
GTP: Group Transport Protocol for Lambda-Grids

Ryan X. Wu and Andrew A. Chien
Department of Computer Science and Engineering

University of California, San Diego
{xwu, achien}@ucsd.edu

Abstract

 The notion of lambda-Grids posits plentiful collections
of computing and storage resources richly
interconnected by dedicated dense wavelength division
multiplexing (DWDM) optical paths. In lambda-Grids,
the DWDM links form a network with plentiful
bandwidth, pushing contention and sharing bottlenecks
to the end systems (or their network links) and
motivating the Group Transport Protocol (GTP). GTP
features request-response data transfer model, rate-
based explicit flow control, and more importantly,
receiver-centric max-min fair rate allocation across
multiple flows to support multipoint-to-point data
movement. Our studies show that GTP performs as well
as other UDP based aggressive transport protocols (e.g.
RBUDP, SABUL) for single flows, and when converging
flows (from multiple senders to one receiver) are
introduced, GTP achieves both high throughput and
much lower loss rates than others. This superior
performance is due to new techniques in GTP for
managing end system contention.

1. Introduction

Geometric increases in semiconductor chip capacity

predicted by Moore's Law have produced a revolution
in computing over the past 40 years. Even more rapid
advances in optical networking are producing even
greater bandwidth increases. The OptIPuter project [1]
and other efforts such as CANARIE [2] are exploring
the implications of these new “lambda-grid”
environments (low-cost, plentiful wide-area bandwidth,
plentiful storage and computing) that this revolution
enables. The efforts described here are a part of the
OptIPuter project.

Circuit-switched lambda’s can provide transparent
end-to-end optical light paths – available at low cost
and delivering huge dedicated bandwidth. Networks of
such connections form a lambda-grid (sometimes called
a distributed virtual computer) in which the
geographically distributed elements can be tightly-
coupled. Compared to shared, packet-switched IP

networks, lambda-grids have fewer endpoints (e.g. 103,
not 108), dedicated high speed links (1Gig, 10Gig, etc.)
between endpoints, which produce an environment
within the lambda-grid with no internal network
congestion but significant endpoint congestion. In
addition, because lambda-grids are likely to connect
small numbers of closely interacting resources, our
perspective has evolved from a point-to-point model
(e.g. data transfer from single server to a client) to a
collection of endpoints which engage in multi-point to
point, multipoint-to-multipoint communication patterns
at high speed. For example, a distributed scientific
computation in a data grid might engage in coordinated
communication across a number of data servers
(endpoints in a group), which fetches large quantities of
data (e.g. 10GB) from ten distinct servers to feed a local
computation or visualization. These and other similar
scenarios pose a new set of research topics for data
communication in lambda-grids.

Delivering communication performance in high
bandwidth-delay product networks is a long-standing
research challenge for just point to point data transfer.
Traditional TCP and its variants (e.g. [3] [4], [5]) were
developed for shared networks in which the bandwidth
on internal links is a critical and limited resource. As
such, the congestion control techniques manage internal
network contention, providing a reasonable balance of
non-aggressive competition and end-to-end
performance. As a result, slow-start causes TCP to take
a long time to reach full bandwidth when RTT is large,
and to recover from packet loss because of its AIMD
control law. Figure 1 shows the throughput of TCP
varying for 100MB data transmission across a 1Gbps
link for different round trip delays.
 We focus on the challenge of achieving high
performance in complex network structures and
communication patterns in lambda-grids. First, with a
network setting where internal network congestion is
rare, the focus of rate and congestion control shifts to
end points (or their access links), and the need to
manage it is critical. Second, for multipoint-to-point
communication patterns, where flows may have various
bandwidth and delay, it is important to achieve a fair
rate allocation among flows.

Figure 1: TCP throughput of transferring 100MB data under different
round trip delay. Dummynet [6] is used to simulate link delay from
0.5 ms to 60ms in this measurement.

These two key issues motivate our work on the
Group Transport Protocol (GTP), a receiver–driven
transport protocol that exploits information across
multiple flows to manage receiver contention and
fairness. The key novel features of GTP include 1)
request-response based reliable data transfer model,
flow capacity estimation schemes, 2) receiver-oriented
flow co-scheduling and max-min fairness[7] rate
allocation, and 3) explicit flow transition management.
Measurements from an implementation of GTP show
that for point-to-point single flow case, GTP performs
as well as other UDP-based aggressive transport
protocols (e.g. RBUDP[8], SABUL[9]), achieving
dramatically higher performance than TCP, with low
loss rates. Results also show that for multipoint-to-point
case, GTP still achieves high throughput with 20 to 100
times lower loss rates than other aggressive rate-based
protocols. In addition, simulation results show that
unlike TCP, which is unfair to flows with different
RTT, GTP responses to flow dynamics and converges
to max-min fair rate-allocation quickly.

The remainder of the paper is organized as follows.
We describe the multipoint-to-point communication
problem of lambda-grids in Section 2. We provide an
overview of GTP in Section 3, and present the details of
rate and flow control mechanisms of GTP in Section 4.
In Section 5 we illustrate the performance of GTP
through both ns-2 simulations and real implementation
measurements, followed by a summary and discussion
of future work.

2. The Problem

2.1 Modeling Lambda-Grid Communications

Dense wavelength division multiplexing (DWDM)
allows optical fibers to carry hundreds of wavelengths
of 2.5 to 10 Gbps each for a total of terabits per second
capacity per fiber. A lambda-grid is a set of distributed
resources directly connected with DWDM links (see
Figure 2), in which network bandwidth is no longer the
key performance limiter to communication. Compared
to shared, packet-switched IP networks, the key
distinguishing characteristics of lambda-grid networks
are:

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Round Trip Delay (second)

A
ve

ra
ge

 R
at

e
(M

bp
s)

• Very high speed (1Gig, 10Gig, etc.) dedicated
links using one or multiple lambdas (through
optical packet-switching or multiple optical
network interfaces) connecting a small numbers
of endpoints (e.g. 103, not 108), and possibly
long delays (e.g. 60ms RTT from SDSC to
NCSA) between sites.

• End-to-end network bandwidth which matches
or exceeds the capabilities of the data processing
(computing/I/O processing) speeds of attached
systems. For example, this supports a model
employing geographically distributed storage,
allowing fetching data from multiple remote
storage sites to feed real-time, local data-
computation needs.

• Internal network capacities which support
private end-to-end connections for a large
number of lambda-grids simultaneously,
enabling numerous lambda-grids to have the
high speed dedicated bandwidth described
above. We can then view the optical links
between end system pairs as virtual dedicated
connections, which is in contrast to commonly
shared links in traditional IP network.

Figure 2: Lambda Grids

We model the set of end-to-end connections and
resources which form a lambda-grid as follows.
Lambda-grid endpoints and underlying wavelengths
form a connection graph, the vertices of which
represent distributed sites on lambda grids, and edges
denote dedicated links between endpoints. Each edge
has a capacity (bandwidth), which is the allocated
wavelength capacity between two destinations; that
capacity is dedicated to the lambda-grid (not shared
with others), This is a different model from shared IP
networks, where two end points may be connected
through intermediate nodes (e.g. routers) and shared

DWDM DWDM

DWDM

DWDM

DWDM

Grid
Resource

Grid
Resource

links. We illustrate this in Figure 3, which shows that
internal network contention is likely to be shifted from
internal network (see Figure 3a) to endpoints (or their
access links, where multiple dedicated connections are
terminated (see Figure 3b)).

Figure 3: Receiver R’s connection’s view with three senders. (a)
Shared IP connection: senders connect with receiver via shared links
and intermediate nodes. (b) Dedicated lambda connection: dedicated
capacity between each sender/receiver pair.

2.2 Shift of Management from Network to End System
Recently, communication patterns of lambda-grids

have evolved from point-to-point dedicated connection
model to a more sophisticated direction where
multipoint to point and multipoint to multipoint
communications happen. High-speed dedicated
wavelength connections will be used to access large
distributed data collections (petabytes of online
storage), increasing the need to fetch data from multiple
sites concurrently to support local computation. This
model is already existent in Content Delivery Networks
(CDNs) such as Kazaa [10] and BitTorrent [11], where
data is stored on multiple replicated servers and clients
access multiple servers simultaneously to obtain the
desired data. In such a multipoint-to-point setting,
where multiple dedicated lambda connections come
together, the aggregate capacity of multiple connections
is far greater than the data handling speed of the end
system. As a result, the critical contention occurs at
endpoints, not within the network. This motivates a
fundamental change in focus from transport protocols to
management of congestion at endpoints.
2.3 Multipoint-to-point Communication Challenges

We formulate the multipoint-to-point group
communication problem as follows. Suppose that there
are N senders and one receiver on the lambda grid. Let
Cr denote the receiver access bandwidth and xi be the
throughput of the connection between sender i (1 ≤ i ≤
N) and receiver. The goal is to maximize aggregate
throughput (for the best case, Cr) from these N
connections while achieving low loss rate and fairness
across flows (with various RTT). Besides sharing same
challenges of point-to-point high delay-bandwidth
product transmission, we identify the following
research challenges around this multipoint-to-point
communication problem:
Efficient low loss transmission The solution should be
aggressive enough to utilize all of the receiver’s
communication capacity with multiple connections in a
short time period (e.g. several RTT’s), while
maintaining low average loss rate.

Convergence property If all N flows are long-lived, the
rate allocation vector (x1, x2, …, xN) should converge to
a fixed rate allocation (x1*, x2*, …, xN*) regardless of
the initial state, flow arrival sequence, or other temporal
details.
Fairness among flows The allocation of rates across
flows should meet a range of fairness criteria, especially
fairness for flows with different RTT values.
Quick reaction to flow dynamics The solution should
quickly react flow joins and terminations, as well as
converge to a fair allocation from a transition state.

3. GTP Overview

Group Transport Protocol (GTP) is designed to

provide efficient multipoint-to-point data transfer while
achieving low loss and max-min fairness among
network flows. In this section we give an overview of
GTP, including design rationale, framework, and major
features.

3.1 Design Rationale
 As described in Section II, lambda-grids shift traffic
management from network internal links to end
systems. This is especially true for multipoint-to-point
transfer pattern, where multiple wavelengths
terminating at a receiver, aggregating a much higher
capacity than the receiver can handle. In a sender-
oriented scheme (e.g. TCP), this problem is more severe
because the high bandwidth-delay product of the
network makes it difficult for senders to react to
congestion in a timely and accurate manner. To address
this problem, GTP employs receiver-based flow
management, which locates most of the transmission
control at the receiver side, close to where packet loss is
detected and happening in lambda-grids because of end-
point congestion. Moreover, a receiver-controlled rate-
based scheme in GTP, where each receiver explicitly
tells senders the rate at which they should follow,
allows flows to be adjusted as quickly as possible in
response to detected packet loss.
 In order to support multi-flow management, enable
efficient and fair utilization of the receiver capacity,
GTP uses a receiver-driven centralized rate allocation
scheme. In this approach, receivers actively measure
progress (and loss) of each flow, estimate the actual
capacity for each flow, and then allocate the available
receiver capacity fairly across the flows. Because
GTP’s receiver-centric rate-based approach can manage
all senders of a receiver, it enables rapid adaptation to
flow dynamics, adjusting seamlessly when flows join or
terminate. We describe the features of GTP in more
detail in the following subsections.

S1

S2

S1

S3 S2 S3

RR (a) (b)

3.2 Protocol Framework
GTP is a receiver-driven response-request protocol.

As with a range of other experimental data transfer
protocols, GTP utilizes light-weight UDP (with
additional loss retransmission mechanism) for bulk data
transfer and a TCP connection for exchanging control
information reliably. The sender side design is simple:
send the requested data to receiver at the receiver-
specified rate (if that rate can be achieved by sender).
Most of the management is at the receiver side,
including a Single Flow Controller (SFC) and Single
Flow Monitor (SFM) for each individual flow, and
Capacity Estimator (CE) and Max-min Fairness
Scheduler (MFS) for centralized control across flows.
The GTP protocol architecture at receiver side is
depicted in Figure 4.

3.3 Receiver-oriented Request-Response model
GTP uses two packet types, data and control

packets. Each data packet contains a header (including
per-connection packet sequence number) and a unit data
block (UDB). Control packets are used by receivers to
send data/rate requests and exchange information with
sender. In the connection setup stage (initiated by either
sender or receiver), both ends exchange resource
availability, RTT, and sender access bandwidth. The
receiver sends data requests and allowed rates to sender
via control packets. Within each data request one or a
range of UDB’s can be requested. The receiver may
adjust the sender’s rate by sending an updated rate
request; however, in a smoothly running system, this
should rarely happen.

Figure 4: GTP Framework (Receiver)

3.4 Rate Control in GTP
 There are two levels of rate control at the receiver:
per-flow rate control and centralized rate allocation
across flows. At the per-flow level, the Single Flow
Controller (SFC) manages the sending of data packet
requests and chooses the data-request sending rate for

each RTT according to measured flow statistics
provided by the Single Flow Monitor (SFM). The goal
is to achieve allocated/target rate by the central
scheduler while avoiding congestion. SFC also manages
receiver buffer requirements by limiting the number of
outstanding UDB requests. At the centralized scheduler
level, for each control interval (typically several
RTT’s), the Capacity Estimator (CM) estimates the
flow capacity of each individual flow based on the flow
statistics provided by SFM. Flow statistics includes the
initial allocated rate, achieved transmission rate in the
past control interval, packet loss rate, updated RTT
estimate, etc. Based on a receiver’s set of flow statistics,
the central scheduler allocates receiver bandwidth to
each flow and updates each flow’s target rate. This
bandwidth allocation algorithm achieves max-min
fairness across flows. The updated allowed (target) rate
for each flow is then fed to each SFC. For more detail
on flow control and centralized scheduling schemes see
Section 4.

3.5 Reliable Transmission
Unlike sender-centric protocols, GTP senders are

not responsible for loss retransmission. Lost UDB’s are
requested again by the receiver. Because packet
delivery is expected to be in-order, we employ a per-
connection data packet sequence number (embedded in
the header of data packet) to diagnose packet loss, as
well as calculate transmission and loss rates. If needed,
GTP can be augmented to handle out of order delivery.

3.6 Interaction with TCP
 As previously mentioned, TCP is not efficient for
networks with high delay-bandwidth product links. To
perform well on such links, GTP is much more
aggressive than TCP. When considering the co-
existence of GTP and TCP, there are two mechanisms
which support graceful interactions. GTP may adjust its
total allocatable bandwidth (distributed to flows by the
centralized rate scheduler) to reserve a certain share of
the receiver capacity for TCP and other traffic. For
instance, GTP may be assigned to utilize up to 80% of
the bandwidth and leave 20% for TCP flows. In our
future work, we expect to dynamically adjust
allocatable GTP traffic by monitoring and estimating
TCP traffic, so as to achieve max-min fairness to all
flows, including both TCP and GTP.

4. Flow Control and Rate Allocation

In this section we describe the rate control and

allocation mechanisms in GTP. In GTP there are two
levels of flow control. First, SFC conducts per-flow
based control and adjusts flow rate for each RTT. The
central scheduler reallocates rates to each flow for each
centralized control interval (typically a couple times

.

Flow 1
Single
Flow
Monitor
(SFM)

Single
Flow

Controller
(SFC)

Centralized Scheduler
Capacity Estimator

Flow N
Single
Flow
Monitor
(SFM)

Single
Flow

Controller
(SFC)

Max-min Fairness Scheduler

UDP(data flow) / TCP (control flow)

IP

Applications
GTP

more than the maximum RTT of individual flows). GTP
employs a centralized scheduling algorithm to solve this
flow rate allocation problem, which we formally define
as a max-min fair rate allocation problem with flow
capacity estimation constrains. The contribution of our
scheduling scheme is two-fold. First, by scheduling
across multiple connections, we are able to make
efficient utilization of receiver bandwidth while keeping
packet loss low. Second, this guarantees max-min
fairness among flows and achieves system convergence.
The necessary notations are defined in Table 1.

N Total number of flows
Cr Receiver access link capacity
T Centralized control interval
Ri,App Expected (Satisfactory) flow rate specified by application
Ri,Send Max. possible bandwidth allocated by sender for flow i
ri,target Target rate (Set by centralized scheduler) of flow i
ri,req Requested rate by receiver for flow i
ri,curr Observed received rate by receiver of flow i over T
ri,loss Observed loss rate by receiver of flow i over T
ri,total Observed total rate of flow i over T, ri,total = ri,curr + ri,loss
lossi Loss ratio of flow i: lossi = ri,loss / ri,total
Ci Link capability of each flow
RTTi Round trip time of flow i
RTTmax Maximum RTT among all the flows.

ir̂ Estimated capacity of flow i

ir̂∆ Allowable increment of
ir̂

Table 1: Notations

4.1 Single Flow Controller (SFC)
The SFC has two functions: First, it provides per-

flow based data packet request management and limits
the number of outstanding data requests. This limits the
usage of receiver buffers for each flow and prevents
receiver flooding when there is congestion. Second,
SFC provides per-flow rate adaptation in response to
the loss rate. It updates the flow rate and sends the new
rate request to the sender every RTT. This enables
response to any congestion while trying to achieve
allocated rate set by central scheduler. SFC uses a loss
proportional-decrease and proportional-increase
scheme for rate adaptation, which works as follows. For
each RTT, based on the current flow loss rate lossi, SFC
decreases the requested rate proportional to this loss
rate. We also set an upper bound (12.5%) for the
decrease in rate.

If there is no packet loss, SFC proportionally
increases the requested rate with a small step size (2%
per RTT). However the new rate should be no more
than the allocated/target rate set by central scheduler.
We define per-flow rate update rule as follows:

,
,

, ,

(1 min{0.5 ,0.125}) 0;
min{ (1 0.02), } 0.

i req i i
i req

i req i target i

r loss if loss
r

r r if loss
⋅ − ⋅ >⎧

= ⎨ +⎩ =

We are also exploring efficient delay based single flow
rate control mechanism, which will be reflected in our
future work.

4.2 Flow Capability Estimator (CE)
The Capacity Estimator (CE) provides estimation

to the achievable transmission rate of each flow based
on its history provided by SFM. At the end of each
centralized control interval (by default, we set it as three
RTTmax), the CE estimates the capacity of each flow,
which is used as the upper-bound for that flow during
centralized rate allocation phase. Desired rate
estimation scheme needs to have the following two
characteristics. When there is continuously no packet
loss and the achieved throughput is close to target rate,
the CE needs to increase the flow’s estimate faster.
When flow incurs a packet loss, the estimated rate
should be reduced according to the loss ratio. We use an
Exponential Increment and Loss Proportional
Decrement (EIPD) scheme for estimation. The idea
behind increment/decrement adjustment () is shown
in Figure 5. We describe this scheme as follows.

ir̂∆

Figure 5: Flow Rate Estimation Scheme

First, when there is no packet loss and the achieved rate
is close to previous estimate, we increase the allowable
increment of estimation exponentially:

If ri,loss = 0 and ri,total ≥ 0.95 ri,target, then
 If (ir̂∆ = 0) ir̂∆ = 0.02× ri,total ; else ir̂∆ =2 ir̂∆ .

When there is no packet loss but the achieved rate is not
close to previous estimate, we increase the allowable
increment of estimation proportionally:

If ri,loss =0 and ri,total < 0.95 ri,target, then
 ir̂∆ = 0.02 ri,total .

When there is packet loss, but below certain threshold
(0.5%), we still increase the estimate:

If 0 < ri,loss < 0.005, then
 ir̂∆ = 0.02 ri,total .

Otherwise (loss ratio is higher than 0.5%), we reduce
the estimate proportionally to the packet loss, which is
bounded by 20%. Note that is negative in this case:

ir̂∆
If ri,loss > 0.005, then

 ir̂∆ = 0 - min {0.5 ri,loss, 0.2} × ri,total. .

Packet Loss?

ri,curr close to ri,target ?

ir̂∆

loss less than a threshold?

Loss proportional
decrease

Proportional
increase

Exponential
increase

no no yesyes

no yes

After obtaining the allowable increment of flow rate
estimation (), we set the target rate of each flow as
follows:

ir̂∆

ir̂ = min {ri,total + , Ci, Ri,App , Ri,Send },
ir̂∆

where Ci is the link capacity of flow i, Ri,App is the
expected bandwidth requirement specified by the
application and Ri,Send is the specified allocatable rate
from sender, which is optional. In our future work,
senders may be able to explicitly specify the bandwidth
Ri,Send that is available for flow i.

4.3 Max-min Fair Rate Allocation
For centralized scheduling, an important problem is

how to allocate receiver capacity (or its access link
bandwidth) to multiple flows (with various RTT) in a
fair manner. Max-min fairness [7] is a widely used
criterion for bandwidth sharing along single or multiple
bottlenecks. For single bottleneck case, under a max-
min fair rate allocation, the rate of one flow can be
increased only by decreasing the rate of another flow
with lower or equal rate. Different from the standard
max-min fairness problem, here we need to take into
consideration the estimated flow rate, which provides
an upper bound for rate allocation. We formally define
this fairness criterion as follows:
Definition: Let Cr be of the capacity of all GTP traffic. A
rate allocation (xi, …, xN) under constraint (,…,)
is feasible if

1x̂ Nx̂

∑
=

≤
N

i
ri Cx

1

,

and for any i, it holds that . We call a rate
allocation (xi, … , xN) max-min fair if it is impossible
to increase the rate of flow j without losing feasibility or
reducing the rate of another flow j′ with the rate

ixx ˆ≤

'j jx x< .
For example, when four flows with different

capacities (100, 200, 500, 500) share a link with
capacity 1000, the max-min fair rate allocation is (100,
200, 350, 350). This example shows that under max-
min fairness, flows with lower achievable rate are given
higher priority.

To achieve max-min fairness, we need to allocate
bandwidth resource Cr to rate allocation (ri,target, … ,
rN,target) in a max-min fair way with constraint (, …,

). We come up with a max-min fair rate allocation
scheme, which gives higher priority to flows with lower
estimate. To be more specific, our scheme tries to
schedule the flow with smaller estimate (than fair share)
first, and evenly distribute the remaining bandwidth to
those with the estimate higher than average fair share.
We describe this scheduling algorithm in Figure 6.

ir̂

Nr̂

We will show the effectiveness of our scheme by
conducting simulations in the next section. However,

we leave a formal proof of the convergence properties
of our two level rate control mechanism to future work.

Figure 6: Max-min Rate Allocation Algorithm

4.4 Transition Management.
Transitions happen when new flows join or existing

flows terminate. When a new flow starts, we set its
estimate to the minimum of its physical link capacity,
application specified rate, and sender specified rate (if
any):

ir̂ = min {Ci, Ri,App , Ri,Send }.
By doing so, we are able to treat new flows just as old
ones and apply the same rate allocation algorithm
without any changes. When a flow terminates, we try to
proportionally increase the estimates of all remaining
flows. Let Cl denote the aggregate rates from all the
flows that finish within last control interval. Then we
increase the capacity estimate of each remaining flow
by

ir̂ = +
ir̂ ∑

⋅

j
j

li

r
Cr
ˆ

ˆ
.

Again, this allows us to utilize the same centralized
scheduling algorithm to conduct rate allocation.

Transitions also happen when we adjust flows rates,
and the skew between flows with different RTT’s may
cause serious end-point congestion. Consider two flows
with RTT 5 and 50ms. At the centralized rate
allocation stage, we may decrease the rate of flow 1 and
increase flow 2 for the sake of achieving max-min
fairness. However since flow 2 has a smaller RTT, it
responds much faster than flow 1 on rate changes. Also,
it may happen that the increased flow 2 arrives at
receiver while packets from flow 1 are still arriving at
its original higher rate. This causes congestion at the
receiver. To solve this problem, we may introduce a
delay for rate adjustment to coordinate among flows,
and the delay for flow i is defined as

Delayi = RTTmax – RTTi,
where RTTmax and RTTi are the maximum round trip
time of all the flows, and the round trip time of flow i,
respectively. This additional delay will be feedback

We let Ccurr denote the current available bandwidth, n be
the number of flows that have been scheduled.

1 Ccurr = Cr; n = 0;
2 FairShare = Ccurr / (N-n);
3 Find flow j with minimum rate estimate;
4 If r then FairSharej <ˆ

ˆ

j ≥ˆ

5 rj,target = r ; Ccurr = Ccurr - rj,target; n++;
j

6 Mark flow j as scheduled.
7 Repeat from 2 until n = N or r FairShare
8 Schedule all flows that are not scheduled as:
9 ri,target = Ccurr / (N-n).

together with the new target rate update to SFC. Then
each single flow controller will delay updating with the
new target rate. By doing so we have coordinated the
rate update among flows and reduced receiver side
congestion caused by the transition of rate changes.

5. Experiments

In this section, we explore the performance of GTP
through extensive experiments across three experiment
environments. First, we run simulations with the
packet-level simulator ns2[12] to study the best case
performance and packet level dynamics of GTP. ns2
provides ideal network performance in terms of
achievable full link bandwidth, and omitted end system
overhead. Second, we utilize a local Dummynet
environment (slower end nodes, lossy links with
emulated various RTT) to perform a more realistic set
of experiments. Finally, we conduct real
implementation measurements by comparing GTP with
TCP, RBUDP[8] and SABUL[9] on TeraGrid[13]
(fixed RTT, fast end-nodes, almost no-loss network
links). The multipoint-to-point connection topology is
the same as the one in Figure 3b, where multiple
senders are connected with receiver (through a gigabit
switch) via dedicated links with the same 1Gbps
bandwidth but with various delays.

5.1 ns2 Simulation Results
In this subsection we report the ns2 simulation

results of GTP’s dynamics to GTP flow changes, its
convergence and fairness properties, and its interaction
with TCP.

5.1.1 Dynamics of GTP

First, we illustrate the dynamics of GTP by
increasing the number of GTP flows arriving at a
receiver. Figure 7 shows flow rate trajectories when
four flows with different RTT’s (20, 40, 60, and 80ms)
start at time t =0, 2, 3, 4 seconds. We see that whenever
a new flow starts, each active flow achieves an identical
fair share of bandwidth. To compare with TCP fairness
across flows, we let four TCP flows with the same set
of RTT start at time t=0. Figure 8 shows the trajectories
of each flow’s throughput, from which we see that TCP
flow 1 (with shortest RTT) achieves much higher
throughput than others. Besides using a max-min
fairness criterion, for multiple competing flows with the
same link conditions (in this case each flow needs to
obtain same rate to achieve fairness), we quantitatively
characterize the long-term fairness across multiple
flows by using a commonly accepted fairness
measurement, defined as:

2
1

1 2 2
1

()
(, ,...,) ,

n
ii

n n
ii

x
f x x x

n x
=

=

= ∑
∑

where the value of f is between 0 and 1, and xi is the
throughput of flow i. The higher the index f, the fairer
the rate allocation is. For GTP flows in Figure 7a, long
term (after flow 4 starts) fairness index is 1. And the
fairness index of TCP flows in Figure 8 is only 0.67
(throughput ratio of four TCP flows is approximately
6:2:2:1).

Three TCP Flow
One GTP Flow

0 1 2 3 4 5 6
0

500

1000

(a) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

0 1 2 3 4 5 6
0

500

1000

(b) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

GTP Flow 1
GTP Flow 2
GTP Flow 3
GTP Flow 4

Aggregate Link Throughput

Figure 7: Fairness and convergence of GTP in a multipoint-to-point
setting. Four GTP flows are with RTT 20, 40, 60 and 80ms starting at
time 0, 2, 3, and 4s.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP Flow 1: RTT=20ms
TCP Flow 2: RTT=40ms
TCP Flow 3: RTT=60ms
TCP Flow 4: RTT=80ms

Figure 8: Unfairness over four TCP flows with different RTT
(20,40,60 and 80ms), all starting at time t = 0.

We now demonstrate the ability of GTP to probe
remaining bandwidth share while achieving max-min
fairness. We let GTP flow 1 (with 20ms RTT) starts at
time t=0, and GTP flow 2 starts after 2 seconds. Flow 2
is not able to reach the allocated fair share (500Mbps),
and only achieves 200Mbps, which may occur if the
sender is the bottleneck (e.g. slow disk I/O, or
sender/server serves multiple receivers at the same

time). From Figure 9 we see that flow 2 remains at
200Mbps while flow 1 increases quickly and reaches
700Mbps, which is the remaining bandwidth. This rate
allocation is also max-min fair.

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

(a) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

(b) Time (Second)

GTP Flow 1
GTP Flow 2

Aggregate ThroughputTh
ro

ug
hp

ut
 (M

bp
s)

Figure 9: GTP’s ability of fast probing the available bandwidth. GTP
flow 2 starts at time t=2s, and its maximum transmission rate is
300Mbps.

5.1.2 Interaction with TCP
We illustrate the interaction between GTP and TCP by
letting three parallel TCP flows compete with one GTP
flow. Figure 10a shows the trajectories of single GTP
flow’s throughput and the aggregate throughput of three
TCP flows, in which case GTP capacity upper bound Cr
is equal to full receiver access bandwidth (1000Mbps).
Since GTP is very aggressive, it does not let most of the
TCP traffic through (see Figure 10a). As suggested in
Section IIIf, one possible mechanism for bandwidth
sharing between GTP and TCP flows is to limit GTP’s
total allocatable capacity. Figure 10b shows the result
when GTP flow capacity is set to 850Mbps, where TCP
traffic could make use of the remaining bandwidth. As a
future work, we would like to enable GTP centralized
scheduler to support dynamic resource estimation and
allocation for both TCP and GTP traffic.

5.2 Dummynet Emulation Results

In our local cluster environment, we configured
one cluster node as a Dummynet router, which routes
packets while inducing various delays for different
flows. The maximum achieved throughput measured by
Iperf[14] on an emulated 1Gbps link with 60ms RTT is
954Mbps, with 0.3% packet loss. The relatively high
packet loss is due to the processing limits of the
Dummynet router and the end nodes on our 2Ghz Xeon
machines.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

(a) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

(b) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

(c) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

One GTP Flow
Three TCP Flows

One GTP Flow
Three TCP Flows

Aggregate Throughput of (b)

Figure 10: Interaction between GTP and TCP. (a) Three parallel TCP
flows (with 1ms RTT) start at t=0, and a GTP flow joins after 1
second with pre-set maximum bandwidth (1Gbps). (b) The case
where GTP’s maximum bandwidth utilization is set to 85%. (c) The
aggregate throughput of all TCP and GTP flows of (b).

We first compare GTP’s behavior on Dummynet
with the ideal case (provided by the ns2 simulation) and
TCP, in a simple two senders/one receiver case. Flow 1
with 25ms RTT starts at time t=0, and flow 2 with 50ms
RTT joins at t=10s. Figure 11 shows the trajectories of
these two flows, when they are both either GTP flows
on Dummynet, or ideal GTP flows, or TCP flows. We
see that for both flows, GTP’s performance on
Dummynet is close to the ideal case result from ns2
simulation. The fairness index of two GTP flows is 0.99
(from 10s to 33s), while the fairness index of TCP
flows is only 0.77.

0 5 10 15 20 25 30
0

500

1000

(a) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow 1, Starting at Time t=0, RTT = 25ms

0 5 10 15 20 25 30
0

500

1000
Flow 2, Starting at Time t=10 (s) RTT = 50ms

(b) Time (Second)

Th
ro

ug
hp

ut
 (M

bp
s)

GTP Flow 1 (Ideal Case, ns2 Result)
GTP Flow 1 (Dummynet)
TCP Flow 1 (ns2)

GTP Flow 2 (Ideal Case, ns2 Result)
GTP Flow 2 (Dummynet)
TCP Flow 2 (ns2)

Figure 11: Two flows with different RTT (25 and 50ms) are (1) Idea
(simulated) GTP flows (Same as the simulation result in ns2); (2)
Real GTP flows on Dummynet; (3) TCP Flows (with tuned large
window size).

1 2 3 4 5 6 7 8800

850

900

950

1000

(a) Number of FlowsA
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

1 2 3 4 5 6 7 80

5

10

(b) Number of Flows

Lo
ss

 R
at

io
 (%

)

Figure 12: Aggregate throughput and average loss rate of parallel
GTP flows. The RTT between sender and receiver is around 25ms.

We now illustrate GTP’s performance over
different numbers of parallel connections; four cluster
nodes are setup as senders and another as a receiver.
We vary the number of GTP flows from 1 to 8
(distributed across four senders), and present the results
in Figure 12. We see that GTP maintains a high
aggregate throughput when the number of parallel flows
increases (Figure 12a). We observe high packet loss in
the Dummynet environment (compared with Teragrid
results in the next subsection), which may be due to the
limitations of both the Dummynet router and the end
nodes. However we also notice that the loss rate does
not always increase with the number of connections,
and is bounded by 3%. This loss rate is much lower
than other rate based protocols in the same setting, as
documented below.

5.3 TeraGrid Experiments: Comparing Rate-based
Protocols
5.3.1 Methodology

In this subsection, we compare GTP with two other
point-to-point rate based high performance data transfer
protocols: RBUDP and SABUL, as well as untuned
standard TCP. Reliable Blast UDP (RBUDP) [8] targets
reliable data transfer on dedicated or QoS-enabled high
speed links. It assumes users have explicit knowledge
about the link capacity, requiring the sender to specify an
initial rate, start, and maintain its transfer at that rate.
SABUL [15] is designed for data-intensive applications
in high bandwidth-delay product networks, which starts
senders at a fixed high initial rate, adjusting rate based on
experienced loss. The newest version of SABUL (UDT)
[9] uses delay-based rate adaptation to reduce packet loss
caused by its aggressiveness. Throughout our
experiments, we use the latest available version of these
protocols (RBUDP v0.2, SABUL/UDT v1.0, and GTP
prototype). Our experiment is conducted both on
Dummynet and TeraGrid[13] (including SDSC and
NCSA/UIUC sites). The achievable bandwidth between

SDSC and NCSA on each connection is 1Gbps (NIC
speed limit). The following performance metrics are used
in our experiments:

- Sustained throughput on a 10GB transfer (Point to
point and multi-point to point) and average loss rate;

- Fairness for multi-point to point transmission;
- Rate allocation convergence property.

5.3.2 TeraGrid Results
Scenario 1: Point-to-point: Transfer 10GB data from
SDSC to NCSA (1Gbps link with 58ms RTT).

 TCP RBUDP SABUL GTP
Time (s) 1639 9.08 8.90 8.92
Avg. Rate 4.88Mbps 881Mbps 898 Mbps 896Mbps
Loss Rate unknown1 0.07% 0.01% 0.02%

TABLE 2: Point-to-Point, from SDSC to NCSA

Our results show, for single, point-to-point high

bandwidth delay product paths, the three rate-based
protocols all achieve much higher throughput than
traditional TCP while maintaining low loss rate.

Scenario 2: Point-to-point, parallel flows: Transfer
10GB data from SDSC to NCSA on the same 1Gbps
link with three parallel connections.

 TCP RBUDP2 SABUL GTP
Aggregate

Rate
(Mbps)

14.5 931 912 904

Avg. Loss unknown 2.1% 0.1% 0.03%
System
stability

Yes Yes Yes Yes

Fairness Fair Fair Fair Fair
TABLE 3: Parallel Flows: SDSC to NCSA

In this scenario, all three rate-based protocols perform
well when there are parallel flows between sender and
receiver, and they all achieve fairness among flows.
RBUDP achieves highest throughput as well as loss
rate. While RBUDP and SABUL achieve slightly
higher throughput than GTP with their aggressiveness,
they do so at the expense of a much higher packet loss
rate. The GTP’s end-point control scheme achieve high
throughput with a low loss rate.

Scenario 3: Multi point, convergent flows: Transfer
10GB data; one receiver at SDSC, and three senders
with two from NCSA, one from SDSC. Each sender-
receiver connection has a 1Gbps dedicated link.

In this case (Table 4), all three rate based protocols
achieve high throughput, but loss rates vary over a
range of 1000x, with GTP having lowest loss rate by a
large margin. GTP also achieves fairness among flows
and system stability in this case, while others are not

1 We are not able to measure instant TCP loss rate, due to the lack of
root privileges on TeraGrid.
2 We assume each flow has no knowledge about others, and starts
with the rate of full bandwidth.

fair for flows with different RTT. Note that we assume
each RBUDP flow has capacity estimate of 1Gbps, and
the loss rate may be reduced if we set each flows’
estimated throughput to be less than 1Gbps (see below).

 TCP RBUDP SABUL GTP
Aggregate
Rate3 (Mbps)

677 443 811 865

Avg. Loss unknown 53.3% 8.7% 0.06%
System
stability

Yes No No Yes

Fairness No No No Yes
TABLE 4: Multi-Point, Convergent Flows

Scenario 4: Two senders and one receiver on
Dummynet.

 RBUDP RBUDP2 SABUL GTP
Throughput(Mbps)/

Loss Rate of Flow 1
445

27.5%
438

5.2%
326

18.9%
455

2.6%
Throughput(Mbps)/
Loss Rate of Flow 2

256
38.2%

396
5.1%

167
24%

463
3.1%

Aggregate
Throughput

(Mbps)

701 834 493 918

TABLE 5: Two points to point (with RTT 25 and 50ms), Dummynet.
RBUDP2 is the case where we manually set the transmission rate for
each RBUDP flow to be half of the link bandwidth.

In this last scenario running on Dummynet, where
high packet loss happens, GTP still outperforms other
rate based protocols. To summarize the TeraGrid
evaluation results, we see that for multipoint-to-point
data transmission, GTP significantly reduces the packet
loss which is generally caused by the aggressiveness of
rate-based protocols.

6. Related Work

The earliest examples of receiver-centric reliable

rate based protocols include NETBLT [16] and
PROMPT [17]. Recently, the high performance
computing community has proposed a range of rate-
based point-to-point reliable transport protocols for
high bandwidth-delay product networks [8, 9, 15, 18-
21]. RBUDP and SABUL are the two with real
implementations and measurements on high delay-
bandwidth product links. For high delay-bandwidth
product links, parallel TCP flows [22, 23] are used to
improve the performance of current TCP. However the
protocol overhead increases with the increment of the
number of parallel connections, and it is not clear about
the optimum number of parallel flows. It may also be
unfair to other single TCP connections sharing the same
bottleneck with these parallel TCP connections.

A key aspect of our research focuses on receiver-
based flow contention management. Receiver based

3 Aggregate rate and loss rate vary for RBUDP and SABUL, and
numbers listed are the average values of several measurements.

multipoint-to-point transmission has been proposed for
web traffic [24] and content delivery network [25].
There are some research projects sharing the same idea
of receiver based management across flows. In [26], a
receiver-side integrated congestion management
architecture is proposed, which targets managing traffic
across various protocols for real-time traffic. However
detailed rate allocation schemes and fairness among
flows are not considered. In [27], the authors try to
allocate receiver access bandwidth among TCP flows
according to their pre-set priority. In the real world,
receiver capability may be under-utilized due to the fact
that each TCP flow may not be able to always achieve
and maintain the allocated rate, and the fairness among
flows is not guaranteed due to their priority scheduling
scheme. Examples of receiver centric approaches also
include [28] for wireless networks. In nearly all cases,
these studies focus on networks that are slow relative to
the nodes attached to them. In lambda grids, the
situation is the opposite.

Another focus of our work is to achieve max-min
fairness among flows. Max-min connection fairness has
been studied in both the ATM [29, 30] and Internet [31]
domains. For fairness criterions other than max-min
fairness, we refer to single link fairness index [32] and
most recently proportional fairness [33].

7. Summary and Future Work

Recent advances in DWDM networks have

fundamentally changed the communication
requirements for future lambda grids, where there is
sufficient network bandwidth but limited end system
capacity. This motivates our work of shifting the
network transmission management from the network to
the receiver end. We propose GTP, a group transport
protocol, as well as a receiver based rate allocation
scheme to manage multipoint-to-point transmissions.
We design a centralized scheduling algorithm to
allocate rate to multiple GTP flows with max-min
fairness guarantees. Early results from both ns2
simulation, emulation studies on Dummynet, and real
measurements on Terarid show that GTP achieves high
throughput, low loss on high bandwidth-delay product
links. In addition, results also show that GTP
outperforms other point-to-point protocol for multiple-
to-point transmission and achieves fast convergence to
max-min fair rate allocation across multiple flows.

We identify the following future work. First, we are
interested in improving per-flow based control scheme
to react more efficiently to irregular network traffic
(e.g. bursty traffic). Second, we are studying how to
introduce TCP traffic management into our centralized
control scheme. This includes open questions such as
how to estimate TCP flow’s capability, how to

efficiently tune TCP parameters to achieve target rate,
etc. Third, we are working on formal proofs of system
convergence properties for our two level flow control
schemes. Finally, we expect to integrate GTP into a
Distributed Virtual Computer (DVC) [34], a simple grid
program execution environment being developed for
lambda-grids as part of the OptIPuter project. Within a
DVC, GTP will provide high speed communication and
data transfer services to applications

Acknowledgements

Supported in part by the National Science Foundation

under awards NSF EIA-99-75020 Grads and NSF
Cooperative Agreement ANI-0225642 (OptIPuter), NSF
CCR-0331645 (VGrADS), NSF NGS-0305390, and NSF
Research Infrastructure Grant EIA-0303622. Support from
Hewlett-Packard, BigBangwidth, Microsoft, and Intel is also
gratefully acknowledged.

8. References

[1] L. Smarr, A. Chien, T. DeFanti, J. Leigh and P.

Papadopoulos, The OptIPuter. Communications of the
Association for Computing Machinery. 47(11).

[2] CANARIE. http://www.canarie.ca.
[3] V. Jacobson, Congestion Aviodance and Control.

Computer Communication Review, vol. 18, no. 4,
August 1988.

[4] L. Brakmo and L. Peterson, TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE
Journal of Selected Areas in Communications,. 13(8): p.
1465-1480.

[5] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow., TCP
Selective Acknowledgement Options. RFC2018, Internet
Engineering Task Force (IETF), October 1996.

[6] L. Rizzo, Dummynet: a Simple Approach to the
Evaluation of Network Protocols. Computer
Communication Review, January 1997. 27.

[7] D.P. Bertsekas and R. Gallager, Data Networks, Second
Edition. Prentice-Hall, New Jersey, 1992.

[8] E. He, J. Leigh, O. Yu and T. DeFanti, Reliable Blast
UDP: Predictable High Performance Bulk Data
Transfer. IEEE Cluster Computing, 2002: p. 317.

[9] Y. Gu, X. Hong, M. Mazzucco and R.L. Grossman,
SABUL: A High Performance Data Transfer Protocol.
Submitted for publication.

[10] Kazaa. http://www.kazaa.com.
[11] BitTorrent. http://bitconjurer.org/BitTorrent/.
[12] Network Simulator - ns2. http://www.isi.edu/nsnam/ns/.
[13] D.A. Reed, Grids, the TeraGrid, and Beyond. IEEE

Computer, 2003. 36(1): p. 62-68.
[14] Iperf Tool. http://dast.nlanr.net/Projects/Iperf/.
[15] H. Sivakumar, R. Grossman, M. Mazzucco, Y. Pan and

Q. Zhang, Simple Available Bandwidth Utilization
Library for High-Speed Wide Area Networks. to appear
in Journal of Supercomputing, 2003.

[16] D.D. Clark, M. Lambert and L. Zhang, NETBLT: A High
Throughput Transport Protocol. Proceedings of ACM
SIGCOMM '88, 1988.

[17] T.S. Balraj and Y. Yemini, PROMPT - A Destination
Oriented Protocol for High Speed Networks. IFIP WG
6.1/WG 6.4, Palo Alto, CA, Nov. 1990.

[18] P.M. Dickens and W. Gropp, An Evaluation of a User-
Level Data Transfer Mechanism for High Performance
Networks. in Proceedings of the 12th High Performance
Distributed Computing (HPDC12) conference, 2003.

[19] Tsunami.
http://www.indiana.edu/~anml/anmlresearch.html.

[20] A. Feng, A. Kapadia, W. Feng and G. Belford, Packet
Spacing: An Enabling Mechanism for the Delivery of
Multimedia Content.

[21] P. Dickens, FOBS: A Lightweight Communication
Protocol for Grid Computing. in Proceedings of Euro-
Par 2003.

[22] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel and S. Tuecke, Data management and transfer
in high-performance com- putational grid environments.
Parallel Computing. 28(5): p. 749-771.

[23] H. Sivakumar, S. Bailey and R.L. Grossman, PSockets:
The Case for Application-level Network Striping for
Data Intensive Applications using High Speed Wide Area
Networks. Proceedings of Supercomputing 2000.

[24] R. Gupta, M. Chen, S. McCanne and J. Walrand,
WebTP: A Receiver-Driven Web Transport Protocol.

[25] P. Rodriguez and E.W. Biersack, Dynamic Parallel
Access to Replicated Content in the Internet. IEEE/ACM
Transactions on Networking, 2002. 10(4): p. 455-465.

[26] H. Balakrishnan, H.S. Rahul and S. Seshan, An
Integrated Congestion Management Architecture for
Internet Hosts. Proceedings of ACM SIGCOMM 1999.

[27] P. Mehra, A. Zakhor and C.D. Vleeschouwer, Receiver-
Driven Bandwidth Sharing for TCP. in Proceedings of
IEEE INFOCOM 2003.

[28] H.-Y. Hsieh, K.-H. Kim, Y. Zhu and R. Sivakumar, A
receiver-centric transport protocol for mobile hosts with
heterogeneous wireless interfaces. Proceedings of the 9th
annual international conference on Mobile computing
and networking, 2003: p. 1-15.

[29] Traffic Management Specification. ATM Forum Version
4.1, af-tm-0121.000, 1999.

[30] A. Charny, D.D. Clark and R. Jain, Congestion Control
with Explicit Rate Indication. In Proceedings of ICC'95,
June 1995.

[31] P. Karbhari, E. Zegura and M. Ammar, Multipoint-to-
Point Session Fairness in the Internet. in Proceedings of
IEEE INFOCOM 2003.

[32] D.-M. Chiu and R. Jain, Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in
Computer Networks. Journal of Computer Networks and
ISDN Systems. 17(1).

[33] F. Kelly, A. Maulloo and D. Tan, Rate Control for
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational
Research Society, 49, pp. 237-252.

[34] N. Taesombut and A.A. Chien, Distributed Virtual
Computer (DVC): Simplifying the Development of High
Performance Grid Applications. to appear in Proceedings
of the Workshop on Grids and Advanced Networks
(GAN 04), 2004.

http://www.canarie.ca/
http://www.kazaa.com/
http://bitconjurer.org/BitTorrent/
http://www.isi.edu/nsnam/ns/
http://dast.nlanr.net/Projects/Iperf/
http://www.indiana.edu/~anml/anmlresearch.html

	1. Introduction
	2. The Problem
	3. GTP Overview
	4. Flow Control and Rate Allocation
	5. Experiments
	6. Related Work
	7. Summary and Future Work
	Acknowledgements
	8. References

