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Abstract—Cloud  computing systems  (or  hosting
datacenters) have attracted a lot of attention in ecent
years. Utility computing, reliable data storage, ad
infrastructure-independent computing are examples b
motivations of such systems. Electrical energy cosif a
cloud computing system is a strong function of the
consolidation and migration techniques used to aggi
incoming clients to existing servers. Moreover, e&cclient
typically has a service level agreement (SLA), whic
specifies some constraints on performance and/or glity
of service that it receives from the system. These
constraints result in a basic trade-off between thdotal
energy cost and client satisfaction in the systenin this
paper, a resource allocation problem is consideredhat
aims to minimize the total energy cost of cloud coputing
system while meeting the specified client-level SIAin a
probabilistic sense. Note that the cloud computingystem
pays penalty for the percentage of a client’s requss that
do not meet the specified upper bound on servicentie. An
efficient algorithm based on the convex optimizatio
method and dynamic programming is presented to sod/
the resource allocation problem. Simulation results
demonstrate the effectiveness of the proposed hestic
algorithm with respect to prior work.

I.  INTRODUCTION

Demand for computing power has been increasingtoue
the penetration of information technologies in odaily
interactions with the world both at personal andhcwnity
levels, encompassing business, commerce,
manufacturing, and communication services. At teespnal
level, the wide scale presence of online bankirgpramerce,
software as a service (SaaS), social networking, ptoduce
workloads of great diversity and enormous scaletha&tsame
time computing and information processing requinetseof
various public organizations and private corporsichave
also been increasing rapidly. Examples includetaligiervices
and functions required by the various industriattees,
ranging from manufacturing to housing, from traration to
banking. Such a dramatic increase in the compuliergand
requires a scalable and dependable informationntdoby
(IT) infrastructure comprising of servers, storagefworks,
physical facilities, Electrical Grid, IT workforcend billions
of dollars in capital expenditure and operatior@stcto name
a few.

Virtualization technology makes the independence o

applications and servers feasible. Nowadays, comgput
systems heavily rely on this technology. Virtudiaa

efficiency of the datacenters: (server) consolagtiwhich
enables the assignment of multiple virtual machip\éds) to
a single physical server. By this action, somehef $ervers
can be turned off or put into some deep sleep ,stiateeby,
lowering power consumption of the computing systdrhe
technique works because modern servers tend toucmns
50% or so of their peak power in idle state (thifeat is
known as the non-energy-proportionality of modeenvers
[1].) Consolidation involves performance-power waff.
More precisely, if workloads are consolidated onvess,
performance of the consolidated VMs may decreasause
of reduction of available physical resources (ChRig¢mory,
/0 bandwidth) although the overall power efficignc
improves because fewer servers are needed to settvc
VMs.

Low utilization of servers in a datacenter is orfette
biggest factors in low power efficiency of the dagater. For
example, the average utilization of servers in aogk®
datacenter was reported to be 3% This fact motivates the
design of energy-proportional servel3] to minimize the
overall power consumption but due to the non-energy
proportional nature of the current servers, itrisdent from an
energy efficiency viewpoint to have as few senasossible
turned on with each active server being highlyized. Hence,
there is a strong justification for server consafion in
current enterprise datacenters.

Operational cost and admission control policy ie toud
computing system are affected by its power and VM
management. Power management techniddg$6] control

educatiofhe average and peak power in a distributed orraied

fashion in datacenters. VM management techniqiédg$10]
control the VM placement in physical servers and VM
migration from a server to another one. In thisgvape focus
on the SLA-based VM management to minimize the
operational cost in the cloud computing system.

The IT infrastructure provided by the datacenter
owners/operators must meet various SLAs establiglithdthe
clients. The SLAs may be resource related (e.ggueatnof

computing power, memory/storage space, network
bandwidth), performance related (e.g., service time
throughput), or even quality of service related -24

availability, data security, percentage of droppegliests.)
Infrastructure providers often end up over provigig
their resources in order to meet the clients’ SL8sch over
rovisioning may increase the cost incurred ondéuacenters
Fn terms of both the electrical energy cost and ¢hebon
emission. Therefore optimal provisioning of theowwges is
imperative in order to reduce the cost incurred tbe

technology provides a new way to improve the powegatacenter operators as well as the environmemiadt. The



problem of optimal resource provisioning is chadjiery due to Power and migration cost aware application placénren
the diversity present in the clients (applicatiotbpt are virtualized systems is proposed [0]. Authors present a
hosted as well as in the SLAs. For example: sorpicagions  power-aware VM placement controller in a systemhwit
may be compute-intensive while others may be memorheterogeneous server clusters and virtual machpidapper
intensive, some applications may run well togethdiile  architecture and placement algorithms to solveptioblem of
others do not, etc. Note that in general, therehaoetypes of minimizing power subject to a fixed performanceuiegment
applications in the datacenter: (i) service apfiiices and (i) are investigated. The proposed solution is presenésed on
batch applicationg2]. Service applications tend to generateassumption of predetermined performance level fovisV
many requests whereas batch applications tend nergte  which is not applicable for all different kind of.& contracts.
large processing requests. Unlike the batch apjita that Liu et al.[14] described a SLA-based profit optimization
are throughput-dependent, service applicationsresponse problem in electronic commerce hosting datacentrxed
time-dependent. In this work we focus on servicgliaptions set of servers are assumed to be active and apptica
in the cloud computing system. placement on the servers are done to maximizeothé $LA
A datacenter comprises of thousands to tens ofstmils  profit. SLA in this work is modeled as a respongmet
of server machines, working in tandem to providevises to  constraint and less than a portion (e.g. 2%) ofuests
the clients, see for examp|@]. In such a large computing response time can violate that constraint. Thisl KihSLA are
system, energy efficiency can be maximized throsggtem- used in [15] to model the optimization of workload
wide resource allocation and server consolidatilois, in spite  distribution to manage the brown energy consumption
of non-energy-proportional characteristics of catrserver In [16], Ardagna et al. proposed a solution for SLAsdxh
machines. Clients in cloud computing system aréwsgsé VM placement to maximize the profit in the cloudrmauting
applications that require processing, memory andystem. The presented problem considers only sbf S
communication resources in  “on-demand capacitycontracts in which client pays the cloud providasdd on the
provisioning” or “lease model of the IT infrastruot” [11] average response time provided to its requestsseTkiad of
and[12]. Our goal in this work is to minimize the tbtaost of  SLAs are considered in different works sucl14 and[18],
the cloud computing system under performance-rl&ieAs but we believe that it cannot capture the compjegit the
—in particular, upper bounds on the response tifsesvice  existing SLA contracts.
latencies) for clients’ requests. In this paper, we investigate the SLA-based VM piaent
The paper outline is as follows. Related work iscdssed to minimize the total operational cost in the claainputing
in the next section. In sectidh, the cloud computing system system. Operational cost includes power and mignatiost
model is presented. The optimization problem is@nted in  and the expected penalty of serving clients. A lob@ind on
sectiondV. The proposed algorithm is presented in section the total operational cost is presented and thectfeness of
Simulation results and conclusions are given instionsyV| the proposed algorithm is shown by comparing witkvipus
andVil. works’ algorithms and lower bound value.

Il. RELATED WORK Ill. SYSTEM MODEL

Distributed resource management is one of the most In this paper, a service level agreement (SLA)-awar
challenging problems in the resource managemeld fiehis  resource allocation method for a cloud computingteay is
problem has attracted a lot of attention from tleeearch presented to minimize the total operational coghefsystem.
community in the last few years. Below we provideegiew  The structure of the datacenter, VM managementesyst
of most relevant prior work. performance model and type of SLA used for thentlieare

Srikantaiah et al.[12] presented an energy-aware explained in this section.
consolidat_ion technique to degrease the total @nergy patacenter Configuration
consumption of a cloud computing system. The asthor

empirically modeled the energy consumption of senas a In the following paragraphs, we describe the typehe
function of CPU and disk utilization rates. Nexhey datacenter that we have assumed as well as ourvabses

described a simple heuristic to consolidate thecessing 2and key assumptions about where the performancieietks
works in the cloud computing system. The simpleriséa &€ in the system and E‘OW we can account for teeggrcost
does not capture the effect of SLA on VM resource?Ssociated with a client’s VM running in the dateee.

provisioning and only for very small input size foemance of A datacenter comprises of a number of potentially
the solution is shown. heterogeneous servers chosen from a set of knodrwat-

A VM placement heuristic to maximize the number ofCharacterized server types. In particular, serwdra given
serviced applications, minimize the migration cosnd tyPe are modeled by their processing capadiff) @nd main
balance the load in physical machines is presentgfl. The  Mmemory size:™) as well as their operational expense (energy
main focus of this work is on the scalability oéthroblem but ~ €ost), which is directly related to their averagewpr
the problem of assigning VMs on physical serversiinase consumption. We assume that local (or networkedprsgary
that all VMs can be placed and power and migratost Storage (disc) is not a system bottleneck. Eaclveseis
minimization is the objective is not investigated. identified by a unique id, denoted by index



The operational cost of the system includes a telated
to the total energy cost (in dollars) of servingis’ request.
The energy cost is calculated as server power phieli by
duration of the epoch in second,X and cost of energy

dynamic voltage and frequency scaling (DVFS), clock
throttling and etc. to minimize the power.
VMC is responsible for determining the performance

requirements of the VMs and migrating them if nekdéMC

consumption €,). The power of a server is modeled as aperforms these tasks based on two different opétiun

constant power costPf) plus another variable power cost,

which is linearly related to the utilization of tiserver (with

procedures:  semi-static  optimization and  dynamic
optimization. Semi-static optimization procedurg&formed

slope of PP). Note that the power cost of communicationPeriodically but dynamic optimization procedureperformed

resources and air conditioning units are amortiagdr all
servers and communication/networking gear in dateceand
are thus assumed to be relatively independent efctients’
workload. More precisely, these costs are not ohetuin the
equation for power cost of the datacenter.

whenever it is needed.

In semi-static optimization procedure, VMC consglére
whole active set of VMs, previous assignment sofuti
feedbacks generated from power, thermal and pedioce
sensors, and workload prediction to generate thet W&/

Each client is identified by a unique identifieepresented ~Placement solution for the next epoch. Period afqueing
by indexi. Each client produces one or more VMs, which areSémi-static optimization is dependent to type ame sf the
executed on some servers in the datacenter. Eéamt tlas datacenter and workload specifications. In  dynamic

also established an SLA contract with the datacemtener ~Optimization procedure, VMC finds a temporary VM
(cloud provider.) placement solution by migrating, creating or remgvia

B. VM Manag t System limited number of VMs to respond to performancewpo

budget, or critical temperature violation.
Datacenter management is responsible for admittirey

In this work, we focus on semi-static optimization
VMs into the datacenter, servicing them to satiSfiyA  procedure of VMC. In this procedure, clients’ Slepected
requirements, and minimize the operational cost thod

power consumption of servers and migration cosYMf are
datacenter. In this paper, we consider two mairowes

considered. Migrating a VM between servers causes a
managers in the datacenter: VM controller (VMC) adver  downtime in the client's application. Duration ohet
manager. An exemplary architecture for the datarent downtime is related to the migration technique used
management system with emphasis on the VMC and pefatacenter. For example, live migration causes w&ntime

server power manager is depicted in Figure 1. amount of less than 100nj8]. We assume that there is a
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Figure 1. VM management structure in a datacenter.

Power manager is responsible for minimizing therage
power consumption and satisfying the peak powestaimts
(thermal or because of power distribution unit tation)
subject to providing the required performance te ¥Ms.
Power management system in datacenter includesrtiecal
power provisioners and a power manager for eacheser
Power provisioners distribute the peak power allovea
between lower level power consumers and make swat t
these power budget constraints are met. Server®eaed at
the lowest level of this hierarchy. Power managereach
server tries to minimize the average power consiompt

defined cost in SLA contracts for these short mfteiquent
downtimes. In this papetpst/® denotes the migration cost of
i" client's VM in the datacenter. Previous assignhnyegudo
Boolean variablg/i’;. (1 if i" client was assigned t8' jserver
and 0 otherwise) is used to calculate the migratiost in the
system.

C. Performance Modeling

Performance of each client in the cloud computiygtesn
should be monitored and necessary decisions stmultade
to satisfy the SLA requirements. In this work, weus on the
online services that are sensitive to latency. igntlin this
system is application software that should serveimber of
requests in each time unit. To model the respoimme bf
clients, we assume that the inter-arrival timeshef requests
for each client follow an exponential distributidanction
similar to the inter-arrival times of the requeststhe e-
commerce application§l4]. The minimum allowed inter-
arrival time of the requests is specified in SLAntacts.
However, average inter-arrival time;) of the requests for
each client is predicted in datacenter to be usedhi
optimization procedures.

Streams of requests generated by each client ¢apipin)
may be decomposed into a number of different VMscdse
of more than one VM servind'iclient's application, requests
are assigned probabilisticallyt;; portion of the incoming

subject to satisfying the peak power constraint andequests are forwarded to th® gerver (host of a VM) for

performance requirements of the assigned VMs. fitsinager
uses different dynamic power management techniguels as

execution, independently of the past or future fding
decisions. Based on this assumption, the arrivid od the



requests in each server follows the Poisson digtdb
function.
There are different resources in the servers tieatised by

distribution of these queues without numerical apph
unless for very specific service time distributiof®r this
reason we believe that using M/M/c model for thighhevel

VMs such as processing units, memory, communicatiomlecision making is enough and more complex modafshe

bandwidth, and secondary storage. These resoudeshe
allocated to VMs by a fixed or round-robin schedgliln this
work, we consider processing unit and memory tcehiaxed
allocation policy and others are allocated by roustsin
scheduling. In this work, our algorithm determiries portion
of processing unit and memory to be allocated tchedM
assigned to a physical server.

used in problems with smaller input size.

D. SLAmodel for the clients

We use soft SLA constraints, in which cloud provide
guarantees that the response time constraint wilsdtisfied

for most of the time K for example for 95%tile of the
requests) and for each violation of constraintudi@rovider

The amount of memory allocated to a VM does notays back the client a fixed penalty valyig)(

significantly affect performance of the VM for diffent
workloads as long as it is greater than a certailue/|7].
Hence, we assign a fixed amount of memany) (to i" client's
VM on any server that client is assigned to.

Share of a VM form the processing unit determirtes t
performance of that VM on cloud computing systemdose
the applications we are considering are computnsive.
The portion of processing unit allocated to diffare/Ms
(¢.;) on a server is determined by the VMC for the beiyig
of the decision epoch. However, these values cachbaged
in each server based on the workload changes
power/performance optimization at the server. VM@siders
the clients’ workload to determine these resourbecation
parameters to control the wait time of the processjueue for
different applications based on the SLA requirerment

A multi-class single server queue exists in servéed
have more than one VM (from different clients). \énsider
generalized processor sharing (GPS) model at each queue;
GPS model approximates the scheduling policy usechbst
operating systems, e.g., weighted fair queuing taed CPU
time sharing in Linux. Using this scheduling poliapulti-
class single server queue can be replaced by heulipgle-
server queues. Note that the processing capacittheff"
server allocated to th® tlient's VM is calculated as}’qbij.

The exponential distribution function is used todelothe
service time of the clients in this system. Basedhis model,
the response time distribution (sojourn time disttion) of a
VM (placed on servej) is an exponential distribution with the
mean value of:

_ 1

Ri=—rn—

Y iy — iy @)
wherey;; denotes the service rate of tfeciient on | server
when the whole processing capacinX is allocated to the
VM of this client.

The queuing model used in this paper is M/M/c whigh
simplified to M/M/1 with probabilistic request agaiment. In
case of service times with general distributiois thodel is an
approximation. This approximation is not approgidbr
M/G/1 queues with heavy-tail service time distribot

Having SLA defined for clients let the cloud proeidto
vary the VMs resource size and improve the powkcieficy
in the system. This makes the price of the compgugss.

The constraint on the response time of the clieztdan be
expressed as follows:

Prob{R; > Rf} < h{ (2

whereR; andR{ denote the response time and target response

time of the 1" client’s requests, respectively.
Using the model provided in the subsecti@rthe response
time constraint for each VM can be expresses &siel

(€] bijuij=2i)R] he =
by = (aydi; — lnhf/Rf)/yijij

IV. PROBLEM FORMULATION

or

©)

In this work, we focus on an algorithm for solviegmi-
static VM placement problem in datacenter. The gdahis
optimization problem is to minimize the total opéraal cost
of the system including power and migration cosis penalty
of violating response time constraint. VMC usesfedént
method to do this optimization including: turningn/off
servers, migrating VMs, and changing the VM siZége cost
minimization problem is formulated as below (P1):

Min C, Z x;P? + PP Z ¢ij| T + Z Z z;jcost]"
j i v 4)
+T, Z fiE Z aje (] eumy=ai)at
i j
Subiject to:
Xj = X, vj )
¢ij = yi (a4 —In hf/ch)/#ijij); vi,j (6)
i =<1, vj (7)
Xiyiimi < G, vj (8)
=1, Vi (9)
Yij 2y <1l+a;—¢ Vi, j (10)
Zij 2 yij — Vi Vi, j (11)
x; € {0,1}, y;; € {0,1}, z;; € {0,1}, Vi, j (12)
¢ij = 0, aij = 0, Vi,j (13)

wheree is a very small positive value, and, is a pseudo-

However, since we defined SLA based on response timgggean integer variable to determine if tieserver is ON

constraint, these kinds of service time distribmtfonctions
are not applicable in this model.

More general case than model in (1) would be M/G/

queuing model. It is not possible to predict reggotime

c

(x;=1) or OFF £;=0). We calla;;'s and¢;;’s assignment and
allocation parameters, respectively throughoutptueer.

The first term in the objective function is the emecost

of system. This energy cost is composed of the édlergy



cost if the server is activer;&E1) plus a cost proportional to
the utilization of the server. The second term wags the
migration costs. The third term in the objectivadtion is the
expected penalty that cloud provider will pay te ttlients
when SLA violations occur.

Constraint (5) ensures that if a client is assigteda
server, this server should be active. Constrainigéhe SLA
constraint for the clients in the system. Constréi and (8)
are the processing and memory capacity constrairgsrver.
Constraint (9) makes sure that all requests of edient are
served in the system. Constraint (10) is used toegge a
helping pseudo Boolean parametgy;X which determines if
the {" client is assigned to th& gerver g,;=1) or not §;;=0).

If the value ofa;; is more than 0, the first inequality of (10)
sets the value of;; to one and if the value of;; is zero, the
second inequality of (10) force the value )gf to be zero.
Also constraint (11) is used to generate a pseudoldan
parameter 4;;) which indicates that the migration cost f8r i
client for [ server should be considereg;€1 andyi’;.:O) or
not. Finally, constraints (12) and (13) specify dims of the
variables.

P1 is a mixed integer non-linear programming pnaoble
Integer part of problem comes from the fact thaveses can be

V. COSTMINIMIZATION ALGORITHM

In this section, a heuristic for problem P1 is preésd. The
output of this solution is the VM placement and uest
forwarding policy and the expected performance ll@fehe
VMs in the next epoch.

A two step algorithm is proposed for this probldmthe
first step, clients are ordered based on theirustan the
previous decision epoch and their estimated resourc
requirements for the next decision epoch. Basedthim
ordering, VMs are placed on servers one by onegusin
dynamic programming and convex optimization methdthés
constructive approach may result in servers withw lo
utilization or uncompetitive resource sharing pphathin the
server. So, in the second step of the algorithnmy tecal
searches are executed to fix these issues.

Details of the_SLA-based Power and Migration Cost
Minimization algorithm or SPMCM for short are prased
below.

A. Initial Solution

To find an initial solution for P1, a constructigpproach
is used to assign clients to servers and alloageurces to
them based on the assignment solution in the pusvépoch.
For this purpose, clients are divided into fourup®. Clients

active or sleepx) and VMs can be placed on a physicalthat were served in the previous epoch are platedé of the

machine or noty;).

first three groups. The first group includes clgethat leave

The problem of minimizing the energy cost plus thethe datacenter in the new epoch. The second gmueipdies

expected violation penalty is an NP-Hard problere proof
is omitted for brevity. It can be shown that the-hd&d bin-

clients whose request arrival rates drop in the epach and
the third group includes clients whose requesvalrates rise

packing problem[19] can be reduced to P1. Indeed, evenin the new epoch. Finally, the fourth group inclsidgients

deciding whether a feasible solution exists fos throblem,
does not have an efficient solution. So, we assansanple
greedy (similar to First Fit Decreasing (FFD) hstici[19])
algorithm will find a feasible solution to P1 fdnet specified
inputs in the problem definitions. Another impottan
observation about this problem is that the numibérslients
and servers in this problem are very large; theegfa critical
property of any proposed heuristic should be itdegility.

Different versions of this problem are considenedhe
literature. The shortcoming of the proposed sohgiin the
previous work is an assumption about knowing thee if
VMs based on SLA requirements. Although this asgionps
valid for Platform as a Service (PaaS), it is rmnpletely true
in case of SaaS. There are two problems with thésiraption
incase of SaaS: First, SLA contracts in SaaS depetify the
amount of required resource and cloud provider siead
method to translate the target performance meticthie
amount of resource for each client; Second, corisigdixed
resource requirement eliminates the fact that clpralider
may overbooked the datacenter and needs to sactifie
performance of some of the clients to be able tovigde
performance guarantee for others. Based on thesens, we
consider the problem of determining the VM sizingda
placement together.

that were not served in the previous epoch.

Clients within these groups are picked in the oafetheir
average minimum processing requirement for VMs desgj
VM first) but the groups are processed in incregsnder of
their IDs. For clients in the first group, VMC rakes their
resources and updates the resource availabiliResource
availability in each server is defined as the amooh
processing and memory allocated to the existing VMs

From other groups, the picked client is assigned to
available servers to minimize the operational obshe cloud
computing system. After finding a solution, resaurc
availabilities are updated and the next clientickegd for the
next assignment. The formulation below describeg th
operational cost minimization problem for a piclaiént (P2)
(i" client).

Min C, Z[(PJO + Pjp)fﬁzj] T, + Z z;jcost™

! L e (14)
LA Y aye (T pum )R
j
subject to:
¢ij = vy (@A — Inh§/RS) [y CP), vj (15)
by <1-9¢], vj (16)
yym; < (1—¢™)C™, vj a7

with the addition of constraints (9)-(13)



¢” and¢;" denote the previously-committed portion of the
processing and memory resources on the gerver,
respectively.

To eliminate the effect of integer parametey) (on the
complexity of the problem, the constant energy cisst
replaced by a cost linearly proportional to the QRllization
of the server. Even with this relaxation, it candb@wn that
the Hessian matrix for P2 is not guaranteed to dstipe or
negative definite (or semi-definite). This meansatththe
convex optimization methods cannot be directly &gublto
solve this problem. However, fixing the valueaf (between
zero and one) makes the problem P2, a convex qattion
problem. More precisely, for a fixed;;, the allocation
parameter¢;; can be found using convex optimization
methods to minimize the energy cost and SLA violati
penalty. The complete solution for P2 called DP@#namic
programming resource assignment) can thus be fdund
applying dynamic programming (DP) technique to exam
different assignment parameters for different senaad find
the best solution as explained next.

Optimal solution of P2 for constaat; values and for each
server is calculated using Karush Kuhn Tucker (KKT
conditions. Using this method, the partial cosas$igning an
a;; portion of the f client's requests to the"jserver is
calculated which includes the energy cost, migratgost (if
the client was not assigned to tegerver in the previous
decision epoch) and expected SLA violation penadtyie for
this resource allocation. Then assignment on diffeservers
should be combined to construct a complete soldtioreach
client with the least total cost. DP techniquesedito find the
best VM placement for the client (determining beg) such
that constraint (9) is satisfied.

Since we are dealing with cost minimization for afient
at a time, there is no need to consider the whel®fservers
in the datacenter for each DP calculation; Insteadan use a
small number of servers from each server type pkrsers
that had served the client in the previous epodmtbthe best
VM placement solution. Decreasing the number ofessr for
each DP calculation decreases the time complexityhe
solution.

Set of selected servers for the DP technique feréifit for
clients in different groups. For clients in the @ed group,
only servers that served the client in the previepsch are
considered. For the clients in the third and fougttoup,
servers that served the client in the previous lepacset of
servers from each server type with the most unaféxt
resources, and possibly some inactive servers (feach
server type) are considered. To differentiate betwesing
active and inactive servers for VM placement, défe slopes
for energy cost for active and inactive servers dan
considered. For examplg]” andP” + P can be used as the

slopes of energy cost for active and inactive gstve
respectively. Note that, to change the slope ofethergy cost
for different servers, we need to change the fesahn in the
objective function in (14).

Algorithm 1 shows pseudo code of DPRA method.

Algorithm 1: Dynamic Programming Resource Assignimen
Inputs: Cp, Te, cost™, 4;, f£, C]-p, R{, wij, P, 13-17, ¢f, o7,
cm, C]”, h¢ andm;

Outputs: ¢;;, a;; (i is constant in this algorithm)

ga= granularity of alpha;
For (j = 1 to number of servers)
For (oj; = l/gato 1)
¢;5= optimal resource shares based on KKT conditions

C(j, (Xij) = CpTe (PJO + P]p) ¢i]' + Zi]'COSt{n

+Teﬁcaij/1iexp(—(gp¢ijllij — a;;A;)RY)
End
End
X =ga, and Y = number of servers
For(j=1toY)
For (x=1to X)
D[x,y]= infinity; //Auxiliary XXY matrix used for DP
For (z=1tox)
D[X,y]=min(D [XlY]rD[X'er'Z]+ C(]r Z/ga))
14 D[x,y]=min(D[xy], D[x-1y])
15 End
16 End
17 Back-track to find best;;’s and¢;;'s to minimize cost

To improve the initial solution, we have used tveozdl
search methods; the first one fixes the resourtcatlon
parameters and the second one tries to make utitized
servers inactive and service their clients withhieigenergy
efficiency on other active or inactive servers.

B. Resource allocation adjustment

If more than one client is assigned to a servarstactive
resource allocation may not generate the globalmymh
allocation policy.

We formulate resource allocation problem in a sewi¢h
fixed assignment parameterg ) to minimize the energy cost
and SLA violation penalty as a convex optimizatgmoblem
(P3):

Min C,P, Z¢L’+Zf‘a iAie” C Pujhij=~Ai)RE

(18)
1611 lElJ
subject to:
¢ij = yij((ayjd — Inh{/Rf) [uy;CP), Vi€l (19)
Yier; $ij S 1 (20)

wherel; denotes the set of VMs assigned to thegrver.

P3 is a convex optimization problem and the sotutian
be found using KKT optimality conditions. Note thhis part
of the VM placement algorithm is parallelizable areh be
implemented in power managers of the servers.

C. Turn OFF under-utilized servers

To decrease the total cost in the system, it mgydssible
to turn off some of the under-utilized serversdaftnding the
initial solution) to reduce the idle energy costloé servers at
the expense of more migration cost (for clientst thare
assigned to these under-utilized servers in theique epoch)
or more SLA violation penalty.



An iterative method is considered to find the miaim
cost solution based on the results of the prevébelss. In each
iteration, a server with utilization less than aeshold (i.e.

20%) is chosen and its VMs are removed. To assign t

multiplied by 1.3 as a typical power usage effemtiess of
current datacentefg].

B. Heuristicsfor Comparison

removed VMs to other servers, DPRA method is used, e implemented a slightly modified version of FIFI®]

Considering higher energy cost for inactive servierghe

for VM placement, called FFDP, and PMaP heurifdicas

DPRA method encourages the VMC to choose more gL Naseline. These approaches consider VMs that hixeel f

violation penalty or migration cost instead of fmg on a
server. Note that these iterations are not alwaysedse the
total cost in the system; therefore, the globaldstaotal cost
is compared to the total cost after turning ofeaver, and the
move is ignored if not beneficial.

This iterative method is continued until all sessavith
low utilization are examined for consolidation.

VI. SIMULATION RESULTS

processing size. We choo$¢2 h¢ as expected violation rate
of the SLA response time constraints and based3prthe
amount of processing unit required for different Mon
different physical servers can be found.

FFDP method picks clients based on the size of ikl
(highest to lowest) and assigns them to the fiesver with
available resources from the server type that hasldwest
execution time for the client’s requests.

PMaP is a VM placement heuristic that tries to miae

To evaluate the effectiveness of the proposed yvMhe power and migration cost. PMaP determines ieuat of

placement algorithm, a simulation framework is iempénted.
Simulation setups, baseline heuristics and numemsalts of
this implementation are presented in this section.

A.  Smulation Setup

For simulation, model parameters are generateddbase
the real world parameters. The number of serversyp set to
10. For each server type, an arbitrary number ofesg are
placed in datacenter. Processors in server typeseaected
from a set of Intel processors (e.g. Atom, i5,nd Xeon)[20]
with different number of cores, cache, power constions

resources that VMs need, determines the activeeserand
place the VMs on the servers. After these stegmveer and
migration-aware local search is done to find timalfisolution.
Details of PMaP can be found|[i@y.

C. Numerical Results

Table | shows the performance of SPMCM for différen
number of clients with respect to the found loweutd on the
total cost. This lower bound is the summation af thwest
cost VM placement solution for each client. Thibléashows
that SPMCM generates a near optimal solution for VM

and working frequencies. Idle power consumptions fo Placement problem to minimize the power and migratiost.

different server types are set uniformly betweemredhto six
times the power consumption of their fully-utilizedocessor.
Memory capacities of the servers are selected basathche
size of the processors with a constant scalingpfact 1500.
Energy cost is considered to be 15 cents per kitohaur at
all times.

Request arrival rates of the client are chosenoumify
between 0.1 and 1
requirements for clients are also selected unifgprb@tween

256MB and 4GB. These parameters are borrowed fioen t
simulation setup of16]. In each simulation, five different

client classes are considered. Each client is mrahdpicked

from one of the client classes. The amount of pggnallue for

different client classes is selected based on thelemnand
rates of Amazon EC2 cloud servif#l]. Migration costs set
to be equal to downtime penalty of 65ms for ea@ntl Also,

based on the highest possible frequency value efénvers,
U;;'s are set.

Each simulation is repeated at least 1000 timegt®rate
acceptable average results for each case. In @acihaion, a
number of clients are assigned to the servers Her first
epoch. At the end of each epoch, an arbitrary nunafe
clients leave the datacenter and an arbitrary numbelients
join the datacenter. Less than 10% of current tdigoin or
leave the datacenter in the beginning of each epdoheover,
inter-arrival rate of the remaining clients in theystem
changes for the next epoch arbitrarily. To accofant the
datacenter power efficiency, energy cost of thevessr is

Also increasing the number of clients decreasesdibince

between the total cost of SPMCM and the lower bound

because of higher consolidation possibility withgher
number of clients.

Table I. Performance of the proposed solution wavter bound

request per second. The memory

cost.
# of clients Average performance Worst-case perforemce
250 1.15 1.36
500 1.14 1.23
1000 1.12 1.20
1500 1.09 1.21
2000 1.10 1.24
3000 1.09 1.19
4000 1.10 1.18

Figure 2 demonstrates the normalized total costhef
datacenter using SPMCM, FFDP and PMaP heuristicsan
be seen that, SPMCM algorithm generates solutiatis tatal
cost of on average 35% less than FFDP and 18%thess
PMaP.

Figure 3 shows the average run-time of the SPMCM,
FFDP and PMaP methods for different number of tdien
SPMCM solution is found in less than 25 secondsaf@rage
number of clients equal to 1000 and 1500 servershen
datacenter. Note that VM placement algorithm isechbnly a
few times in each charge cycle (one hour in AmaE@2
service[21]), e.g. 2-3 times per hour.

Figure 4 shows the average ratio of the expecteldtion
rate of the response time constraint to the maxinallowed
violation rate for different penalty values afteM\placement
using SPMCM. As expected, this ratio decreasestrgasing



penalty value to avoid big penalty cost. In otheords,
increasing the penalty value forces the cloud mhewito
provision more resources for the client so that \lwation
rate (and expected penalty) decreases.

= SPMCM = FFDP PMaP

Normalized performance of
differnet algorithms
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Figure 2. Relative performance of the proposedt&wiu
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Figure 3. Run-time of SPMCM on 2.8GHZ E5550 sefvam Intel
for different number of clients.
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Figure 4. Ratio of expected percentage of the resptime
constraint’s violation to the maximum allowed perage of
violation.

VII. CONCLUSION

In this paper we considered VM placement to minérite
power and migration cost in the cloud computingesys Soft
SLA constraints on response time were consideredtte
clients in this system. We proposed an algorithreetdaon

convex optimization method and dynamic programming

Simulation results demonstrated the effectivenessour
algorithm with respect to a lower bound and othel wnown
solutions.
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