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Abstract—Cloud computing systems (or hosting 
datacenters) have attracted a lot of attention in recent 
years. Utility computing, reliable data storage, and 
infrastructure-independent computing are examples of 
motivations of such systems. Electrical energy cost of a 
cloud computing system is a strong function of the 
consolidation and migration techniques used to assign 
incoming clients to existing servers. Moreover, each client 
typically has a service level agreement (SLA), which 
specifies some constraints on performance and/or quality 
of service that it receives from the system. These 
constraints result in a basic trade-off between the total 
energy cost and client satisfaction in the system. In this 
paper, a resource allocation problem is considered that 
aims to minimize the total energy cost of cloud computing 
system while meeting the specified client-level SLAs in a 
probabilistic sense. Note that the cloud computing system 
pays penalty for the percentage of a client’s requests that 
do not meet the specified upper bound on service time. An 
efficient algorithm based on the convex optimization 
method and dynamic programming is presented to solve 
the resource allocation problem. Simulation results 
demonstrate the effectiveness of the proposed heuristic 
algorithm with respect to prior work.  

I. INTRODUCTION 

Demand for computing power has been increasing due to 
the penetration of information technologies in our daily 
interactions with the world both at personal and community 
levels, encompassing business, commerce, education, 
manufacturing, and communication services. At the personal 
level, the wide scale presence of online banking, e-commerce, 
software as a service (SaaS), social networking, etc., produce 
workloads of great diversity and enormous scale. At the same 
time computing and information processing requirements of 
various public organizations and private corporations have 
also been increasing rapidly. Examples include digital services 
and functions required by the various industrial sectors, 
ranging from manufacturing to housing, from transportation to 
banking. Such a dramatic increase in the computing demand 
requires a scalable and dependable information technology 
(IT) infrastructure comprising of servers, storage, networks, 
physical facilities, Electrical Grid, IT workforce, and billions 
of dollars in capital expenditure and operational cost  to name 
a few.  

Virtualization technology makes the independence of 
applications and servers feasible. Nowadays, computing 
systems heavily rely on this technology. Virtualization 
technology provides a new way to improve the power 

efficiency of the datacenters: (server) consolidation, which 
enables the assignment of multiple virtual machines (VMs) to 
a single physical server. By this action, some of the servers 
can be turned off or put into some deep sleep state, thereby, 
lowering power consumption of the computing system. The 
technique works because modern servers tend to consume 
50% or so of their peak power in idle state (this effect is 
known as the non-energy-proportionality of modern servers 
 [1].) Consolidation involves performance-power tradeoff. 
More precisely, if workloads are consolidated on servers, 
performance of the consolidated VMs may decrease because 
of reduction of available physical resources (CPU, memory, 
I/O bandwidth) although the overall power efficiency 
improves because fewer servers are needed to service the 
VMs.  

Low utilization of servers in a datacenter is one of the 
biggest factors in low power efficiency of the datacenter. For 
example, the average utilization of servers in a Google 
datacenter was reported to be 30%  [2]. This fact motivates the 
design of energy-proportional servers  [3] to minimize the 
overall power consumption but due to the non-energy-
proportional nature of the current servers, it is prudent from an 
energy efficiency viewpoint to have as few servers as possible 
turned on with each active server being highly utilized. Hence, 
there is a strong justification for server consolidation in 
current enterprise datacenters.  

Operational cost and admission control policy in the cloud 
computing system are affected by its power and VM 
management. Power management techniques  [4]- [6] control 
the average and peak power in a distributed or centralized 
fashion in datacenters. VM management techniques  [7]- [10] 
control the VM placement in physical servers and VM 
migration from a server to another one. In this paper, we focus 
on the SLA-based VM management to minimize the 
operational cost in the cloud computing system. 

The IT infrastructure provided by the datacenter 
owners/operators must meet various SLAs established with the 
clients. The SLAs may be resource related (e.g., amount of 
computing power, memory/storage space, network 
bandwidth), performance related (e.g., service time or 
throughput), or even quality of service related (24-7 
availability, data security, percentage of dropped requests.)  

Infrastructure providers often end up over provisioning 
their resources in order to meet the clients’ SLAs. Such over 
provisioning may increase the cost incurred on the datacenters 
in terms of both the electrical energy cost and the carbon 
emission. Therefore optimal provisioning of the resources is 
imperative in order to reduce the cost incurred on the 
datacenter operators as well as the environmental impact. The 



problem of optimal resource provisioning is challenging due to 
the diversity present in the clients (applications) that are 
hosted as well as in the SLAs. For example: some applications 
may be compute-intensive while others may be memory 
intensive, some applications may run well together while 
others do not, etc. Note that in general, there are two types of 
applications in the datacenter: (i) service applications and (ii) 
batch applications  [2]. Service applications tend to generate 
many requests whereas batch applications tend to generate 
large processing requests. Unlike the batch applications that 
are throughput-dependent, service applications are response 
time-dependent. In this work we focus on service applications 
in the cloud computing system.   

A datacenter comprises of thousands to tens of thousands 
of server machines, working in tandem to provide services to 
the clients, see for example  [2]. In such a large computing 
system, energy efficiency can be maximized through system-
wide resource allocation and server consolidation, this in spite 
of non-energy-proportional characteristics of current server 
machines. Clients in cloud computing system are software 
applications that require processing, memory and 
communication resources in “on-demand capacity 
provisioning” or “lease model of the IT infrastructure”  [11] 
and  [12]. Our goal in this work is to minimize the total cost of 
the cloud computing system under performance-related SLAs 
–in particular, upper bounds on the response times (service 
latencies) for clients’ requests. 

The paper outline is as follows. Related work is discussed 
in the next section. In section  III, the cloud computing system 
model is presented. The optimization problem is presented in 
sections  IV. The proposed algorithm is presented in section  V. 
Simulation results and conclusions are given in the sections  VI 
and  VII. 

II. RELATED WORK 

Distributed resource management is one of the most 
challenging problems in the resource management field. This 
problem has attracted a lot of attention from the research 
community in the last few years. Below we provide a review 
of most relevant prior work. 

Srikantaiah et al.  [12] presented an energy-aware 
consolidation technique to decrease the total energy 
consumption of a cloud computing system. The authors 
empirically modeled the energy consumption of servers as a 
function of CPU and disk utilization rates. Next, they 
described a simple heuristic to consolidate the processing 
works in the cloud computing system. The simple heuristic 
does not capture the effect of SLA on VM resource 
provisioning and only for very small input size performance of 
the solution is shown. 

A VM placement heuristic to maximize the number of 
serviced applications, minimize the migration cost, and 
balance the load in physical machines is presented in  [7]. The 
main focus of this work is on the scalability of the problem but 
the problem of assigning VMs on physical servers in a case 
that all VMs can be placed and power and migration cost 
minimization is the objective is not investigated. 

Power and migration cost aware application placement in 
virtualized systems is proposed in  [9]. Authors present a 
power-aware VM placement controller in a system with 
heterogeneous server clusters and virtual machines. pMapper 
architecture and placement algorithms to solve the problem of 
minimizing power subject to a fixed performance requirement 
are investigated. The proposed solution is presented based on 
assumption of predetermined performance level for VMs 
which is not applicable for all different kind of SLA contracts.  

Liu et al.  [14] described a SLA-based profit optimization 
problem in electronic commerce hosting datacenters. A fixed 
set of servers are assumed to be active and application 
placement on the servers are done to maximize the total SLA 
profit. SLA in this work is modeled as a response time 
constraint and less than a portion (e.g. 2%) of request’s 
response time can violate that constraint. This kind of SLA are 
used in  [15] to model the optimization of workload 
distribution to manage the brown energy consumption.  

In  [16], Ardagna et al. proposed a solution for SLA-based 
VM placement to maximize the profit in the cloud computing 
system. The presented problem considers only soft SLA 
contracts in which client pays the cloud provider based on the 
average response time provided to its requests. These kind of 
SLAs are considered in different works such as  [17] and  [18], 
but we believe that it cannot capture the complexity of the 
existing SLA contracts.  

In this paper, we investigate the SLA-based VM placement 
to minimize the total operational cost in the cloud computing 
system. Operational cost includes power and migration cost 
and the expected penalty of serving clients. A lower bound on 
the total operational cost is presented and the effectiveness of 
the proposed algorithm is shown by comparing with previous 
works’ algorithms and lower bound value. 

III.  SYSTEM MODEL 

In this paper, a service level agreement (SLA)-aware 
resource allocation method for a cloud computing system is 
presented to minimize the total operational cost of the system. 
The structure of the datacenter, VM management system, 
performance model and type of SLA used for the clients are 
explained in this section. 

A. Datacenter Configuration  

In the following paragraphs, we describe the type of the 
datacenter that we have assumed as well as our observations 
and key assumptions about where the performance bottlenecks 
are in the system and how we can account for the energy cost 
associated with a client’s VM running in the datacenter.  

A datacenter comprises of a number of potentially 
heterogeneous servers chosen from a set of known and well-
characterized server types. In particular, servers of a given 
type are modeled by their processing capacity (�∗�) and main 
memory size (�∗�) as well as their operational expense (energy 
cost), which is directly related to their average power 
consumption. We assume that local (or networked) secondary 
storage (disc) is not a system bottleneck. Each server is 
identified by a unique id, denoted by index j. 



The operational cost of the system includes a term related 
to the total energy cost (in dollars) of serving clients’ request. 
The energy cost is calculated as server power multiplied by 
duration of the epoch in second (��) and cost of energy 
consumption (��). The power of a server is modeled as a 
constant power cost (�∗�) plus another variable power cost, 
which is linearly related to the utilization of the server (with 
slope of �∗�). Note that the power cost of communication 
resources and air conditioning units are amortized over all 
servers and communication/networking gear in datacenter, and 
are thus assumed to be relatively independent of the clients’ 
workload. More precisely, these costs are not included in the 
equation for power cost of the datacenter.  

Each client is identified by a unique identifier, represented 
by index i. Each client produces one or more VMs, which are 
executed on some servers in the datacenter. Each client has 
also established an SLA contract with the datacenter owner 
(cloud provider.)  

B. VM Management System 

Datacenter management is responsible for admitting the 
VMs into the datacenter, servicing them to satisfy SLA 
requirements, and minimize the operational cost of the 
datacenter. In this paper, we consider two main resource 
managers in the datacenter: VM controller (VMC) and power 
manager. An exemplary architecture for the datacenter 
management system with emphasis on the VMC and per 
server power manager is depicted in Figure 1. 

Figure 1. VM management structure in a datacenter. 

Power manager is responsible for minimizing the average 
power consumption and satisfying the peak power constraints 
(thermal or because of power distribution unit limitation) 
subject to providing the required performance to the VMs. 
Power management system in datacenter includes hierarchical 
power provisioners and a power manager for each server. 
Power provisioners distribute the peak power allowance 
between lower level power consumers and make sure that 
these power budget constraints are met. Servers are located at 
the lowest level of this hierarchy. Power manager in each 
server tries to minimize the average power consumption 
subject to satisfying the peak power constraint and 
performance requirements of the assigned VMs. This manager 
uses different dynamic power management techniques such as 

dynamic voltage and frequency scaling (DVFS), clock 
throttling and etc. to minimize the power.       

VMC is responsible for determining the performance 
requirements of the VMs and migrating them if needed. VMC 
performs these tasks based on two different optimization 
procedures: semi-static optimization and dynamic 
optimization. Semi-static optimization procedure is performed 
periodically but dynamic optimization procedure is performed 
whenever it is needed.   

In semi-static optimization procedure, VMC considers the 
whole active set of VMs, previous assignment solution, 
feedbacks generated from power, thermal and performance 
sensors, and workload prediction to generate the best VM 
placement solution for the next epoch. Period of performing 
semi-static optimization is dependent to type and size of the 
datacenter and workload specifications. In dynamic 
optimization procedure, VMC finds a temporary VM 
placement solution by migrating, creating or removing a 
limited number of VMs to respond to performance, power 
budget, or critical temperature violation.  

In this work, we focus on semi-static optimization 
procedure of VMC. In this procedure, clients’ SLA, expected 
power consumption of servers and migration cost of VMs are 
considered. Migrating a VM between servers causes a 
downtime in the client’s application. Duration of the 
downtime is related to the migration technique used in 
datacenter. For example, live migration causes a downtime 
amount of less than 100ms  [9]. We assume that there is a 
defined cost in SLA contracts for these short but infrequent 
downtimes. In this paper, 	
��
� denotes the migration cost of 
i th client’s VM in the datacenter. Previous assignment pseudo 
Boolean variable �
�� (1 if ith client was assigned to jth server 
and 0 otherwise) is used to calculate the migration cost in the 
system. 

C. Performance Modeling  

Performance of each client in the cloud computing system 
should be monitored and necessary decisions should be made 
to satisfy the SLA requirements. In this work, we focus on the 
online services that are sensitive to latency. A client in this 
system is application software that should serve a number of 
requests in each time unit. To model the response time of 
clients, we assume that the inter-arrival times of the requests 
for each client follow an exponential distribution function 
similar to the inter-arrival times of the requests in the e-
commerce applications  [14]. The minimum allowed inter-
arrival time of the requests is specified in SLA contracts. 
However, average inter-arrival time (�
) of the requests for 
each client is predicted in datacenter to be used in the 
optimization procedures. 

Streams of requests generated by each client (application) 
may be decomposed into a number of different VMs. In case 
of more than one VM serving ith client’s application, requests 
are assigned probabilistically: �
� portion of the incoming 
requests are forwarded to the jth server (host of a VM) for 
execution, independently of the past or future forwarding 
decisions. Based on this assumption, the arrival rate of the 



requests in each server follows the Poisson distribution 
function.  

There are different resources in the servers that are used by 
VMs such as processing units, memory, communication 
bandwidth, and secondary storage. These resources can be 
allocated to VMs by a fixed or round-robin scheduling. In this 
work, we consider processing unit and memory to have fixed 
allocation policy and others are allocated by round-robin 
scheduling. In this work, our algorithm determines the portion 
of processing unit and memory to be allocated to each VM 
assigned to a physical server. 

The amount of memory allocated to a VM does not 
significantly affect performance of the VM for different 
workloads as long as it is greater than a certain value  [7]. 
Hence, we assign a fixed amount of memory (�
) to ith client’s 
VM on any server that client is assigned to. 

Share of a VM form the processing unit determines the 
performance of that VM on cloud computing system because 
the applications we are considering are compute-intensive. 
The portion of processing unit allocated to different VMs 
(�∗�) on a server is determined by the VMC for the beginning 
of the decision epoch. However, these values can be changed 
in each server based on the workload changes or 
power/performance optimization at the server. VMC considers 
the clients’ workload to determine these resource allocation 
parameters to control the wait time of the processing queue for 
different applications based on the SLA requirements.  

A multi-class single server queue exists in servers that 
have more than one VM (from different clients). We consider 
generalized processor sharing (GPS) model at each queue; 
GPS model approximates the scheduling policy used by most 
operating systems, e.g., weighted fair queuing and the CPU 
time sharing in Linux. Using this scheduling policy, multi-
class single server queue can be replaced by multiple single-
server queues. Note that the processing capacity of the jth 
server allocated to the ith client’s VM is calculated as ����
�. 

The exponential distribution function is used to model the 
service time of the clients in this system. Based on this model, 
the response time distribution (sojourn time distribution) of a 
VM (placed on server j) is an exponential distribution with the 
mean value of: 

��
� = 1
����
��
� − �
��
 (1) 

where �
� denotes the service rate of the ith client on jth server 
when the whole processing capacity (���) is allocated to the 
VM of this client. 

The queuing model used in this paper is M/M/c which is 
simplified to M/M/1 with probabilistic request assignment. In 
case of service times with general distribution, this model is an 
approximation. This approximation is not appropriate for 
M/G/1 queues with heavy-tail service time distribution. 
However, since we defined SLA based on response time 
constraint, these kinds of service time distribution functions 
are not applicable in this model.  

More general case than model in (1) would be M/G/c 
queuing model. It is not possible to predict response time 

distribution of these queues without numerical approach 
unless for very specific service time distributions. For this 
reason we believe that using M/M/c model for this high level 
decision making is enough and more complex models can be 
used in problems with smaller input size. 

D. SLA model for the clients 

We use soft SLA constraints, in which cloud provider 
guarantees that the response time constraint will be satisfied 
for most of the time (ℎ∗� for example for 95%tile of the 
requests) and for each violation of constraint, cloud provider 
pays back the client a fixed penalty value (�∗�).  

Having SLA defined for clients let the cloud provider to 
vary the VMs resource size and improve the power efficiency 
in the system. This makes the price of the computing less.  

The constraint on the response time of the client i can be 
expressed as follows: ��
���
 > �
�! ≤ ℎ
� (2) 
where �
 and �
� denote the response time and target response 
time of the ith client’s requests, respectively. 

Using the model provided in the subsection  C, the response 
time constraint for each VM can be expresses as follows: 

#$%&'()*'+*'$,*-.*/ ≤ ℎ
� ⇒ �
� ≥ 2�
��
� − lnℎ
� �
�⁄ 6 �
����7  
(3) 

IV.  PROBLEM FORMULATION 

In this work, we focus on an algorithm for solving semi-
static VM placement problem in datacenter. The goal of this 
optimization problem is to minimize the total operational cost 
of the system including power and migration costs and penalty 
of violating response time constraint. VMC uses different 
method to do this optimization including: turning on/off 
servers, migrating VMs, and changing the VM sizes. The cost 
minimization problem is formulated as below (P1): 
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� ≤ ��� ,									 ∀E (8) ∑ �
�� = 1,		 ∀9 (9) �
� ≥ �
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� ≤ 1 + �
� − F,		 ∀9, E (10) A
� ≥ �
� − �
�� 	 ∀9, E (11) 

>� ∈ �0,1!,	�
� ∈ �0,1!	,	A
� ∈ �0,1!	,						 ∀9, E (12) �
� ≥ 0, �
� ≥ 0,																			 ∀9, E (13) 
where F is a very small positive value, and, >� is a pseudo-
Boolean integer variable to determine if the jth server is ON 
(>�=1) or OFF (>�=0). We call �
�’s and �
�’s assignment and 
allocation parameters, respectively throughout the paper. 

The first term in the objective function is the energy cost 
of system. This energy cost is composed of the idle energy 



cost if the server is active (>�=1) plus a cost proportional to 
the utilization of the server. The second term captures the 
migration costs. The third term in the objective function is the 
expected penalty that cloud provider will pay to the clients 
when SLA violations occur. 

Constraint (5) ensures that if a client is assigned to a 
server, this server should be active. Constraint (6) is the SLA 
constraint for the clients in the system. Constraint (7) and (8) 
are the processing and memory capacity constraints in server. 
Constraint (9) makes sure that all requests of each client are 
served in the system. Constraint (10) is used to generate a 
helping pseudo Boolean parameter (�
�) which determines if 
the ith client is assigned to the jth server (�
�=1) or not (�
�=0). 
If the value of �
� is more than 0, the first inequality of (10) 
sets the value of �
� to one and if the value of �
� is zero, the 
second inequality of (10) force the value of �
� to be zero. 
Also constraint (11) is used to generate a pseudo Boolean 
parameter (A
�) which indicates that the migration cost for ith 
client for jth server should be considered (�
�=1 and �
��=0) or 
not. Finally, constraints (12) and (13) specify domains of the 
variables. 

P1 is a mixed integer non-linear programming problem. 
Integer part of problem comes from the fact that servers can be 
active or sleep (>�) and VMs can be placed on a physical 
machine or not (�
�). 

The problem of minimizing the energy cost plus the 
expected violation penalty is an NP-Hard problem. The proof 
is omitted for brevity. It can be shown that the NP-hard bin-
packing problem  [19] can be reduced to P1. Indeed, even 
deciding whether a feasible solution exists for this problem, 
does not have an efficient solution. So, we assume a simple 
greedy (similar to First Fit Decreasing (FFD) heuristic  [19]) 
algorithm will find a feasible solution to P1 for the specified 
inputs in the problem definitions. Another important 
observation about this problem is that the numbers of clients 
and servers in this problem are very large; therefore, a critical 
property of any proposed heuristic should be its scalability. 

 Different versions of this problem are considered in the 
literature. The shortcoming of the proposed solutions in the 
previous work is an assumption about knowing the size of 
VMs based on SLA requirements. Although this assumption is 
valid for Platform as a Service (PaaS), it is not completely true 
in case of SaaS. There are two problems with this assumption 
incase of SaaS: First, SLA contracts in SaaS do not specify the 
amount of required resource and cloud provider needs a 
method to translate the target performance metric to the 
amount of resource for each client; Second, considering fixed 
resource requirement eliminates the fact that cloud provider 
may overbooked the datacenter and needs to sacrifice the 
performance of some of the clients to be able to provide 
performance guarantee for others. Based on these reasons, we 
consider the problem of determining the VM sizing and 
placement together. 

V. COST M INIMIZATION ALGORITHM 

In this section, a heuristic for problem P1 is presented. The 
output of this solution is the VM placement and request 
forwarding policy and the expected performance level of the 
VMs in the next epoch.  

A two step algorithm is proposed for this problem. In the 
first step, clients are ordered based on their status in the 
previous decision epoch and their estimated resource 
requirements for the next decision epoch. Based on this 
ordering, VMs are placed on servers one by one using 
dynamic programming and convex optimization methods. This 
constructive approach may result in servers with low 
utilization or uncompetitive resource sharing policy within the 
server. So, in the second step of the algorithm, two local 
searches are executed to fix these issues. 

Details of the SLA-based Power and Migration Cost 
Minimization algorithm or SPMCM for short are presented 
below. 

A. Initial Solution 

To find an initial solution for P1, a constructive approach 
is used to assign clients to servers and allocate resources to 
them based on the assignment solution in the previous epoch. 
For this purpose, clients are divided into four groups. Clients 
that were served in the previous epoch are placed in one of the 
first three groups. The first group includes clients that leave 
the datacenter in the new epoch. The second group includes 
clients whose request arrival rates drop in the new epoch and 
the third group includes clients whose request arrival rates rise 
in the new epoch. Finally, the fourth group includes clients 
that were not served in the previous epoch. 

Clients within these groups are picked in the order of their 
average minimum processing requirement for VMs (biggest 
VM first) but the groups are processed in increasing order of 
their IDs. For clients in the first group, VMC releases their 
resources and updates the resource availabilities. Resource 
availability in each server is defined as the amount of 
processing and memory allocated to the existing VMs. 

From other groups, the picked client is assigned to 
available servers to minimize the operational cost of the cloud 
computing system. After finding a solution, resource 
availabilities are updated and the next client is picked for the 
next assignment. The formulation below describes the 
operational cost minimization problem for a picked client (P2) 
(i th client). 
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�
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�
��
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with the  addition of constraints (9)-(13). 



��� and ��� denote the previously-committed portion of the 
processing and memory resources on the jth server, 
respectively.  

To eliminate the effect of integer parameter (>�) on the 
complexity of the problem, the constant energy cost is 
replaced by a cost linearly proportional to the CPU utilization 
of the server. Even with this relaxation, it can be shown that 
the Hessian matrix for P2 is not guaranteed to be positive or 
negative definite (or semi-definite). This means that the 
convex optimization methods cannot be directly applied to 
solve this problem. However, fixing the value of �
� (between 
zero and one) makes the problem P2, a convex optimization 
problem. More precisely, for a fixed �
�, the allocation 
parameter �
� can be found using convex optimization 
methods to minimize the energy cost and SLA violation 
penalty.  The complete solution for P2 called DPRA (dynamic 
programming resource assignment) can thus be found by 
applying dynamic programming (DP) technique to examine 
different assignment parameters for different servers and find 
the best solution as explained next.  

Optimal solution of P2 for constant �
� values and for each 
server is calculated using Karush Kuhn Tucker (KKT) 
conditions. Using this method, the partial cost of assigning an �
� portion of the ith client’s requests to the jth server is 
calculated which includes the energy cost, migration cost (if 
the client was not assigned to the jth server in the previous 
decision epoch) and expected SLA violation penalty value for 
this resource allocation. Then assignment on different servers 
should be combined to construct a complete solution for each 
client with the least total cost. DP technique is used to find the 
best VM placement for the client (determining best �
�) such 
that constraint (9) is satisfied.  

Since we are dealing with cost minimization for one client 
at a time, there is no need to consider the whole set of servers 
in the datacenter for each DP calculation; Instead we can use a 
small number of servers from each server type plus servers 
that had served the client in the previous epoch to find the best 
VM placement solution. Decreasing the number of servers for 
each DP calculation decreases the time complexity of the 
solution.  

Set of selected servers for the DP technique is different for 
clients in different groups. For clients in the second group, 
only servers that served the client in the previous epoch are 
considered. For the clients in the third and fourth group, 
servers that served the client in the previous epoch, a set of 
servers from each server type with the most unallocated 
resources, and possibly some inactive servers (from each 
server type) are considered. To differentiate between using 
active and inactive servers for VM placement, different slopes 
for energy cost for active and inactive servers can be 
considered. For example, ��� and ��� + ��� can be used as the 
slopes of energy cost for active and inactive servers, 
respectively. Note that, to change the slope of the energy cost 
for different servers, we need to change the first term in the 
objective function in (14).  

Algorithm 1 shows pseudo code of DPRA method. 

 

To improve the initial solution, we have used two local 
search methods; the first one fixes the resource allocation 
parameters and the second one tries to make under-utilized 
servers inactive and service their clients with higher energy 
efficiency on other active or inactive servers.  

B. Resource allocation adjustment  

If more than one client is assigned to a server, constructive 
resource allocation may not generate the global optimum 
allocation policy.  

We formulate resource allocation problem in a server with 
fixed assignment parameters (�
�) to minimize the energy cost 
and SLA violation penalty as a convex optimization problem 
(P3): 

89:	�����<�
�

∈K'

+<�
��
��
#$%&'()*'+*'$,*-.*/

∈K'

	 (18) 

subject to: �
� ≥ �
�22�
��
� − lnℎ
� �
�⁄ 6 �
����7 6,																																			∀9 ∈ L� (19) 

∑ �
�
∈K' ≤ 1,																  (20) 

where L� denotes the set of VMs assigned to the jth server. 
P3 is a convex optimization problem and the solution can 

be found using KKT optimality conditions. Note that this part 
of the VM placement algorithm is parallelizable and can be 
implemented in power managers of the servers. 

C. Turn OFF under-utilized servers 

To decrease the total cost in the system, it may be possible 
to turn off some of the under-utilized servers (after finding the 
initial solution) to reduce the idle energy cost of the servers at 
the expense of more migration cost (for clients that were 
assigned to these under-utilized servers in the previous epoch) 
or more SLA violation penalty.  

																												+���
��
��
exp2−2����
��
� − �
��
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Algorithm 1: Dynamic Programming Resource Assignment 

Inputs:  ��, ��, 	
��
�, �
, �
�, ���, �
�, �
�, ���, ���, ���, ���, ���, ���, ℎ
� and �
 
Outputs: �
�, �
�  (i is constant in this algorithm) 
 

1 ga= granularity of alpha; 
2 For (j = 1 to number of servers) 
3 For (αQR = 1/ga to 1) 
4  ϕQR= optimal resource shares based on KKT conditions 

5 C(j,	αQR) = CUTW %PR� + PRU-ϕQR + zQRcost Q̂  

6 End 
7 End 
8 X = ga, and Y = number of servers 
9 For ( j =1 to Y) 
10 For  (x = 1 to X) 11  D[x,y]=	infinity;	//Auxiliary	X×Y	matrix	used	for	DP	12 For	For	For	For	(z	=	1	to	x)	13 D[x,y]=min(D[x,y],D[x-1,y-z]+	C(j,	z/ga))	14 D[x,y]=min(D[x,y],	D[x-1,y])	
15 End 
16 End 
17 Back-track to find best αQR’s and �
�’s to minimize cost 

 



An iterative method is considered to find the minimum 
cost solution based on the results of the previous steps. In each 
iteration, a server with utilization less than a threshold (i.e. 
20%) is chosen and its VMs are removed. To assign the 
removed VMs to other servers, DPRA method is used. 
Considering higher energy cost for inactive servers in the 
DPRA method encourages the VMC to choose more SLA 
violation penalty or migration cost instead of turning on a 
server. Note that these iterations are not always decrease the 
total cost in the system; therefore, the global lowest total cost 
is compared to the total cost after turning off a server, and the 
move is ignored if not beneficial. 

This iterative method is continued until all servers with 
low utilization are examined for consolidation. 

VI.  SIMULATION RESULTS 

To evaluate the effectiveness of the proposed VM 
placement algorithm, a simulation framework is implemented. 
Simulation setups, baseline heuristics and numerical results of 
this implementation are presented in this section. 

A. Simulation Setup 

For simulation, model parameters are generated based on 
the real world parameters. The number of server types is set to 
10. For each server type, an arbitrary number of servers are 
placed in datacenter. Processors in server types are selected 
from a set of Intel processors (e.g. Atom, i5, i7 and Xeon)  [20] 
with different number of cores, cache, power consumptions 
and working frequencies. Idle power consumptions for 
different server types are set uniformly between three to six 
times the power consumption of their fully-utilized processor. 
Memory capacities of the servers are selected based on cache 
size of the processors with a constant scaling factor of 1500. 
Energy cost is considered to be 15 cents per kilowatt hour at 
all times. 

Request arrival rates of the client are chosen uniformly 
between 0.1 and 1 request per second. The memory 
requirements for clients are also selected uniformly between 
256MB and 4GB. These parameters are borrowed from the 
simulation setup of  [16]. In each simulation, five different 
client classes are considered. Each client is randomly picked 
from one of the client classes. The amount of penalty value for 
different client classes is selected based on the on-demand 
rates of Amazon EC2 cloud service  [21]. Migration costs set 
to be equal to downtime penalty of 65ms for each client. Also, 
based on the highest possible frequency value of the servers, �
� ’s are set. 

Each simulation is repeated at least 1000 times to generate 
acceptable average results for each case. In each simulation, a 
number of clients are assigned to the servers for the first 
epoch. At the end of each epoch, an arbitrary number of 
clients leave the datacenter and an arbitrary number of clients 
join the datacenter. Less than 10% of current clients join or 
leave the datacenter in the beginning of each epoch. Moreover, 
inter-arrival rate of the remaining clients in the system 
changes for the next epoch arbitrarily. To account for the 
datacenter power efficiency, energy cost of the servers is 

multiplied by 1.3 as a typical power usage effectiveness of 
current datacenters  [2].  

B. Heuristics for Comparison 

We implemented a slightly modified version of FFD  [19] 
for VM placement, called FFDP, and PMaP heuristic  [9] as 
baseline. These approaches consider VMs that have fixed 
processing size. We choose 1 2⁄ ℎ∗� as expected violation rate 
of the SLA response time constraints and based on (3) the 
amount of processing unit required for different VMS on 
different physical servers can be found. 

FFDP method picks clients based on the size of their VM 
(highest to lowest) and assigns them to the first server with 
available resources from the server type that has the lowest 
execution time for the client’s requests. 

PMaP is a VM placement heuristic that tries to minimize 
the power and migration cost. PMaP determines the amount of 
resources that VMs need, determines the active servers and 
place the VMs on the servers. After these steps, a power and 
migration-aware local search is done to find the final solution. 
Details of PMaP can be found in  [9]. 

C. Numerical Results 

Table I shows the performance of SPMCM for different 
number of clients with respect to the found lower bound on the 
total cost. This lower bound is the summation of the lowest 
cost VM placement solution for each client. This table shows 
that SPMCM generates a near optimal solution for VM 
placement problem to minimize the power and migration cost. 
Also increasing the number of clients decreases the distance 
between the total cost of SPMCM and the lower bound 
because of higher consolidation possibility with higher 
number of clients.  

Table I. Performance of the proposed solution w.r.t. lower bound 
cost. 

# of clients Average performance Worst-case performance 
250 1.15 1.36 
500 1.14 1.23 
1000 1.12 1.20 
1500 1.09 1.21 
2000 1.10 1.24 
3000 1.09 1.19 
4000 1.10 1.18 

 

Figure 2 demonstrates the normalized total cost of the 
datacenter using SPMCM, FFDP and PMaP heuristics. It can 
be seen that, SPMCM algorithm generates solutions with total 
cost of on average 35% less than FFDP and 18% less than 
PMaP. 

Figure 3 shows the average run-time of the SPMCM, 
FFDP and PMaP methods for different number of clients. 
SPMCM solution is found in less than 25 seconds for average 
number of clients equal to 1000 and 1500 servers in the 
datacenter. Note that VM placement algorithm is called only a 
few times in each charge cycle (one hour in Amazon EC2 
service  [21]), e.g. 2-3 times per hour. 

Figure 4 shows the average ratio of the expected violation 
rate of the response time constraint to the maximum allowed 
violation rate for different penalty values after VM placement 
using SPMCM. As expected, this ratio decreases by increasing 



penalty value to avoid big penalty cost. In other words, 
increasing the penalty value forces the cloud provider to 
provision more resources for the client so that the violation 
rate (and expected penalty) decreases. 

 

 
Figure 2. Relative performance of the proposed solution. 

Figure 3. Run-time of SPMCM on 2.8GHZ E5550 server from Intel 
for different number of clients. 

 
Figure 4. Ratio of expected percentage of the response time 
constraint’s violation to the maximum allowed percentage of 

violation. 

VII.  CONCLUSION 

In this paper we considered VM placement to minimize the 
power and migration cost in the cloud computing system. Soft 
SLA constraints on response time were considered for the 
clients in this system. We proposed an algorithm based on 
convex optimization method and dynamic programming. 
Simulation results demonstrated the effectiveness of our 
algorithm with respect to a lower bound and other well known 
solutions. 
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