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Abstract 
 
    The notion of lambda-Grids posits plentiful collections 
of computing and storage resources richly 
interconnected by dedicated dense wavelength division 
multiplexing (DWDM) optical paths. In lambda-Grids, 
the DWDM links form a network with plentiful 
bandwidth, pushing contention and sharing bottlenecks 
to the end systems (or their network links) and 
motivating the Group Transport Protocol (GTP). GTP 
features request-response data transfer model, rate-
based explicit flow control, and more importantly, 
receiver-centric max-min fair rate allocation across 
multiple flows to support multipoint-to-point data 
movement. Our studies show that GTP performs as well 
as other UDP based aggressive transport protocols (e.g. 
RBUDP, SABUL) for single flows, and when converging 
flows (from multiple senders to one receiver) are 
introduced, GTP achieves both high throughput and 
much lower loss rates than others.  This superior 
performance is due to new techniques in GTP for 
managing end system contention. 
 
 

1. Introduction 
 
Geometric increases in semiconductor chip capacity 

predicted by Moore's Law have produced a revolution 
in computing over the past 40 years. Even more rapid 
advances in optical networking are producing even 
greater bandwidth increases.  The OptIPuter project [1] 
and other efforts such as CANARIE [2] are exploring 
the implications of these new “lambda-grid” 
environments (low-cost, plentiful wide-area bandwidth, 
plentiful storage and computing) that this revolution 
enables.  The efforts described here are a part of the 
OptIPuter project. 

Circuit-switched lambda’s can provide transparent 
end-to-end optical light paths – available at low cost 
and delivering huge dedicated bandwidth.  Networks of 
such connections form a lambda-grid (sometimes called 
a distributed virtual computer) in which the 
geographically distributed elements can be tightly-
coupled. Compared to shared, packet-switched IP 

networks, lambda-grids have fewer endpoints (e.g. 103, 
not 108), dedicated high speed links (1Gig, 10Gig, etc.) 
between endpoints, which produce an environment 
within the lambda-grid with no internal network 
congestion but significant endpoint congestion. In 
addition, because lambda-grids are likely to connect 
small numbers of closely interacting resources, our 
perspective has evolved from a point-to-point model 
(e.g. data transfer from single server to a client) to a 
collection of endpoints which engage in multi-point to 
point, multipoint-to-multipoint communication patterns 
at high speed. For example, a distributed scientific 
computation in a data grid might engage in coordinated 
communication across a number of data servers 
(endpoints in a group), which fetches large quantities of 
data (e.g. 10GB) from ten distinct servers to feed a local 
computation or visualization. These and other similar 
scenarios pose a new set of research topics for data 
communication in lambda-grids. 

Delivering communication performance in high 
bandwidth-delay product networks is a long-standing 
research challenge for just point to point data transfer. 
Traditional TCP and its variants (e.g. [3] [4], [5]) were 
developed for shared networks in which the bandwidth 
on internal links is a critical and limited resource.  As 
such, the congestion control techniques manage internal 
network contention, providing a reasonable balance of 
non-aggressive competition and end-to-end 
performance. As a result, slow-start causes TCP to take 
a long time to reach full bandwidth when RTT is large, 
and to recover from packet loss because of its AIMD 
control law.  Figure 1 shows the throughput of TCP 
varying for 100MB data transmission across a 1Gbps 
link for different round trip delays.  
    We focus on the challenge of achieving high 
performance in complex network structures and 
communication patterns in lambda-grids.  First, with a 
network setting where internal network congestion is 
rare, the focus of rate and congestion control  shifts to 
end points (or their access links), and the need to 
manage it is critical. Second, for multipoint-to-point 
communication patterns, where flows may have various 
bandwidth and delay, it is important to achieve a fair 
rate allocation among flows. 

 



Figure 1: TCP throughput of transferring 100MB data under different 
round trip delay. Dummynet [6] is used to simulate link delay from 
0.5 ms to 60ms in this measurement. 
 

These two key issues motivate our work on the 
Group Transport Protocol (GTP), a receiver–driven 
transport protocol that exploits information across 
multiple flows to manage receiver contention and 
fairness. The key novel features of GTP include 1) 
request-response based reliable data transfer model, 
flow capacity estimation schemes, 2) receiver-oriented 
flow co-scheduling and max-min fairness[7] rate 
allocation, and 3) explicit flow transition management. 
Measurements from an implementation of GTP show 
that for point-to-point single flow case, GTP performs 
as well as other UDP-based aggressive transport 
protocols (e.g. RBUDP[8], SABUL[9]), achieving 
dramatically higher performance than TCP, with low 
loss rates. Results also show that for multipoint-to-point 
case, GTP still achieves high throughput with 20 to 100 
times lower loss rates than other aggressive rate-based 
protocols. In addition, simulation results show that 
unlike TCP, which is unfair to flows with different 
RTT, GTP responses to flow dynamics and converges 
to max-min fair rate-allocation quickly.  

The remainder of the paper is organized as follows. 
We describe the multipoint-to-point communication 
problem of lambda-grids in Section 2. We provide an 
overview of GTP in Section 3, and present the details of 
rate and flow control mechanisms of GTP in Section 4. 
In Section 5 we illustrate the performance of GTP 
through both ns-2 simulations and real implementation 
measurements, followed by a summary and discussion 
of future work.  

 
2. The Problem  
 
2.1 Modeling Lambda-Grid Communications 

Dense wavelength division multiplexing (DWDM) 
allows optical fibers to carry hundreds of wavelengths 
of 2.5 to 10 Gbps each for a total of terabits per second 
capacity per fiber. A lambda-grid is a set of distributed 
resources directly connected with DWDM links (see 
Figure 2), in which network bandwidth is no longer the 
key performance limiter to communication. Compared 
to shared, packet-switched IP networks, the key 
distinguishing characteristics of lambda-grid networks 
are: 
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• Very high speed (1Gig, 10Gig, etc.) dedicated 
links using one or multiple lambdas (through 
optical packet-switching or multiple optical 
network interfaces) connecting a small numbers 
of endpoints (e.g. 103, not 108), and possibly 
long delays (e.g. 60ms RTT from SDSC to 
NCSA) between sites. 

• End-to-end network bandwidth which matches 
or exceeds the capabilities of the data processing 
(computing/I/O processing) speeds of attached 
systems. For example, this supports a model 
employing geographically distributed storage, 
allowing fetching data from multiple remote 
storage sites to feed real-time, local data-
computation needs.  

• Internal network capacities which support 
private end-to-end connections for a large 
number of lambda-grids simultaneously, 
enabling numerous lambda-grids to have the 
high speed dedicated bandwidth described 
above.  We can then view the optical links 
between end system pairs as virtual dedicated 
connections, which is in contrast to commonly 
shared links in traditional IP network.  

 

 

 

 

 

 
Figure 2: Lambda Grids  

We model the set of end-to-end connections and 
resources which form a lambda-grid as follows. 
Lambda-grid endpoints and underlying wavelengths 
form a connection graph, the vertices of which 
represent distributed sites on lambda grids, and edges 
denote dedicated links between endpoints. Each edge 
has a capacity (bandwidth), which is the allocated 
wavelength capacity between two destinations; that 
capacity is dedicated to the lambda-grid (not shared 
with others), This is a different model from shared IP 
networks, where two end points may be connected 
through intermediate nodes (e.g. routers) and shared 
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links. We illustrate this in Figure 3, which shows that 
internal network contention is likely to be shifted from 
internal network (see Figure 3a) to endpoints (or their 
access links, where multiple dedicated connections are 
terminated (see Figure 3b)).  

 
Figure 3: Receiver R’s connection’s view with three senders. (a) 
Shared IP connection: senders connect with receiver via shared links 
and intermediate nodes. (b) Dedicated lambda connection: dedicated 
capacity between each sender/receiver pair.  
 

2.2 Shift of Management from Network to End System 
Recently, communication patterns of lambda-grids 

have evolved from point-to-point dedicated connection 
model to a more sophisticated direction where 
multipoint to point and multipoint to multipoint 
communications happen. High-speed dedicated 
wavelength connections will be used to access large 
distributed data collections (petabytes of online 
storage), increasing the need to fetch data from multiple 
sites concurrently to support local computation. This 
model is already existent in Content Delivery Networks 
(CDNs) such as Kazaa [10] and BitTorrent [11], where 
data is stored on multiple replicated servers and clients 
access multiple servers simultaneously to obtain the 
desired data. In such a multipoint-to-point setting, 
where multiple dedicated lambda connections come 
together, the aggregate capacity of multiple connections 
is far greater than the data handling speed of the end 
system.  As a result, the critical contention occurs at 
endpoints, not within the network. This motivates a 
fundamental change in focus from transport protocols to 
management of congestion at endpoints.  
2.3 Multipoint-to-point Communication Challenges 

We formulate the multipoint-to-point group 
communication problem as follows.  Suppose that there 
are N senders and one receiver on the lambda grid. Let 
Cr denote the receiver access bandwidth and xi be the 
throughput of the connection between sender i (1 ≤ i ≤ 
N) and receiver. The goal is to maximize aggregate 
throughput (for the best case, Cr) from these N 
connections while achieving low loss rate and fairness 
across flows (with various RTT). Besides sharing same 
challenges of point-to-point high delay-bandwidth 
product transmission, we identify the following 
research challenges around this multipoint-to-point 
communication problem:   
Efficient low loss transmission The solution should be 
aggressive enough to utilize all of the receiver’s 
communication capacity with multiple connections in a 
short time period (e.g. several RTT’s), while 
maintaining low average loss rate.  

Convergence property If  all N flows are long-lived, the 
rate allocation vector (x1, x2, …, xN) should converge to 
a fixed rate allocation (x1*, x2*, …, xN*) regardless of 
the initial state, flow arrival sequence, or other temporal 
details.  
Fairness among flows The allocation of rates across 
flows should meet a range of fairness criteria, especially 
fairness for flows with different RTT values.  
Quick reaction to flow dynamics The solution should 
quickly react flow joins and terminations, as well as 
converge to a fair allocation from a transition state.  
 

3. GTP Overview 
 
Group Transport Protocol (GTP) is designed to 

provide efficient multipoint-to-point data transfer while 
achieving low loss and max-min fairness among 
network flows. In this section we give an overview of 
GTP, including design rationale, framework, and major 
features. 

 

3.1 Design Rationale 
    As described in Section II, lambda-grids shift traffic 
management from network internal links to end 
systems. This is especially true for multipoint-to-point 
transfer pattern, where multiple wavelengths 
terminating at a receiver, aggregating a much higher 
capacity than the receiver can handle. In a sender-
oriented scheme (e.g. TCP), this problem is more severe 
because the high bandwidth-delay product of the 
network makes it difficult for senders to react to 
congestion in a timely and accurate manner. To address 
this problem, GTP employs receiver-based flow 
management, which locates most of the transmission 
control at the receiver side, close to where packet loss is 
detected and happening in lambda-grids because of end-
point congestion. Moreover, a receiver-controlled rate-
based scheme in GTP, where each receiver explicitly 
tells senders the rate at which they should follow, 
allows flows to be adjusted as quickly as possible in 
response to detected packet loss. 
    In order to support multi-flow management, enable 
efficient and fair utilization of the receiver capacity, 
GTP uses a receiver-driven centralized rate allocation 
scheme. In this approach, receivers actively measure 
progress (and loss) of each flow, estimate the actual 
capacity for each flow, and then allocate the available 
receiver capacity fairly across the flows. Because 
GTP’s receiver-centric rate-based approach can manage 
all senders of a receiver, it enables rapid adaptation to 
flow dynamics, adjusting seamlessly when flows join or 
terminate. We describe the features of GTP in more 
detail in the following subsections. 
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3.2 Protocol Framework 
GTP is a receiver-driven response-request protocol. 

As with a range of other experimental data transfer 
protocols, GTP utilizes light-weight UDP (with 
additional loss retransmission mechanism) for bulk data 
transfer and a TCP connection for exchanging control 
information reliably. The sender side design is simple: 
send the requested data to receiver at the receiver-
specified rate (if that rate can be achieved by sender). 
Most of the management is at the receiver side, 
including a Single Flow Controller (SFC) and Single 
Flow Monitor (SFM) for each individual flow, and 
Capacity Estimator (CE) and Max-min Fairness 
Scheduler (MFS) for centralized control across flows. 
The GTP protocol architecture at receiver side is 
depicted in Figure 4.  

 

3.3 Receiver-oriented Request-Response model  
GTP uses two packet types, data and control 

packets. Each data packet contains a header (including 
per-connection packet sequence number) and a unit data 
block (UDB). Control packets are used by receivers to 
send data/rate requests and exchange information with 
sender. In the connection setup stage (initiated by either 
sender or receiver), both ends exchange resource 
availability, RTT, and sender access bandwidth. The 
receiver sends data requests and allowed rates to sender 
via control packets. Within each data request one or a 
range of UDB’s can be requested. The receiver may 
adjust the sender’s rate by sending an updated rate 
request; however, in a smoothly running system, this 
should rarely happen.  

 

 
Figure 4: GTP Framework (Receiver) 

 

3.4 Rate Control in GTP  
    There are two levels of rate control at the receiver: 
per-flow rate control and centralized rate allocation 
across flows. At the per-flow level, the Single Flow 
Controller (SFC) manages the sending of data packet 
requests and chooses the data-request sending rate for 

each RTT according to measured flow statistics 
provided by the Single Flow Monitor (SFM). The goal 
is to achieve allocated/target rate by the central 
scheduler while avoiding congestion. SFC also manages 
receiver buffer requirements by limiting the number of 
outstanding UDB requests. At the centralized scheduler 
level, for each control interval (typically several 
RTT’s), the Capacity Estimator (CM) estimates the 
flow capacity of each individual flow based on the flow 
statistics provided by SFM. Flow statistics includes the 
initial allocated rate, achieved transmission rate in the 
past control interval, packet loss rate, updated RTT 
estimate, etc. Based on a receiver’s set of flow statistics, 
the central scheduler allocates receiver bandwidth to 
each flow and updates each flow’s target rate. This 
bandwidth allocation algorithm achieves max-min 
fairness across flows. The updated allowed (target) rate 
for each flow is then fed to each SFC. For more detail 
on flow control and centralized scheduling schemes see 
Section 4. 
 

3.5 Reliable Transmission 
Unlike sender-centric protocols, GTP senders are 

not responsible for loss retransmission. Lost UDB’s are 
requested again by the receiver. Because packet 
delivery is expected to be in-order, we employ a per-
connection data packet sequence number (embedded in 
the header of data packet) to diagnose packet loss, as 
well as calculate transmission and loss rates. If needed, 
GTP can be augmented to handle out of order delivery. 

 

3.6 Interaction with TCP 
    As previously mentioned, TCP is not efficient for 
networks with high delay-bandwidth product links. To 
perform well on such links, GTP is much more 
aggressive than TCP. When considering the co-
existence of GTP and TCP, there are two mechanisms 
which support graceful interactions. GTP may adjust its 
total allocatable bandwidth (distributed to flows by the 
centralized rate scheduler) to reserve a certain share of 
the receiver capacity for TCP and other traffic. For 
instance, GTP may be assigned to utilize up to 80% of 
the bandwidth and leave 20% for TCP flows.   In our 
future work, we expect to dynamically adjust 
allocatable GTP traffic by monitoring and estimating 
TCP traffic, so as to achieve max-min fairness to all 
flows, including both TCP and GTP.  
 
 

4. Flow Control and Rate Allocation 
 
In this section we describe the rate control and 

allocation mechanisms in GTP. In GTP there are two 
levels of flow control. First, SFC conducts per-flow 
based control and adjusts flow rate for each RTT. The 
central scheduler reallocates rates to each flow for each 
centralized control interval (typically a couple times 
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more than the maximum RTT of individual flows). GTP 
employs a centralized scheduling algorithm to solve this 
flow rate allocation problem, which we formally define 
as a max-min fair rate allocation problem with flow 
capacity estimation constrains. The contribution of our 
scheduling scheme is two-fold. First, by scheduling 
across multiple connections, we are able to make 
efficient utilization of receiver bandwidth while keeping 
packet loss low. Second, this guarantees max-min 
fairness among flows and achieves system convergence. 
The necessary notations are defined in Table 1.  

 
N Total number of flows 
Cr Receiver access link capacity 
T Centralized control interval 
Ri,App Expected (Satisfactory) flow rate specified by application 
Ri,Send Max. possible bandwidth allocated by sender for flow i 
ri,target Target rate (Set by centralized scheduler) of flow i 
ri,req Requested rate by receiver for flow i 
ri,curr Observed received rate by receiver of flow i over T 
ri,loss Observed loss rate by receiver of flow i over T 
ri,total Observed total rate of flow i over T, ri,total = ri,curr + ri,loss 
lossi Loss ratio of flow i: lossi = ri,loss / ri,total 
Ci Link capability of each flow 
RTTi Round trip time of flow i 
RTTmax Maximum RTT among all the flows. 

ir̂  Estimated capacity of flow i 

ir̂∆  Allowable increment of  
ir̂

Table 1: Notations 
 

4.1 Single Flow Controller (SFC) 
The SFC has two functions: First, it provides per-

flow based data packet request management and limits 
the number of outstanding data requests. This limits the 
usage of receiver buffers for each flow and prevents 
receiver flooding when there is congestion. Second, 
SFC provides per-flow rate adaptation in response to 
the loss rate. It updates the flow rate and sends the new 
rate request to the sender every RTT. This enables 
response to any congestion while trying to achieve 
allocated rate set by central scheduler. SFC uses a loss 
proportional-decrease and proportional-increase 
scheme for rate adaptation, which works as follows. For 
each RTT, based on the current flow loss rate lossi, SFC 
decreases the requested rate proportional to this loss 
rate. We also set an upper bound (12.5%) for the 
decrease in rate. 

If there is no packet loss, SFC proportionally 
increases the requested rate with a small step size (2% 
per RTT). However the new rate should be no more 
than the allocated/target rate set by central scheduler. 
We define per-flow rate update rule as follows:  

,
,

, ,

(1 min{0.5 ,0.125}) 0;
min{ (1 0.02), } 0.

i req i i
i req

i req i target i

r loss if loss
r
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We are also exploring efficient delay based single flow 
rate control mechanism, which will be reflected in our 
future work.  
 
 

4.2 Flow Capability Estimator (CE)  
The Capacity Estimator (CE) provides estimation 

to the achievable transmission rate of each flow based 
on its history provided by SFM. At the end of each 
centralized control interval (by default, we set it as three 
RTTmax), the CE estimates the capacity of each flow, 
which is used as the upper-bound for that flow during 
centralized rate allocation phase. Desired rate 
estimation scheme needs to have the following two 
characteristics. When there is continuously no packet 
loss and the achieved throughput is close to target rate, 
the CE needs to increase the flow’s estimate faster. 
When flow incurs a packet loss, the estimated rate 
should be reduced according to the loss ratio. We use an 
Exponential Increment and Loss Proportional 
Decrement (EIPD) scheme for estimation. The idea 
behind increment/decrement adjustment ( ) is shown 
in Figure 5. We describe this scheme as follows.  

ir̂∆

 

 
Figure 5: Flow Rate Estimation Scheme 

 
First, when there is no packet loss and the achieved rate 
is close to previous estimate, we increase the allowable 
increment of estimation exponentially:  

If  ri,loss = 0 and ri,total ≥ 0.95 ri,target, then 
 If ( ir̂∆ = 0 ) ir̂∆ = 0.02× ri,total ; else ir̂∆ =2 ir̂∆ . 

When there is no packet loss but the achieved rate is not 
close to previous estimate, we increase the allowable 
increment of estimation proportionally: 

If  ri,loss =0 and ri,total < 0.95 ri,target, then 
   ir̂∆ = 0.02 ri,total  . 

When there is packet loss, but below certain threshold 
(0.5%), we still increase the estimate: 

If    0 < ri,loss < 0.005, then 
  ir̂∆ = 0.02 ri,total   . 

Otherwise (loss ratio is higher than 0.5%), we reduce 
the estimate proportionally to the packet loss, which is 
bounded by 20%. Note that  is negative in this case:  

ir̂∆
If    ri,loss > 0.005, then  

  ir̂∆ = 0 - min {0.5   ri,loss, 0.2} × ri,total. . 

Packet Loss? 
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ir̂∆
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After obtaining the allowable increment of flow rate 
estimation ( ), we set the target rate of each flow as 
follows:  

ir̂∆

ir̂ = min {ri,total + , Ci, Ri,App , Ri,Send }, 
ir̂∆

where Ci is the link capacity of flow i, Ri,App is the 
expected bandwidth requirement specified by the 
application and Ri,Send  is the specified allocatable rate 
from sender, which is optional. In our future work, 
senders may be able to explicitly specify the bandwidth 
Ri,Send  that is available for flow i.  
 

4.3 Max-min Fair Rate Allocation 
For centralized scheduling, an important problem is 

how to allocate receiver capacity (or its access link 
bandwidth) to multiple flows (with various RTT) in a 
fair manner. Max-min fairness [7] is a widely used 
criterion for bandwidth sharing along single or multiple 
bottlenecks. For single bottleneck case, under a max-
min fair rate allocation, the rate of one flow can be 
increased only by decreasing the rate of another flow 
with lower or equal rate. Different from the standard 
max-min fairness problem, here we need to take into 
consideration the estimated flow rate, which provides 
an upper bound for rate allocation. We formally define 
this fairness criterion as follows:  
Definition: Let Cr be of the capacity of all GTP traffic. A 
rate allocation (xi, …, xN ) under constraint ( ,…,  ) 
is feasible if  

1x̂ Nx̂

∑
=

≤
N

i
ri Cx

1

,  

and for any i, it holds that . We call a rate 
allocation (xi, … , xN ) max-min fair if it is impossible 
to increase the rate of flow j without losing feasibility or 
reducing the rate of another flow j′ with the rate 

ixx ˆ≤

'j jx x< .  
For example, when four flows with different 

capacities (100, 200, 500, 500) share a link with 
capacity 1000, the max-min fair rate allocation is (100, 
200, 350, 350). This example shows that under max-
min fairness, flows with lower achievable rate are given 
higher priority.  

To achieve max-min fairness, we need to allocate 
bandwidth resource Cr to rate allocation (ri,target, … , 
rN,target) in a max-min fair way with constraint ( , …, 

). We come up with a max-min fair rate allocation 
scheme, which gives higher priority to flows with lower 
estimate. To be more specific, our scheme tries to 
schedule the flow with smaller estimate (than fair share) 
first, and evenly distribute the remaining bandwidth to 
those with the estimate higher than average fair share. 
We describe this scheduling algorithm in Figure 6.  

ir̂

Nr̂

We will show the effectiveness of our scheme by 
conducting simulations in the next section.  However, 

we leave a formal proof of the convergence properties 
of our two level rate control mechanism to future work.  

 

 
Figure 6: Max-min Rate Allocation Algorithm 

 
 

4.4 Transition Management.   
Transitions happen when new flows join or existing 

flows terminate. When a new flow starts, we set its 
estimate to the minimum of its physical link capacity, 
application specified rate, and sender specified rate (if 
any): 

ir̂ = min {Ci, Ri,App , Ri,Send }. 
By doing so, we are able to treat new flows just as old 
ones and apply the same rate allocation algorithm 
without any changes. When a flow terminates, we try to 
proportionally increase the estimates of all remaining 
flows. Let Cl denote the aggregate rates from all the 
flows that finish within last control interval. Then we 
increase the capacity estimate of each remaining flow 
by  

ir̂ =  + 
ir̂ ∑

⋅

j
j

li

r
Cr
ˆ

ˆ
. 

Again, this allows us to utilize the same centralized 
scheduling algorithm to conduct rate allocation.  

Transitions also happen when we adjust flows rates, 
and the skew between flows with different RTT’s may 
cause serious end-point congestion. Consider two flows 
with RTT 5 and 50ms.  At the centralized rate 
allocation stage, we may decrease the rate of flow 1 and 
increase flow 2 for the sake of achieving max-min 
fairness. However since flow 2 has a smaller RTT, it 
responds much faster than flow 1 on rate changes. Also, 
it may happen that the increased flow 2 arrives at 
receiver while packets from flow 1 are still arriving at 
its original higher rate. This causes congestion at the 
receiver. To solve this problem, we may introduce a 
delay for rate adjustment to coordinate among flows, 
and the delay for flow i is defined as  

Delayi = RTTmax – RTTi, 
where RTTmax and RTTi are the maximum round trip 
time of all the flows, and the round trip time of flow i, 
respectively. This additional delay will be feedback 

We let Ccurr denote the current available bandwidth, n be
the number of flows that have been scheduled.  

1   Ccurr = Cr;  n = 0; 
2   FairShare = Ccurr / (N-n);  
3   Find flow j with minimum rate estimate; 
4           If r  then  FairSharej <ˆ

ˆ

j ≥ˆ

5   rj,target = r ;  Ccurr = Ccurr - rj,target;   n++;
j

6      Mark flow j as scheduled.  
7  Repeat from 2 until n = N  or r  FairShare
8  Schedule all flows that are not scheduled as:  
9  ri,target = Ccurr / (N-n). 



together with the new target rate update to SFC. Then 
each single flow controller will delay updating with the 
new target rate. By doing so we have coordinated the 
rate update among flows and reduced receiver side 
congestion caused by the transition of rate changes.   
 
 

5. Experiments  
 

In this section, we explore the performance of GTP 
through extensive experiments across three experiment 
environments.  First, we run simulations with the 
packet-level simulator ns2[12] to study the best case 
performance and packet level dynamics of GTP. ns2 
provides ideal network performance in terms of 
achievable full link bandwidth, and omitted end system 
overhead. Second, we utilize a local Dummynet 
environment (slower end nodes, lossy links with 
emulated various RTT) to perform a more realistic set 
of experiments. Finally, we conduct real 
implementation measurements by comparing GTP with 
TCP, RBUDP[8] and SABUL[9] on TeraGrid[13] 
(fixed RTT, fast end-nodes, almost no-loss network 
links).  The multipoint-to-point connection topology is 
the same as the one in Figure 3b, where multiple 
senders are connected with receiver (through a gigabit 
switch) via dedicated links with the same 1Gbps 
bandwidth but with various delays.  

 

5.1  ns2 Simulation Results 
In this subsection we report the ns2 simulation 

results of GTP’s dynamics to GTP flow changes, its 
convergence and fairness properties, and its interaction 
with TCP.  

 
5.1.1 Dynamics of GTP 

First, we illustrate the dynamics of GTP by 
increasing the number of GTP  flows arriving at a 
receiver. Figure 7 shows flow rate trajectories when 
four flows with different RTT’s (20, 40, 60, and 80ms) 
start at time t =0, 2, 3, 4 seconds. We see that whenever 
a new flow starts, each active flow achieves an identical 
fair share of bandwidth. To compare with TCP fairness 
across flows, we let four TCP flows with the same set 
of RTT start at time t=0. Figure 8 shows the trajectories 
of each flow’s throughput, from which we see that TCP 
flow 1 (with shortest RTT) achieves much higher 
throughput than others. Besides using a max-min 
fairness criterion, for multiple competing flows with the 
same link conditions (in this case each flow needs to 
obtain same rate to achieve fairness), we quantitatively 
characterize the long-term fairness across multiple 
flows by using a commonly accepted fairness 
measurement, defined as:  

2
1

1 2 2
1

( )
( , ,..., ) ,

n
ii

n n
ii

x
f x x x

n x
=

=

= ∑
∑

 

where the value of f is between 0 and 1, and xi is the 
throughput of flow i. The higher the index f, the fairer 
the rate allocation is. For GTP flows in Figure 7a, long 
term (after flow 4 starts) fairness index is 1. And the 
fairness index of TCP flows in Figure 8 is only 0.67 
(throughput ratio of four TCP flows is approximately 
6:2:2:1). 
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Figure 7: Fairness and convergence of GTP in a multipoint-to-point 
setting. Four GTP flows are with RTT 20, 40, 60 and 80ms starting at 
time 0, 2, 3, and 4s.  
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Figure 8: Unfairness over four TCP flows with different RTT 
(20,40,60 and 80ms), all starting at time t = 0.  
 

We now demonstrate the ability of GTP to probe 
remaining bandwidth share while achieving max-min 
fairness. We let GTP flow 1 (with 20ms RTT) starts at 
time t=0, and GTP flow 2 starts after 2 seconds. Flow 2 
is not able to reach the allocated fair share (500Mbps), 
and only achieves 200Mbps, which may occur if the 
sender is the bottleneck (e.g. slow disk I/O, or 
sender/server serves multiple receivers at the same 



time). From Figure 9 we see that flow 2 remains at 
200Mbps while flow 1 increases quickly and reaches 
700Mbps, which is the remaining bandwidth. This rate 
allocation is also max-min fair.  
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Figure 9: GTP’s ability of fast probing the available bandwidth. GTP 
flow 2 starts at time t=2s, and its maximum transmission rate is 
300Mbps.  
 

5.1.2 Interaction with TCP 
We illustrate the interaction between GTP and TCP by 
letting three parallel TCP flows compete with one GTP 
flow. Figure 10a shows the trajectories of single GTP 
flow’s throughput and the aggregate throughput of three 
TCP flows, in which case GTP capacity upper bound Cr 
is equal to full receiver access bandwidth (1000Mbps). 
Since GTP is very aggressive, it does not let most of the 
TCP traffic through (see Figure 10a). As suggested in 
Section IIIf, one possible mechanism for bandwidth 
sharing between GTP and TCP flows is to limit GTP’s 
total allocatable capacity. Figure 10b shows the result 
when GTP flow capacity is set to 850Mbps, where TCP 
traffic could make use of the remaining bandwidth. As a 
future work, we would like to enable GTP centralized 
scheduler to support dynamic resource estimation and 
allocation for both TCP and GTP traffic.  
 
5.2 Dummynet Emulation Results 

In our local cluster environment, we configured 
one cluster node as a Dummynet router, which routes 
packets while inducing various delays for different 
flows. The maximum achieved throughput measured by 
Iperf[14] on an emulated 1Gbps link with 60ms RTT is 
954Mbps, with 0.3% packet loss. The relatively high 
packet loss is due to the processing limits of the 
Dummynet router and the end nodes on our 2Ghz Xeon 
machines. 
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Figure 10: Interaction between GTP and TCP. (a) Three parallel TCP 
flows (with 1ms RTT) start at t=0, and a GTP flow joins after 1 
second with pre-set maximum bandwidth (1Gbps). (b) The case 
where GTP’s maximum bandwidth utilization is set to 85%. (c) The 
aggregate throughput of all TCP and GTP flows of (b).  
 

We first compare GTP’s behavior on Dummynet 
with the ideal case (provided by the ns2 simulation) and 
TCP, in a simple two senders/one receiver case. Flow 1 
with 25ms RTT starts at time t=0, and flow 2 with 50ms 
RTT joins at t=10s. Figure 11 shows the trajectories of 
these two flows, when they are both either GTP flows 
on Dummynet, or ideal GTP flows, or TCP flows. We 
see that for both flows, GTP’s performance on 
Dummynet is close to the ideal case result from ns2 
simulation. The fairness index of two GTP flows is 0.99 
(from 10s to 33s), while the fairness index of TCP 
flows is only 0.77.  
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Figure 11:  Two flows with different RTT (25 and 50ms) are (1) Idea 
(simulated) GTP flows (Same as the simulation result in ns2); (2) 
Real GTP flows on Dummynet; (3) TCP Flows (with tuned large 
window size). 
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Figure 12:  Aggregate throughput and average loss rate of parallel 
GTP flows. The RTT between sender and receiver is around 25ms.  
 

We now illustrate GTP’s performance over 
different numbers of parallel connections; four cluster 
nodes are setup as senders and another as a receiver. 
We vary the number of GTP flows from 1 to 8 
(distributed across four senders), and present the results 
in Figure 12. We see that GTP maintains a high 
aggregate throughput when the number of parallel flows 
increases (Figure 12a). We observe high packet loss in 
the Dummynet environment (compared with Teragrid 
results in the next subsection), which may be due to the 
limitations of both the Dummynet router and the end 
nodes. However we also notice that the loss rate does 
not always increase with the number of connections, 
and is bounded by 3%.  This loss rate is much lower 
than other rate based protocols in the same setting, as 
documented below. 
 

5.3 TeraGrid Experiments: Comparing Rate-based 
Protocols 
5.3.1 Methodology 

In this subsection, we compare GTP with two other 
point-to-point rate based high performance data transfer 
protocols: RBUDP and SABUL, as well as untuned 
standard TCP. Reliable Blast UDP  (RBUDP) [8] targets 
reliable data transfer on dedicated or QoS-enabled high 
speed links. It assumes users have explicit knowledge 
about the link capacity, requiring the sender to specify an 
initial rate, start, and maintain its transfer at that rate. 
SABUL [15] is designed for data-intensive applications 
in high bandwidth-delay product networks, which starts 
senders at a fixed high initial rate, adjusting rate based on 
experienced loss. The newest version of SABUL (UDT) 
[9] uses delay-based rate adaptation to reduce packet loss 
caused by its aggressiveness. Throughout our 
experiments, we use the latest available version of these 
protocols (RBUDP v0.2, SABUL/UDT v1.0, and GTP 
prototype).  Our experiment is conducted both on 
Dummynet and TeraGrid[13] (including SDSC and 
NCSA/UIUC sites). The achievable bandwidth between 

SDSC and NCSA on each connection is 1Gbps (NIC 
speed limit). The following performance metrics are used 
in our experiments:  

- Sustained throughput on a 10GB transfer (Point to 
point and multi-point to point) and average loss rate; 

- Fairness for multi-point to point transmission; 
- Rate allocation convergence property.  
 

5.3.2 TeraGrid  Results 
Scenario 1: Point-to-point:  Transfer 10GB data from 
SDSC to NCSA (1Gbps link with 58ms RTT).  

 TCP RBUDP SABUL GTP 
Time (s)  1639 9.08 8.90 8.92 
Avg. Rate 4.88Mbps 881Mbps 898 Mbps 896Mbps 
Loss Rate unknown1 0.07% 0.01% 0.02% 

TABLE 2: Point-to-Point, from SDSC to NCSA 
 
Our results show, for single, point-to-point high 

bandwidth delay product paths, the three rate-based 
protocols all achieve much higher throughput than 
traditional TCP while maintaining low loss rate. 
 

Scenario 2: Point-to-point, parallel flows: Transfer 
10GB data from SDSC to NCSA on the same 1Gbps 
link with three parallel connections. 

 TCP RBUDP2 SABUL GTP 
Aggregate 

Rate 
(Mbps) 

14.5  931  912  904  

Avg. Loss unknown 2.1% 0.1% 0.03% 
System 
stability 

Yes Yes Yes Yes 

Fairness  Fair Fair Fair Fair 
TABLE 3: Parallel Flows: SDSC to NCSA 

 
In this scenario, all three rate-based protocols perform 
well when there are parallel flows between sender and 
receiver, and they all achieve fairness among flows. 
RBUDP achieves highest throughput as well as loss 
rate. While  RBUDP and SABUL achieve slightly 
higher throughput than GTP with their aggressiveness, 
they do so at the expense of a much higher packet loss 
rate. The GTP’s end-point control scheme achieve high 
throughput with a low loss rate.  
 

Scenario 3: Multi point, convergent flows: Transfer 
10GB data; one receiver at SDSC, and three senders 
with two from NCSA, one from SDSC. Each sender-
receiver connection has a 1Gbps dedicated link.  
 
In this case (Table 4), all three rate based protocols 
achieve high throughput, but loss rates vary over a 
range of 1000x, with GTP having lowest loss rate by a 
large margin. GTP also achieves fairness among flows 
and system stability in this case, while others are not 

                                                           
1 We are not able to measure instant TCP loss rate, due to the lack of 
root privileges on TeraGrid. 
2 We assume each flow has no knowledge about others, and starts 
with the rate of full bandwidth. 



fair for flows with different RTT. Note that we assume 
each RBUDP flow has capacity estimate of 1Gbps, and 
the loss rate may be reduced if we set each flows’ 
estimated throughput to be less than 1Gbps (see below). 
 
 TCP RBUDP SABUL GTP 
Aggregate 
Rate3 (Mbps) 

677  443  811  865  

Avg.  Loss  unknown 53.3% 8.7% 0.06% 
System 
stability 

Yes No No Yes 

Fairness  No No No Yes 
TABLE 4: Multi-Point, Convergent Flows 

 
Scenario 4: Two senders and one receiver on 
Dummynet.  

 RBUDP RBUDP2 SABUL GTP 
Throughput(Mbps)/ 

Loss Rate of Flow 1
445 

27.5% 
438 

5.2% 
326 

18.9% 
455 

2.6% 
Throughput(Mbps)/ 
Loss Rate of Flow 2 

256 
38.2% 

396 
5.1% 

167 
24% 

463 
3.1% 

Aggregate 
Throughput 

(Mbps) 

701 834 493 918 

TABLE 5: Two points to point (with RTT 25 and 50ms), Dummynet. 
RBUDP2 is the case where we manually set the transmission rate for 
each RBUDP flow to be half of the link bandwidth.  
 

In this last scenario running on Dummynet, where 
high packet loss happens, GTP still outperforms other 
rate based protocols. To summarize the TeraGrid 
evaluation results, we see that for multipoint-to-point 
data transmission, GTP significantly reduces the packet 
loss which is generally caused by the aggressiveness of 
rate-based protocols.  

 
 

6. Related Work 
 
The earliest examples of receiver-centric reliable 

rate based protocols include NETBLT [16] and 
PROMPT [17]. Recently, the high performance 
computing community has proposed a range of rate-
based point-to-point reliable transport protocols for 
high bandwidth-delay product networks [8, 9, 15, 18-
21]. RBUDP and SABUL are the two with real 
implementations and measurements on high delay-
bandwidth product links. For high delay-bandwidth 
product links, parallel TCP flows [22, 23] are used to 
improve the performance of current TCP. However the 
protocol overhead increases with the increment of the 
number of parallel connections, and it is not clear about 
the optimum number of parallel flows.  It may also be 
unfair to other single TCP connections sharing the same 
bottleneck with these parallel TCP connections. 

A key aspect of our research focuses on receiver-
based flow contention management. Receiver based 
                                                           
3 Aggregate rate and loss rate vary for RBUDP and SABUL, and 
numbers listed are the average values of several measurements. 

multipoint-to-point transmission has been proposed for 
web traffic [24] and content delivery network [25]. 
There are some research projects sharing the same idea 
of receiver based management across flows. In [26], a 
receiver-side integrated congestion management 
architecture is proposed, which targets managing traffic 
across various protocols for real-time traffic. However 
detailed rate allocation schemes and fairness among 
flows are not considered. In [27], the authors try to 
allocate receiver access bandwidth among TCP flows 
according to their pre-set priority. In the real world, 
receiver capability may be under-utilized due to the fact 
that each TCP flow may not be able to always achieve 
and maintain the allocated rate, and the fairness among 
flows is not guaranteed due to their priority scheduling 
scheme. Examples of receiver centric approaches also 
include [28] for wireless networks.  In nearly all cases, 
these studies focus on networks that are slow relative to 
the nodes attached to them.  In lambda grids, the 
situation is the opposite. 

Another focus of our work is to achieve max-min 
fairness among flows. Max-min connection fairness has 
been studied in both the ATM [29, 30] and Internet [31] 
domains. For fairness  criterions other than max-min 
fairness, we refer to single link fairness index [32] and 
most recently proportional fairness [33].  

 
 

7. Summary and Future Work  
 
Recent advances in DWDM networks have 

fundamentally changed the communication 
requirements for future lambda grids, where there is 
sufficient network bandwidth but limited end system 
capacity. This motivates our work of shifting the 
network transmission management from the network to 
the receiver end. We propose GTP, a group transport 
protocol, as well as a receiver based rate allocation 
scheme to manage multipoint-to-point transmissions. 
We design a centralized scheduling algorithm to 
allocate rate to multiple GTP flows with max-min 
fairness guarantees.  Early results from both ns2 
simulation, emulation studies on Dummynet, and real 
measurements on Terarid show that GTP achieves high 
throughput, low loss on high bandwidth-delay product 
links. In addition, results also show that GTP 
outperforms other point-to-point protocol for multiple-
to-point transmission and achieves fast convergence to 
max-min fair rate allocation across multiple flows.  

We identify the following future work. First, we are 
interested in improving per-flow based control scheme 
to react more efficiently to irregular network traffic 
(e.g. bursty traffic). Second, we are studying how to 
introduce TCP traffic management into our centralized 
control scheme. This includes open questions such as 
how to estimate TCP flow’s capability, how to 



efficiently tune TCP parameters to achieve target rate, 
etc. Third, we are working on formal proofs of system 
convergence properties for our two level flow control 
schemes. Finally, we expect to integrate GTP into a 
Distributed Virtual Computer (DVC) [34], a simple grid 
program execution environment being developed for 
lambda-grids as part of the OptIPuter project.  Within a 
DVC, GTP will provide high speed communication and 
data transfer services to applications 
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