerable to bias Traditional ML models are often less vulnerable to bias com-
pared to Generative Al models

Time Generative Al models can be computationally intensive Traditional Al models are often less computationally intensive

Complexity compared to Generative Al models

Energy cost Require more computational power and energy

Require Less computational power and energy compared to
generative models

TABLE II: Recent works

on Generative Al for Cyber Threat-Hunting.

Framework Year ToT Network model Datasets Gen. AT ML model Pros (+) Open Issues (-)
Zhang et al. [4] 2021 By maintaining a singular global model, an IoT network disseminates the | MNIST, Fashion- [ GAN CNN + The proposed generative poisoning method is efficient against a Federated learning
model throughout a cloud server and various edge nodes or clients MNIST, and CI- framework
FARI0 - Poisoning attack on federated learning may require a lot of computational power
Ranade et al. [5] | 2021 the paper’s design requires the assembly of unlabeled textual data on | Common Vulner- | BERT MLM + The model that has been fine-tuned can carry out multiple cybersecurity-related tasks
cybersecurity from a variety of sources such as the National Vulnerability | abilities and Ex- with great precision and effectiveness
Database, and open source blogs. posures - The paper does not discuss the scalability of the model and its ability to handle large-
scale datasets, which may be a limitation in real-world applications
Wu et al. [6] 2021 At the edge nodes of the network, the IDS is positioned to gather historical | CIC-DDOS2019 | GAN CNN + Improves the accuracy of intrusion detection systems
information about the network’s edges. This information is then transferred | and CIC- - The proposed method requires a signi amount of ¢ ional res es, which
to a data center where feature selection and model training takes place. DDOS2019 may not be feasible for resource-constrained IoT edge nodes
Cui et al. [7] 2021 At the edge nodes of the network, the IDS is positioned to gather historical | KDD CUP 1999 | GAN CNN + This framework utilizes blockchain technology to ensure data integrity and prevent
information about the network’s edges. This information is then transferred single-point failure
to a data center where feature selection and model training takes place. - The system is only tested on one specific dataset, which may not generalize to other
datasets or real-world situations
Ranade et al. [8] | 2021 There are three primary sources that make up the CTI collection, which | WebText dataset | GPT ENN + Provides a method for automatically generating fake CTI text using Transformers to
include technical APT reports, vulnerability databases, and security news perform a data poisoning attack
articles. - The paper does not provide a solution for detecting or mitigating the effects of a data
poisoning attack using fake CTI
Yang et al. [9)] 2022 The 6G architecture is divided into four tiers, including marine, terrestrial, | Simulation GAN AE + Determine the trustworthiness of network devices and make trust management more
aerial and satellite networks, and utilizes Al services throughout the resilient
process, from data sensing to smart applications The proposed framework does not discuss any potential security risks or vulnerabilities
that may arise from using the proposed GAN method
Tabassum et al. [ 2022 | The system focuses on two main components: IoT devices and Edge Nodes | UNSW-NBI5, GAN CNN + The model is distributed over IoT devices and uses augmented local data for training
{10) NSL-KDD - Efficient models require ample and varied training data in FL
[Jo et al. [i8}] 2022 The architecture is separated into two sections: the collection of CTI data | 540 K articles | BERT BIiLSTM + For both NER and RE tasks, there was an average F-score of 0.972 and 0.985,
and the utilization of CTI data. The collection section comprises five | about cyber respectively
elements: a scraper of data, a pre-processor, an identifier of threat entities, | threats - Vulnerable to adversarial attacks, where attackers can manipulate the input to the model
a linker of entities, and an identifier of threat relationships in order to produce a desired output
Habibi ot al. [12] | 2023 | The ToT system is made up of various components including sensors, | BotIoT dataset | GAN MLP + The proposed solution has shown promising results, achieving a high accuracy rate of
wireless power, microcontrollers, and antennas which are connected to a 98.93%, an Fl-score of 0.9907, and geometric-score values of 0.9874
gateway. They are linked to the cloud computing - The proposed solution may not be effective in dealing with zero-day threats

The abbreviations BILS

, ML, FL, CNN, GAN, GPT, CTI, FNN, AE, MLP, BERT, MLM, NER; and RE stand for A Bidirectional Long Short-Term Memory, Machine Learning, Federated Learning, Convolutional Neural Network, Generative

Adversarial Networks, Generative Pre-trained Transformer, Cyber Threat Intelligence, Feedforward Neural Network, Auto Encoder, Multilayer Perceptron, Bidirectional Encoder Representations from Transformers, Masked Language Modeling, Named
Entity Recognition, and Relation Extraction, respectively.

in audio is the construction of personal audio environments
for virtual and augmented reality (VR/AR) experiences. By
processing the preferences of a user and the context of the
VR/AR environment, a generative Al system can generate
a specific audio experience that is designed to immerse the
user in the virtual reality environment. While this could be
particularly beneficial for entertainment and gaming apps, it
could also be implemented in more practical environments,
such as training simulations. In addition, Generative Al could
also be used to enhance the availability of audio content for
people with hearing difficulties. By generating descriptions of
visual content, such as films or television programs, generative
Al could allow people with hearing loss to access and enjoy
audio-visual media that was previously unfeasible.

C. Text-based IoT Applications

A specific application of Natural Language Processing
(NLP) in the IoT is the development of automated intelligent
assistants and chatbots. The systems use NLP-based algo-

rithms to interpret and process user queries, enabling people
to interact with machines and systems using natural language.
To illustrate, a user may ask a smart assistant to activate the
lights or regulate the temperature in their residence, and the
assistant will employ NLP to interpret and process the query.
Therefore, a popular implementation of generative Al involves
the deployment of language models to generate text in natural
language. These models are trained on larger text datasets and
can produce sentences and paragraphs consistently that reflect
the style and structure of the language. These models can be
employed for various applications, such as dialogue systems,
text summarization, and machine translation. Generative Al
has also potential uses in augmenting data, where it can be
employed to produce more training examples for machine
learning models. This may especially be relevant in situations
where the quantity of training data available is small, as it can
help to enhance the model’s performance. However, a major
issue of concern with generative Al is the possibility that it
can be exploited to generate malicious or fraudulent material,



such as deepfake videos or fake news articles. In order to deal
with this issue, it’s important to build detection and mitigation
approaches for such threats, such as enhancing the resilience
of discriminative models and building methods for authenticity
verification of the produced contents.

D. Code-based IoT Applications

A key feature of the IoT is the generation of codes,
or software programs, that allow devices to interact with
each other and execute specific actions. These codes can be
employed to build applications, which can be downloaded
to various devices and used to monitor and operate various
components of the IoT. There are various approaches to
employing generative Al for code generation. There is one ap-
proach that involves the use of the machine learning model to
generate code based on a set of required input parameters and
preferences. Specifically, for example, a user could provide the
intended function of a code fragment and the machine learning
model will generate the code that will accomplish the desired
function. This might be especially valuable in situations where
the intended function is complicated and takes time for a
human developer to code manually. However, there are also
potential limitations and challenges when using generative Al
for code generation. One challenge is that the training data for
the machine learning model needs to be high quality in order to
have the model generate reliable code. An additional challenge
is that generated code is not always able to be interpreted by
humans, which may make it challenging for the developers to
understand and debug.

E. IoT Security

GPT and GAN are two popular machine learning models
that have been widely used in various applications such as
natural language processing (NLP) and image generation.
Although both models are generative, they have different func-
tions and applications in the security field. With the increase
of connected devices, security has now become a major issue.
These devices can be susceptible to attackers, who can use
them to gain access to sensitive data or to monitor the devices
themselves. One potential use of generative Al in IoT security
is in detecting and preventing cyberattacks. Most cyberattacks
are actually automated and employ pre-determined attack
patterns to attempt to penetrate systems. Generative Al can be
employed to recognize and prevent these patterns, essentially
stopping the attack before it causes any serious damage. Gen-
erative Al can also be used to monitor devices continuously for
abnormal patterns or activities, allowing for quick recognition
and resolving potential security risks. Another potential use
of generative Al in IoT security is the creation of secure
communication protocols. Multiple IoT devices depend on
wireless communication to communicate with the Internet and
with each other. These wireless communications, however, can
be easily captured and compromised by attackers. Generative
Al can be employed to build secure communication protocols
that encrypt data transmitted between devices, which makes
it significantly more difficult for attackers to gain access to
critical data.

TABLE III: Comparison between Generative Al models.

[ Metric [GAN [GPT [ BERT |
Model type Generative | Transformer | Transformer
Anomaly detection Yes Yes Yes
Authentication No No No
Encryption and decryption No No No
Network intrusion detection Yes Yes Yes
Access control Yes Yes Yes
Phishing detection Yes Yes Yes
Spam detection Yes Yes Yes
Malware detection Yes Yes Yes
Al attack detection Partial No No
Adversarial training Yes No No
Robustness to adversarial examples Yes No No
Cyber Threat Intelligence No Yes Yes
Vulnerability analysis No Yes Yes

III. GENERATIVE AI FOR CYBER SECURITY

Table reviews the recent works on Generative Al for
Cyber Threat-Hunting.

A. Generative Al-based method

1) GAN-based method: Cui et al. [/ introduced DP-GAN,
a modified version of the GAN model that enables decen-
tralized and asynchronous Federated Learning (FL) while
preserving differential privacy. The system operates by con-
currently running two games: one between the generator and
discriminator of a traditional GAN, and the other between
the discriminator and a new component named DP identifier
(DPI). Additionally, the framework incorporates blockchain
technology to enhance system reliability and establish a de-
centralized IoT anomaly detection system. On the other hand,
Block Hunter, developed by Yazdinejad et al. [[14], utilizes
a cluster-oriented design to identify irregularities in smart
factories based on blockchain technology. By employing the
cluster-based approach, the detection process becomes more
effective as it lowers the amount of data transmitted while
also increasing throughput in IIoT networks. Block Hunter
also examines various anomaly detection algorithms, including
clustering-based, statistical, subspace-based, classifier-based,
and tree-based techniques. The proposed approach is evaluated
based on block generation, block size, and miners and the
assessment includes metrics such as accuracy, precision, recall,
Fl1-score, and True Positive Rate (TPR).

The security challenges of the Internet of Things (IoT)
are addressed by Habibi et al. in their study [12f], with a
specific focus on the problem of IoT Botnets and their impact
on the reliability of IoT systems. The authors assert that
current botnet detection methods are flawed as they rely on
untrustworthy or unlabeled datasets, leading to a decrease in
the performance of security tools. To address this, the study
proposes the use of a Generative Adversarial Network model
for tabular data modeling and generation. Results indicate that
with data augmentation through the proposed Generative Al
algorithm, Multilayer Perceptron (MLP) shows high accuracy
and Fl-score, as well as high sensitivity and specificity.
Similarly, the utilization of GAN in trust management for
dependable and immediate communication in 6G wireless
networks is investigated by Yang et al. [9]. A novel intelligent
trust management framework that blends fuzzy logic theory
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Fig. 2: The proposed GAN and Transformer-based model for Cyber Threat-Hunting in 6G-enabled IoT Networks.

and adversarial learning is introduced in the study. Moreover,
a trust decision-making model based on GAN is proposed to
appraise the credibility of network devices and enhance the
robustness of trust management.

Tabassum et al. [[10] introduced FEDGAN-IDS, a Federated
Deep Learning Intrusion Detection System that utilizes the
GAN architecture to identify cyber threats in smart IoT
systems. The purpose of FEDGAN-IDS is to resolve the
disparity in data distribution for rare classes by using GANs
and augmenting local data to improve privacy and performance
in distributed training. The authors assessed the effectiveness
of FEDGAN-IDS by comparing it to other federated intrusion
detection models and conducting experiments on multiple
datasets. The outcomes indicate that the proposed model
outperforms the latest standalone IDS and reaches convergence
more quickly.

Zhang et al. [4] conducted a study on the vulnerabilities
of federated learning in edge computing for IoT applications.
Federated learning is a technique that allows machine learning
models to be trained locally instead of centrally to reduce
privacy concerns. However, the study revealed that this method
is vulnerable to poisoning attacks, where an attacker introduces
malicious data to corrupt the global model. To tackle this issue,
the study suggested two approaches, namely Data_Gen and
PoisonGAN. Data_Gen is a technique that utilizes GAN to
generate poison data based on the global model parameters.
PoisonGAN, on the other hand, is a new poisoning attack
model that leverages Data_Gen to reduce attack assumptions
and make the attacks more feasible. The effectiveness of these
attack models was tested using two common poisoning attack

strategies, label flipping, and backdoor, on a federated learning
prototype. The findings demonstrated that these attack models
were successful in federated learning.

2) GPT-based method: Ranade et al. [8|] investigate the
potential harm of incorporating false Cyber Threat Intelli-
gence (CTI) into cyber-defense systems, which rely on semi-
structured data and text to create knowledge graphs. They
employ GPT-2 with fine-tuning, a type of Transformer, to
produce realistic CTI text descriptions and fool the cyber-
defense systems. To demonstrate the destructive consequences
of this attack, the authors launch a data poisoning assault on
a Cybersecurity Knowledge Graph (CKG) and a cybersecurity
corpus. The study also involves feedback from cybersecurity
professionals and threat hunters, who acknowledge the pro-
duced fake CTT as authentic.

3) BERT-based method: Ranade et al. [5]] introduced Cy-
BERT, a specialized version of BERT that has been adapted
to the field of cybersecurity. This model utilizes a large
corpus of cybersecurity data to improve its performance in
processing detailed information related to threats, attacks,
and vulnerabilities. The key contribution of this work is the
development of a fine-tuned BERT model that can accurately
and efficiently complete a range of cybersecurity-specific
tasks. The model was trained on open-source, unstructured,
and semi-unstructured Cyber Threat Intelligence (CTI) data
using Masked Language Modeling (MLM) and was evaluated
on various downstream tasks that have potential applications
in Security Operations Centers (SOCs). Additionally, the pa-
per also presents examples of how CyBERT can be used
in real-world cybersecurity tasks. Jo et al. [11]] introduced
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Vulcan, a CTI system that extracts relevant information from
unstructured text and establishes semantic connections. The
system employs neural language model-based named entity
recognition and relation extraction techniques. The researchers
conducted experiments and found that Vulcan boasts a high
level of accuracy, with an F-score of 0.972 for named entity
recognition and 0.985 for relation extraction. Furthermore,
the system provides a platform for security professionals to
create applications for threat analysis, and the study includes
two examples of such applications - identifying the evolution
of threats and profiling threats - which can save time and
resources in analyzing cyber threats and provide in-depth
information about the threats.

B. Comparison between Generative Al-based models

Table presents a comparison between Generative Al
models, namely, GAN, GPT, and BERT. In order to secure
IoT applications, GANs have a number of benefits over GPT
and BERT. A key advantage of GANs is their potential to
generate new data similar to training data. This leads to their
suitability for applications such as phishing detection, spam
detection, malware detection, network intrusion detection, and
anomaly detection. GANs are also resilient to adversarial ex-
amples, making them suitable for attack detection and defense.
GPT and BERT, however, are not as robust to adversarial

examples as GANs. They are valuable for performing other
tasks such as providing natural language understanding and
text generation. Currently, proposing a cyber security system
using Transformer-based models for securing IoT applications
is challenging. For the other cybersecurity metrics listed in the
table, GAN, GPT, and BERT lack access control, encryption
and decryption capabilities, and authentication. From this
analysis, we explore and propose the combination of GAN and
Transformer models for Cyber Threat-Hunting in 6G-enabled
IoT Networks.

IV. THE PROPOSED GAN AND TRANSFORMER-BASED
MODEL

The proposed GAN and Transformer-based model for Cyber
Threat-Hunting in 6G-enabled IoT Networks is presented in

Figure [2|

A. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of deep
learning algorithm that utilizes generative and discriminative
models in combination to generate new data that is similar
to an existing dataset. The fundamental structure of a GAN is
comprised of two neural networks: a generator and a discrimi-
nator. The generator is responsible for creating new data, while
the discriminator is tasked with evaluating the authenticity
of the generated data. The objective of the generator is to
minimize the loss function by generating a greater number
of samples that the discriminator classifies as genuine. On
the other hand, the discriminator aims to maximize the loss
function by accurately identifying as many true data samples
as possible and as many generated samples as false.

The GAN algorithm with an IoT cybersecurity dataset can
be organized into the following steps [15]:

o Step 1: Generator and discriminator networks are initial-
ized:
G =G(z),D = D(x) (1)

o Step 2: Generate a random noise vector z from a noise
distribution.

o Step 3: Pass the noise vector over the generator network
to generate a new data point z’.

o Step 4: Pass the generated data point 2’ and an actual
data point x from the IoT cybersecurity dataset through
the discriminator network.

o Step 5: the loss functions of the generator and discrimi-
nator networks are calculated as follows: The generator’s
loss is determined by the negative logarithm of the
discriminator’s output on the generated sample (G(z)). On
the other hand, the discriminator’s loss is determined by
the negative logarithm of its output on the real sample (x)
and the output on the generated sample (G(z)) subtracted
from 1.

L(D) = —(log(D(z)) + log(1 = D(G(2)))) (2)

L(G) = —log(D(G(2))) 3)



o Step 6: Update the weights of generator and discriminator
networks via backpropagation and optimization tech-
niques, such as gradient descent or Adam’s optimization.

e Step 7: Repeat steps 2-6 with a fixed iteration or until
the loss function achieves a suitable level.

o Step 8: Employ the trained generator network to produce
more data points that resemble the existing IoT cyberse-
curity dataset.

The objective of the GAN is to reduce the gap between
the generated and trained IoT data while increasing the gap
between the generated IoT data and the actual IoT data.

B. Transformer model

Generative Pre-training Transformer (GPT) is a type of
Transformer-based neural network language model that is
trained using a large dataset of text. It is typically can be used
for vulnerability analysis of [oT text data. The algorithm used
in GPT for vulnerability analysis of IoT text data employs
the Transformer architecture, which was introduced in a 2017
paper by Google researchers titled "Attention Is All You
Need" [16]. The Transformer architecture is a type of neural
network that uses self-attention techniques to process sequence
IoT data. Specifically, we consider a set of IoT data X =
1, T3, ..., Xy as input and a set of labels Y = y1,y2, ..., yn as
output indicating whether each IoT data attack or not.

The GPT algorithm with an IoT cybersecurity dataset can
be organized into the following steps:

o Step 1: Data preprocessing. This involves the elimination
of any unnecessary text or symbols from IoT data. Then,
tokenize the IoT data into individual words as well as
eliminate the stop words (e.g., "is", "and", "the"). After
that, text normalization techniques are adopted (e.g.,
Lemmatization/Stemming) for further processing.

e Step 2: Feature Extraction. This step involves the ex-
traction of features from the preprocessed dataset and
represents each [oT data as a feature vector, X =
L1y L2y ey Ty

o Step 3. Fine-tune the GPT model. This step consists of
using the train set to fine-tune the GPT model. The model
learns the patterns and features of IoT data.

o Step 4. Model testing. Once the model is fine-tuned, use
the test set to evaluate its performance and classify new
IoT data as an attack or not. The model predicts the label
for each IoT data, Y = y1, 92, -, Yn.-

o Step 5: Evaluation. The model’s performance is assessed
through metrics such as accuracy, precision, recall, and
F1 score. Subsequently, the model’s settings are adjusted,
and the feature extraction process is modified as neces-
sary to enhance its performance.

The architecture of the proposed Transformer model is
presented in Figure [3] The architecture consists of two main
components: the Transformer Encoder and the Transformer
Model. The Transformer Encoder is a module that implements
the attention mechanism and feed-forward neural network of
a Transformer. It has four main sub-modules: a Layer Norm
module for normalizing the input, a Multi-head Attention mod-
ule for performing self-attention, a Dropout module for regu-

larization, and a Convld module for implementing the feed-
forward neural network. The architecture uses 95 as the feature
dimension and 15 as the number of classes. The Transformer
Encoder module is parameterized with head_size, num_heads,
filters, and dropout. The Transformer Model is parameterized
with head_size, num_heads, filters, num_Transformer_blocks,
and dropout.

The attention mechanism adopted by the proposed Trans-
former model weighs the importance of different elements in
the input IoT data, which is defined as:

QK"
Vi

The equation above represents the Attention function, which
takes in the query matrix (Q), key matrix (K), and value
matrix (V). The output of the function is the dot product
of the softmax function of the quotient of the dot product
of Q and the transpose of K, divided by the square root
of the dimension of the keys (dy), and the value matrix
(V). By calculating the dot product between the query and
key matrices, the attention mechanism obtains the attention
weights, which are then subjected to the softmax function. To
arrive at the weighted sum of the value matrix, the attention
weights are employed.

The proposed Transformer model architecture also uses
multi-head attention, which is defined as:

Att(Q, K, V) = softmax(

WV “4)

MultiHead(Q, K, V) = Concat(hy, ..., hy)W°  (5)

Where h; is computed as:

hi = Att(QWE, KWE viwY) (6)

The formula computes the attention score for the i-th ele-
ment in a set of query vectors, using the corresponding key and
value vectors. The attention score is calculated by feeding the
query vector through a linear transformation specified by the
matrices Q and K, followed by a softmax operation over the
dot products between the transformed query and key vectors.
The resulting attention weights are then used to compute a
weighted sum of the value vectors, yielding the output vector
h;.

The position-wise feed-forward network is defined as:

FFEN(z) = maz(0, Wy + by)Wa + by (N

Where z is the input, W; and W5 are weight matrices, and
b1 and by are biases.

The proposed Transformer includes a residual connection
and layer normalization. The residual connection is defined as
the sum of the input x and the output of the sub-layer. Layer
normalization is defined by subtracting the mean yp from the
input x and dividing by the standard deviation o . The residual
connection is defined as:

residual(z) = x + Sublayer(x) 8)

Where z is the input and Sublayer is the sub-layer of the
Transformer. The layer normalization is defined as:
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Fig. 4: Confusion Matrix for multi-classification.
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V. EXPERIMENTAL EVALUATION

The experimental evaluation of generative Al for cyber
threat-hunting in 6G-enabled IoT networks is a critical step
in understanding the capabilities and limitations of this tech-
nology. In this section, we will evaluate the performance of
the proposed GAN and Transformer-based model for Cyber
Threat-Hunting.

A. Experimental setup and pre-processing of the Dataset

The Edge-IIoT dataset, sourced from [17ﬂ is our reference
in this study. It is composed of 15 classes, comprising 1
Normal class and 14 attack classes. The dataset was gener-
ated from a testbed intended for IoT and IIoT applications,
covering diverse devices, sensors, protocols, cloud and edge
configurations. The data was sourced from over 10 types of
IoT devices, including those for flame detection, heart rate
monitoring, soil moisture measurement, pH level tracking,
water level detection, ultrasonic detection, and environmental
measurement sensors. The dataset further provides 14 types
of attacks against [oT and IIoT connectivity protocols, catego-
rized into five categories, namely Denial of Service/Distributed
Denial of Service, information gathering, man-in-the-middle
attacks, injection attacks, and malware attacks. The dataset
also presents 61 diverse features acquired from different
sources such as network traffic, logs, system resources, and
alerts.

The initial step is to organize and clean the data by
eliminating duplicate entries and filling in any missing values.
Next, we eliminate any irrelevant features and convert cate-
gorical variables using label encoding. After that, we use a
standardization technique to normalize the features and divide
the data into training and testing sets, with the training set
utilized for model validation and the test set reserved for the
final evaluation of the model.

Thttps://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-
security-dataset-of-iot-iiot

TABLE IV: Classification report for multi-classification.

[ Class [ Precision | Recall | F1-Score | Support |
Normal 1.00 1.00 1.00 323129
Backdoor 0.95 0.94 0.95 4972
Vulnerability_scanner 0.94 0.85 0.89 10022
DDoS_ICMP 1.00 1.00 1.00 23287
Password 0.43 0.80 0.56 10031
Port_Scanning 0.54 0.12 0.20 4513
DDoS_UDP 1.00 1.00 1.00 22007
Uploading 0.61 0.38 0.47 7527
DDoS_HTTP 0.75 0.94 0.83 9982
SQL_injection 0.52 0.23 0.32 10241
Ransomware 1.00 0.78 0.88 2185
DDoS_TCP 0.71 1.00 0.83 10012
XSS 0.53 0.28 0.37 3183
MITM 1.00 1.00 1.00 80
Fingerprinting 0.65 0.37 0.47 200
accuracy 0.95 441371
macro avg 0.77 0.71 0.72 441371
weighted avg 0.95 0.95 0.94 441371
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Fig. 5: Accuracy and loss for multi-classification.

B. Performance Metrics

In order to evaluate the effectiveness of the proposed model
based on GAN and Transformer, the following significant
performance metrics are employed:

o True Positive (TP) refers to the correct identification of
attack samples.

o False Negative (FN) pertains to the incorrect identifica-
tion of attack samples.

o True Negative (TN) signifies the accurate identification
of benign samples.

« False Positive (FP) represents the erroneous identification
of benign samples.

o Accuracy measures the ratio of accurately classified en-
tries to the total number of entries, as determined by the
formula:

TPAttack + TNNormal
TPAttack: + TNNormal + FPNormal + FNAttacki

10)
« Precision indicates the ratio of correctly classified attack
samples to the total number of predicted attack samples,
which is determined by the equation:
TP Attack
TPAttack: + FPNormal

o Recall reflects the proportion of accurately identified at-
tack samples to the total number of actual attack samples,

(1)



as given by the formula:
TPAttack:
TPAttack + FNAttack’

e F1-Score represents the harmonic mean of Precision and
Recall, as computed by the formula:

(12)

Precision - Recall

. 1
Precision + Recall (13)

C. Experimental Results

Figure [5] presents the evaluation of the model’s performance
using loss and accuracy metrics. The training loss starts at
0.139 and decreases over time, reaching 0.111 in the last
epoch. The training accuracy starts at 93.755% and increases
over time, reaching 94.546% in the last epoch. This suggests
that the model is learning and improving its performance
on the training dataset. The testing loss starts at 0.123 and
decreases over time, reaching 0.111 in the last epoch. The
testing accuracy starts at 94.093% and increases over time,
reaching 94.555% in the last epoch. This suggests that the
model is generalizing well and performing similarly on unseen
data. Overall, the model performed well and reached a stable
performance of around 95% accuracy after the 7th Epoch. It’s
worth noting that the performance on the test dataset is similar
to the performance on the training dataset, which means that
the model is not overfitting.

Table presents the multi-classification report of the
proposed Transformer model for cyber threat-hunting in 6G-
enabled IoT networks, which shows a high overall accuracy
of 0.95. This indicates that the model is able to accurately
identify and classify different types of cyber threats in these
networks. The precision, recall, and fl-score of the model
also show promising results. The precision metric calculates
the percentage of accurate positive predictions made out of
all positive predictions made, whereas recall determines the
proportion of true positive predictions out of all actual positive
occurrences. The fl-score, which is a commonly used indicator
of a model’s effectiveness, is a harmonic average of precision
and recall.

The model shows near-perfect performance in identifying
normal instances, with precision, recall, and f1-score of 1.00. It
also shows high performance in identifying DDoS_ICMP and
DDoS_UDP instances, with precision, recall, and f1-score of
1.00. However, the model has lower performance in identifying
other types of cyber threats, such as Password, Port_Scanning,
and SQL_injection. The precision, recall, and fl-score for
these types of instances are 0.43, 0.54, and 0.52, respectively.
The support metric shows the number of instances for each
class, indicating the imbalance in the dataset.

The Confusion Matrix for the proposed Transformer model
for multi-classification is shown in Figure 4| We can observe
that the normal class pattern was clearly differentiated from
all the attack patterns, indicating that the IoT devices’ task-
oriented nature and consistent data distribution could enhance
real-time attack detection capability. Overall, the proposed
Transformer model shows promising performance in identify-
ing and classifying cyber threats in 6G-enabled IoT networks.
However, there is room for improvement in identifying certain

types of cyber threats, such as Password and Port_Scanning.
To improve the performance of the model, additional data and
techniques can be used to balance the dataset and further fine-
tune the model.

VI. OPEN CHALLENGES

There are several challenges regarding the use of generative
Al for cyber threat-hunting in 6G-enabled IoT networks,
including Scalability issues, Decentralized training issues,
Data quality issues, Energy challenges, Privacy-preserving
challenges, and Tokenization challenges.

A. Scalability issues

Generative Al for IoT applications has several scalability
issues, including, Cost, Latency, Memory limitations, and
High computational requirements. Generative Al is extremely
computationally intensive and can be expensive to obtain and
maintain. Generative Al models require significant compu-
tational resources to train and run, for example, GPT-3 and
GPT-4 are large models with 175 billion parameters and 100
trillion parameters, respectively. In addition, the large size of
the model also ensures that it requires a lot of memory to
run, making it difficult to deploy on memory-limited devices.
Therefore, the question we ask here is: how to optimize
the scalability of a Generative Al-based system for IoT?
We believe that a comparative study of the scalability of
Generative Al is needed for IoT security.

B. Decentralized training issues

Decentralized training of Generative Al raises concerns
about data privacy and security, as IoT data (i.e., sensitive
and personal information) may be exposed to malicious nodes.
Therefore, the coordination of decentralized Generative Al
model training among multiple parties can be complex and
time-consuming. One potential area of research in this topic
could be focused on creating secure and confidential solutions
for Al-generated models within decentralized settings.

C. Data quality issues

One of the most significant data quality issues when using
Generative Al models is data bias. GPT-3 for example is
trained on a massive dataset of internet text, which can
introduce bias into the model. An additional problem with data
quality that can occur when using GPT-3 is data noise. With
the large amount of data used to train GPT-3, it is probable
that there will be some noise in the data that will be of poor
quality or irrelevant to that task. Reducing the impact of this
noise on the model’s performance is crucial, as it may result
in the model learning incorrect patterns or making inaccurate
predictions. Consequently, there is a need to prioritize the
challenge of mitigating this issue by providing a high-quality
and well-organized dataset.



D. Energy challenges

One of the main challenges of Generative Al models is
their computational power. For example, GPT-3 model has
175 billion parameters, which makes it one of the largest
language models in existence. To build such a model, a large
quantity of computing power is needed. An additional energy
challenge of GPT-3 is its implementation. GPT-3 requires a
large quantity of memory to operate, which means that it
needs to be deployed on high-performance servers. At the
same time, these servers use a large amount of power to run,
which makes a contribution to the overall energy footprint
of the model. To reduce the model’s energy consumption
during training and deployment, there are some solutions that
can be adopted in the future, including, reducing the model’s
size, adopting federated learning, and employing more energy-
efficient hardware (e.g., GPUs or TPUs).

E. Privacy-preserving challenges

There are various challenges with privacy preservation that
are associated with GPT-3, including model extraction, model
inversion, and data leakage. GPT-3 can store vulnerable data
from fine-tuning data. Attackers can use the text generated
by GPT-3 to infer private information from the fine-tuning
data or the data used to train the model. The GPT-3 model’s
parameters can be extracted by attackers and used to generate
text or infer privacy from the model. The most important
question that may arise is how to develop a new privacy
strategy such as Differential privacy.

F. Tokenization challenges

Transformer-based models are built to process different
length input sequences, which makes them adequate for a
wide range of Natural language processing (NLP) tasks. The
input sequences, however, must be in a suitable format for the
model to be processed. That is where Tokenization becomes
important, which is the process of splitting the text into single
words or sub-words. The main challenges in tokenization for
Transformer-based models are dealing with special characters
(e.g., punctuation, emoji, and numbers), out-of-vocabulary
(OOV) words, and rare words. OOV words are those that are
not present in the model’s vocabulary, which can cause issues
for the model, as it is not able to process them properly. Rare
words are those that appear rarely in the training data, which
can cause issues for the model to handle them correctly. One
potential avenue of research regarding this subject may involve
the process of tokenization for IoT traffic.

VII. CONCLUSIONS

In this paper, we discussed the use of generative Al for cyber
threat-hunting in 6G-enabled IoT networks, which has the
potential to revolutionize the way we detect and prevent cyber-
attacks. Then, we proposed a new generative adversarial net-
work (GAN) and Transformer-based model for Cyber Threat-
Hunting in 6G-enabled IoT Networks. The experimental anal-
ysis results with a new cyber security dataset demonstrate

that the Transformer-based security model for cyber threat-
hunting can detect IoT attacks with a high overall accuracy
of 95%. However, there are also several challenges that must
be addressed, including scalability, decentralized training, data
quality, energy efficiency, privacy, and tokenization. Despite
these challenges, the potential benefits of using generative Al
for cyber threat-hunting in 6G-enabled IoT networks make it
a promising area of research that is worth exploring further.
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