
SLA-based Optimization of Power and Migration Cost in Cloud Computing

Hadi Goudarzi, Mohammad Ghasemazar and Massoud Pedram
University of Southern California

Department of Electrical Engineering - Systems
{hgoudarz, ghasemaz and pedram}@usc.edu

Abstract—Cloud computing systems (or hosting
datacenters) have attracted a lot of attention in recent
years. Utility computing, reliable data storage, and
infrastructure-independent computing are examples of
motivations of such systems. Electrical energy cost of a
cloud computing system is a strong function of the
consolidation and migration techniques used to assign
incoming clients to existing servers. Moreover, each client
typically has a service level agreement (SLA), which
specifies some constraints on performance and/or quality
of service that it receives from the system. These
constraints result in a basic trade-off between the total
energy cost and client satisfaction in the system. In this
paper, a resource allocation problem is considered that
aims to minimize the total energy cost of cloud computing
system while meeting the specified client-level SLAs in a
probabilistic sense. Note that the cloud computing system
pays penalty for the percentage of a client’s requests that
do not meet the specified upper bound on service time. An
efficient algorithm based on the convex optimization
method and dynamic programming is presented to solve
the resource allocation problem. Simulation results
demonstrate the effectiveness of the proposed heuristic
algorithm with respect to prior work.

I. INTRODUCTION

Demand for computing power has been increasing due to
the penetration of information technologies in our daily
interactions with the world both at personal and community
levels, encompassing business, commerce, education,
manufacturing, and communication services. At the personal
level, the wide scale presence of online banking, e-commerce,
software as a service (SaaS), social networking, etc., produce
workloads of great diversity and enormous scale. At the same
time computing and information processing requirements of
various public organizations and private corporations have
also been increasing rapidly. Examples include digital services
and functions required by the various industrial sectors,
ranging from manufacturing to housing, from transportation to
banking. Such a dramatic increase in the computing demand
requires a scalable and dependable information technology
(IT) infrastructure comprising of servers, storage, networks,
physical facilities, Electrical Grid, IT workforce, and billions
of dollars in capital expenditure and operational cost to name
a few.

Virtualization technology makes the independence of
applications and servers feasible. Nowadays, computing
systems heavily rely on this technology. Virtualization
technology provides a new way to improve the power

efficiency of the datacenters: (server) consolidation, which
enables the assignment of multiple virtual machines (VMs) to
a single physical server. By this action, some of the servers
can be turned off or put into some deep sleep state, thereby,
lowering power consumption of the computing system. The
technique works because modern servers tend to consume
50% or so of their peak power in idle state (this effect is
known as the non-energy-proportionality of modern servers
 [1].) Consolidation involves performance-power tradeoff.
More precisely, if workloads are consolidated on servers,
performance of the consolidated VMs may decrease because
of reduction of available physical resources (CPU, memory,
I/O bandwidth) although the overall power efficiency
improves because fewer servers are needed to service the
VMs.

Low utilization of servers in a datacenter is one of the
biggest factors in low power efficiency of the datacenter. For
example, the average utilization of servers in a Google
datacenter was reported to be 30% [2]. This fact motivates the
design of energy-proportional servers [3] to minimize the
overall power consumption but due to the non-energy-
proportional nature of the current servers, it is prudent from an
energy efficiency viewpoint to have as few servers as possible
turned on with each active server being highly utilized. Hence,
there is a strong justification for server consolidation in
current enterprise datacenters.

Operational cost and admission control policy in the cloud
computing system are affected by its power and VM
management. Power management techniques [4]- [6] control
the average and peak power in a distributed or centralized
fashion in datacenters. VM management techniques [7]- [10]
control the VM placement in physical servers and VM
migration from a server to another one. In this paper, we focus
on the SLA-based VM management to minimize the
operational cost in the cloud computing system.

The IT infrastructure provided by the datacenter
owners/operators must meet various SLAs established with the
clients. The SLAs may be resource related (e.g., amount of
computing power, memory/storage space, network
bandwidth), performance related (e.g., service time or
throughput), or even quality of service related (24-7
availability, data security, percentage of dropped requests.)

Infrastructure providers often end up over provisioning
their resources in order to meet the clients’ SLAs. Such over
provisioning may increase the cost incurred on the datacenters
in terms of both the electrical energy cost and the carbon
emission. Therefore optimal provisioning of the resources is
imperative in order to reduce the cost incurred on the
datacenter operators as well as the environmental impact. The

problem of optimal resource provisioning is challenging due to
the diversity present in the clients (applications) that are
hosted as well as in the SLAs. For example: some applications
may be compute-intensive while others may be memory
intensive, some applications may run well together while
others do not, etc. Note that in general, there are two types of
applications in the datacenter: (i) service applications and (ii)
batch applications [2]. Service applications tend to generate
many requests whereas batch applications tend to generate
large processing requests. Unlike the batch applications that
are throughput-dependent, service applications are response
time-dependent. In this work we focus on service applications
in the cloud computing system.

A datacenter comprises of thousands to tens of thousands
of server machines, working in tandem to provide services to
the clients, see for example [2]. In such a large computing
system, energy efficiency can be maximized through system-
wide resource allocation and server consolidation, this in spite
of non-energy-proportional characteristics of current server
machines. Clients in cloud computing system are software
applications that require processing, memory and
communication resources in “on-demand capacity
provisioning” or “lease model of the IT infrastructure” [11]
and [12]. Our goal in this work is to minimize the total cost of
the cloud computing system under performance-related SLAs
–in particular, upper bounds on the response times (service
latencies) for clients’ requests.

The paper outline is as follows. Related work is discussed
in the next section. In section III, the cloud computing system
model is presented. The optimization problem is presented in
sections IV. The proposed algorithm is presented in section V.
Simulation results and conclusions are given in the sections VI
and VII.

II. RELATED WORK

Distributed resource management is one of the most
challenging problems in the resource management field. This
problem has attracted a lot of attention from the research
community in the last few years. Below we provide a review
of most relevant prior work.

Srikantaiah et al. [12] presented an energy-aware
consolidation technique to decrease the total energy
consumption of a cloud computing system. The authors
empirically modeled the energy consumption of servers as a
function of CPU and disk utilization rates. Next, they
described a simple heuristic to consolidate the processing
works in the cloud computing system. The simple heuristic
does not capture the effect of SLA on VM resource
provisioning and only for very small input size performance of
the solution is shown.

A VM placement heuristic to maximize the number of
serviced applications, minimize the migration cost, and
balance the load in physical machines is presented in [7]. The
main focus of this work is on the scalability of the problem but
the problem of assigning VMs on physical servers in a case
that all VMs can be placed and power and migration cost
minimization is the objective is not investigated.

Power and migration cost aware application placement in
virtualized systems is proposed in [9]. Authors present a
power-aware VM placement controller in a system with
heterogeneous server clusters and virtual machines. pMapper
architecture and placement algorithms to solve the problem of
minimizing power subject to a fixed performance requirement
are investigated. The proposed solution is presented based on
assumption of predetermined performance level for VMs
which is not applicable for all different kind of SLA contracts.

Liu et al. [14] described a SLA-based profit optimization
problem in electronic commerce hosting datacenters. A fixed
set of servers are assumed to be active and application
placement on the servers are done to maximize the total SLA
profit. SLA in this work is modeled as a response time
constraint and less than a portion (e.g. 2%) of request’s
response time can violate that constraint. This kind of SLA are
used in [15] to model the optimization of workload
distribution to manage the brown energy consumption.

In [16], Ardagna et al. proposed a solution for SLA-based
VM placement to maximize the profit in the cloud computing
system. The presented problem considers only soft SLA
contracts in which client pays the cloud provider based on the
average response time provided to its requests. These kind of
SLAs are considered in different works such as [17] and [18],
but we believe that it cannot capture the complexity of the
existing SLA contracts.

In this paper, we investigate the SLA-based VM placement
to minimize the total operational cost in the cloud computing
system. Operational cost includes power and migration cost
and the expected penalty of serving clients. A lower bound on
the total operational cost is presented and the effectiveness of
the proposed algorithm is shown by comparing with previous
works’ algorithms and lower bound value.

III. SYSTEM MODEL

In this paper, a service level agreement (SLA)-aware
resource allocation method for a cloud computing system is
presented to minimize the total operational cost of the system.
The structure of the datacenter, VM management system,
performance model and type of SLA used for the clients are
explained in this section.

A. Datacenter Configuration

In the following paragraphs, we describe the type of the
datacenter that we have assumed as well as our observations
and key assumptions about where the performance bottlenecks
are in the system and how we can account for the energy cost
associated with a client’s VM running in the datacenter.

A datacenter comprises of a number of potentially
heterogeneous servers chosen from a set of known and well-
characterized server types. In particular, servers of a given
type are modeled by their processing capacity (�∗�) and main
memory size (�∗�) as well as their operational expense (energy
cost), which is directly related to their average power
consumption. We assume that local (or networked) secondary
storage (disc) is not a system bottleneck. Each server is
identified by a unique id, denoted by index j.

The operational cost of the system includes a term related
to the total energy cost (in dollars) of serving clients’ request.
The energy cost is calculated as server power multiplied by
duration of the epoch in second (��) and cost of energy
consumption (��). The power of a server is modeled as a
constant power cost (�∗�) plus another variable power cost,
which is linearly related to the utilization of the server (with
slope of �∗�). Note that the power cost of communication
resources and air conditioning units are amortized over all
servers and communication/networking gear in datacenter, and
are thus assumed to be relatively independent of the clients’
workload. More precisely, these costs are not included in the
equation for power cost of the datacenter.

Each client is identified by a unique identifier, represented
by index i. Each client produces one or more VMs, which are
executed on some servers in the datacenter. Each client has
also established an SLA contract with the datacenter owner
(cloud provider.)

B. VM Management System

Datacenter management is responsible for admitting the
VMs into the datacenter, servicing them to satisfy SLA
requirements, and minimize the operational cost of the
datacenter. In this paper, we consider two main resource
managers in the datacenter: VM controller (VMC) and power
manager. An exemplary architecture for the datacenter
management system with emphasis on the VMC and per
server power manager is depicted in Figure 1.

Figure 1. VM management structure in a datacenter.

Power manager is responsible for minimizing the average
power consumption and satisfying the peak power constraints
(thermal or because of power distribution unit limitation)
subject to providing the required performance to the VMs.
Power management system in datacenter includes hierarchical
power provisioners and a power manager for each server.
Power provisioners distribute the peak power allowance
between lower level power consumers and make sure that
these power budget constraints are met. Servers are located at
the lowest level of this hierarchy. Power manager in each
server tries to minimize the average power consumption
subject to satisfying the peak power constraint and
performance requirements of the assigned VMs. This manager
uses different dynamic power management techniques such as

dynamic voltage and frequency scaling (DVFS), clock
throttling and etc. to minimize the power.

VMC is responsible for determining the performance
requirements of the VMs and migrating them if needed. VMC
performs these tasks based on two different optimization
procedures: semi-static optimization and dynamic
optimization. Semi-static optimization procedure is performed
periodically but dynamic optimization procedure is performed
whenever it is needed.

In semi-static optimization procedure, VMC considers the
whole active set of VMs, previous assignment solution,
feedbacks generated from power, thermal and performance
sensors, and workload prediction to generate the best VM
placement solution for the next epoch. Period of performing
semi-static optimization is dependent to type and size of the
datacenter and workload specifications. In dynamic
optimization procedure, VMC finds a temporary VM
placement solution by migrating, creating or removing a
limited number of VMs to respond to performance, power
budget, or critical temperature violation.

In this work, we focus on semi-static optimization
procedure of VMC. In this procedure, clients’ SLA, expected
power consumption of servers and migration cost of VMs are
considered. Migrating a VM between servers causes a
downtime in the client’s application. Duration of the
downtime is related to the migration technique used in
datacenter. For example, live migration causes a downtime
amount of less than 100ms [9]. We assume that there is a
defined cost in SLA contracts for these short but infrequent
downtimes. In this paper, 	
��
� denotes the migration cost of
i th client’s VM in the datacenter. Previous assignment pseudo
Boolean variable �
�� (1 if ith client was assigned to jth server
and 0 otherwise) is used to calculate the migration cost in the
system.

C. Performance Modeling

Performance of each client in the cloud computing system
should be monitored and necessary decisions should be made
to satisfy the SLA requirements. In this work, we focus on the
online services that are sensitive to latency. A client in this
system is application software that should serve a number of
requests in each time unit. To model the response time of
clients, we assume that the inter-arrival times of the requests
for each client follow an exponential distribution function
similar to the inter-arrival times of the requests in the e-
commerce applications [14]. The minimum allowed inter-
arrival time of the requests is specified in SLA contracts.
However, average inter-arrival time (�
) of the requests for
each client is predicted in datacenter to be used in the
optimization procedures.

Streams of requests generated by each client (application)
may be decomposed into a number of different VMs. In case
of more than one VM serving ith client’s application, requests
are assigned probabilistically: �
� portion of the incoming
requests are forwarded to the jth server (host of a VM) for
execution, independently of the past or future forwarding
decisions. Based on this assumption, the arrival rate of the

requests in each server follows the Poisson distribution
function.

There are different resources in the servers that are used by
VMs such as processing units, memory, communication
bandwidth, and secondary storage. These resources can be
allocated to VMs by a fixed or round-robin scheduling. In this
work, we consider processing unit and memory to have fixed
allocation policy and others are allocated by round-robin
scheduling. In this work, our algorithm determines the portion
of processing unit and memory to be allocated to each VM
assigned to a physical server.

The amount of memory allocated to a VM does not
significantly affect performance of the VM for different
workloads as long as it is greater than a certain value [7].
Hence, we assign a fixed amount of memory (�
) to ith client’s
VM on any server that client is assigned to.

Share of a VM form the processing unit determines the
performance of that VM on cloud computing system because
the applications we are considering are compute-intensive.
The portion of processing unit allocated to different VMs
(�∗�) on a server is determined by the VMC for the beginning
of the decision epoch. However, these values can be changed
in each server based on the workload changes or
power/performance optimization at the server. VMC considers
the clients’ workload to determine these resource allocation
parameters to control the wait time of the processing queue for
different applications based on the SLA requirements.

A multi-class single server queue exists in servers that
have more than one VM (from different clients). We consider
generalized processor sharing (GPS) model at each queue;
GPS model approximates the scheduling policy used by most
operating systems, e.g., weighted fair queuing and the CPU
time sharing in Linux. Using this scheduling policy, multi-
class single server queue can be replaced by multiple single-
server queues. Note that the processing capacity of the jth
server allocated to the ith client’s VM is calculated as ����
�.

The exponential distribution function is used to model the
service time of the clients in this system. Based on this model,
the response time distribution (sojourn time distribution) of a
VM (placed on server j) is an exponential distribution with the
mean value of:

��
� = 1
����
��
� − �
��
 (1)

where �
� denotes the service rate of the ith client on jth server
when the whole processing capacity (���) is allocated to the
VM of this client.

The queuing model used in this paper is M/M/c which is
simplified to M/M/1 with probabilistic request assignment. In
case of service times with general distribution, this model is an
approximation. This approximation is not appropriate for
M/G/1 queues with heavy-tail service time distribution.
However, since we defined SLA based on response time
constraint, these kinds of service time distribution functions
are not applicable in this model.

More general case than model in (1) would be M/G/c
queuing model. It is not possible to predict response time

distribution of these queues without numerical approach
unless for very specific service time distributions. For this
reason we believe that using M/M/c model for this high level
decision making is enough and more complex models can be
used in problems with smaller input size.

D. SLA model for the clients

We use soft SLA constraints, in which cloud provider
guarantees that the response time constraint will be satisfied
for most of the time (ℎ∗� for example for 95%tile of the
requests) and for each violation of constraint, cloud provider
pays back the client a fixed penalty value (�∗�).

Having SLA defined for clients let the cloud provider to
vary the VMs resource size and improve the power efficiency
in the system. This makes the price of the computing less.

The constraint on the response time of the client i can be
expressed as follows: ��
���
 > �
�! ≤ ℎ
� (2)
where �
 and �
� denote the response time and target response
time of the ith client’s requests, respectively.

Using the model provided in the subsection C, the response
time constraint for each VM can be expresses as follows:

#$%&'()*'+*'$,*-.*/ ≤ ℎ
� ⇒ �
� ≥ 2�
��
� − lnℎ
� �
�⁄ 6 �
����7
(3)

IV. PROBLEM FORMULATION

In this work, we focus on an algorithm for solving semi-
static VM placement problem in datacenter. The goal of this
optimization problem is to minimize the total operational cost
of the system including power and migration costs and penalty
of violating response time constraint. VMC uses different
method to do this optimization including: turning on/off
servers, migrating VMs, and changing the VM sizes. The cost
minimization problem is formulated as below (P1):

89:	��<=>���� + ���<�
�

@
�

�� +<<A
�	
��
�
�

+��<�
��
<�
�#$%&'()*'+*'$,*-.*/
�

	 (4)

Subject to: >� ≥ ∑ �
�
 ,																																				 ∀E (5) �
� ≥ �
�22�
��
� − lnℎ
� �
�⁄ 6 �
����7 6,																																			∀9, E (6)

∑ �
�
 ≤ 1,																 ∀E (7) ∑ �
��
� ≤ ��� ,									 ∀E (8) ∑ �
�� = 1,		 ∀9 (9) �
� ≥ �
� , �
� ≤ 1 + �
� − F,		 ∀9, E (10) A
� ≥ �
� − �
�� 	 ∀9, E (11)

>� ∈ �0,1!,	�
� ∈ �0,1!	,	A
� ∈ �0,1!	,						 ∀9, E (12) �
� ≥ 0, �
� ≥ 0,																			 ∀9, E (13)
where F is a very small positive value, and, >� is a pseudo-
Boolean integer variable to determine if the jth server is ON
(>�=1) or OFF (>�=0). We call �
�’s and �
�’s assignment and
allocation parameters, respectively throughout the paper.

The first term in the objective function is the energy cost
of system. This energy cost is composed of the idle energy

cost if the server is active (>�=1) plus a cost proportional to
the utilization of the server. The second term captures the
migration costs. The third term in the objective function is the
expected penalty that cloud provider will pay to the clients
when SLA violations occur.

Constraint (5) ensures that if a client is assigned to a
server, this server should be active. Constraint (6) is the SLA
constraint for the clients in the system. Constraint (7) and (8)
are the processing and memory capacity constraints in server.
Constraint (9) makes sure that all requests of each client are
served in the system. Constraint (10) is used to generate a
helping pseudo Boolean parameter (�
�) which determines if
the ith client is assigned to the jth server (�
�=1) or not (�
�=0).
If the value of �
� is more than 0, the first inequality of (10)
sets the value of �
� to one and if the value of �
� is zero, the
second inequality of (10) force the value of �
� to be zero.
Also constraint (11) is used to generate a pseudo Boolean
parameter (A
�) which indicates that the migration cost for ith
client for jth server should be considered (�
�=1 and �
��=0) or
not. Finally, constraints (12) and (13) specify domains of the
variables.

P1 is a mixed integer non-linear programming problem.
Integer part of problem comes from the fact that servers can be
active or sleep (>�) and VMs can be placed on a physical
machine or not (�
�).

The problem of minimizing the energy cost plus the
expected violation penalty is an NP-Hard problem. The proof
is omitted for brevity. It can be shown that the NP-hard bin-
packing problem [19] can be reduced to P1. Indeed, even
deciding whether a feasible solution exists for this problem,
does not have an efficient solution. So, we assume a simple
greedy (similar to First Fit Decreasing (FFD) heuristic [19])
algorithm will find a feasible solution to P1 for the specified
inputs in the problem definitions. Another important
observation about this problem is that the numbers of clients
and servers in this problem are very large; therefore, a critical
property of any proposed heuristic should be its scalability.

 Different versions of this problem are considered in the
literature. The shortcoming of the proposed solutions in the
previous work is an assumption about knowing the size of
VMs based on SLA requirements. Although this assumption is
valid for Platform as a Service (PaaS), it is not completely true
in case of SaaS. There are two problems with this assumption
incase of SaaS: First, SLA contracts in SaaS do not specify the
amount of required resource and cloud provider needs a
method to translate the target performance metric to the
amount of resource for each client; Second, considering fixed
resource requirement eliminates the fact that cloud provider
may overbooked the datacenter and needs to sacrifice the
performance of some of the clients to be able to provide
performance guarantee for others. Based on these reasons, we
consider the problem of determining the VM sizing and
placement together.

V. COST M INIMIZATION ALGORITHM

In this section, a heuristic for problem P1 is presented. The
output of this solution is the VM placement and request
forwarding policy and the expected performance level of the
VMs in the next epoch.

A two step algorithm is proposed for this problem. In the
first step, clients are ordered based on their status in the
previous decision epoch and their estimated resource
requirements for the next decision epoch. Based on this
ordering, VMs are placed on servers one by one using
dynamic programming and convex optimization methods. This
constructive approach may result in servers with low
utilization or uncompetitive resource sharing policy within the
server. So, in the second step of the algorithm, two local
searches are executed to fix these issues.

Details of the SLA-based Power and Migration Cost
Minimization algorithm or SPMCM for short are presented
below.

A. Initial Solution

To find an initial solution for P1, a constructive approach
is used to assign clients to servers and allocate resources to
them based on the assignment solution in the previous epoch.
For this purpose, clients are divided into four groups. Clients
that were served in the previous epoch are placed in one of the
first three groups. The first group includes clients that leave
the datacenter in the new epoch. The second group includes
clients whose request arrival rates drop in the new epoch and
the third group includes clients whose request arrival rates rise
in the new epoch. Finally, the fourth group includes clients
that were not served in the previous epoch.

Clients within these groups are picked in the order of their
average minimum processing requirement for VMs (biggest
VM first) but the groups are processed in increasing order of
their IDs. For clients in the first group, VMC releases their
resources and updates the resource availabilities. Resource
availability in each server is defined as the amount of
processing and memory allocated to the existing VMs.

From other groups, the picked client is assigned to
available servers to minimize the operational cost of the cloud
computing system. After finding a solution, resource
availabilities are updated and the next client is picked for the
next assignment. The formulation below describes the
operational cost minimization problem for a picked client (P2)
(i th client).

89:	��<I2��� + ���6�
�J�
�� +<A
�	
��
�

�

+���
��
<�
�#$%&'()*'+*'$,*-.*/
�

	 (14)

subject to: �
� ≥ �
�22�
��
� − lnℎ
� �
�⁄ 6 �
����7 6,																																			∀E (15)

�
� ≤ 1 − ���,																 ∀E (16)

�
��
 ≤ 21 − ���6��� ,									 ∀E (17)

with the addition of constraints (9)-(13).

��� and ��� denote the previously-committed portion of the
processing and memory resources on the jth server,
respectively.

To eliminate the effect of integer parameter (>�) on the
complexity of the problem, the constant energy cost is
replaced by a cost linearly proportional to the CPU utilization
of the server. Even with this relaxation, it can be shown that
the Hessian matrix for P2 is not guaranteed to be positive or
negative definite (or semi-definite). This means that the
convex optimization methods cannot be directly applied to
solve this problem. However, fixing the value of �
� (between
zero and one) makes the problem P2, a convex optimization
problem. More precisely, for a fixed �
�, the allocation
parameter �
� can be found using convex optimization
methods to minimize the energy cost and SLA violation
penalty. The complete solution for P2 called DPRA (dynamic
programming resource assignment) can thus be found by
applying dynamic programming (DP) technique to examine
different assignment parameters for different servers and find
the best solution as explained next.

Optimal solution of P2 for constant �
� values and for each
server is calculated using Karush Kuhn Tucker (KKT)
conditions. Using this method, the partial cost of assigning an �
� portion of the ith client’s requests to the jth server is
calculated which includes the energy cost, migration cost (if
the client was not assigned to the jth server in the previous
decision epoch) and expected SLA violation penalty value for
this resource allocation. Then assignment on different servers
should be combined to construct a complete solution for each
client with the least total cost. DP technique is used to find the
best VM placement for the client (determining best �
�) such
that constraint (9) is satisfied.

Since we are dealing with cost minimization for one client
at a time, there is no need to consider the whole set of servers
in the datacenter for each DP calculation; Instead we can use a
small number of servers from each server type plus servers
that had served the client in the previous epoch to find the best
VM placement solution. Decreasing the number of servers for
each DP calculation decreases the time complexity of the
solution.

Set of selected servers for the DP technique is different for
clients in different groups. For clients in the second group,
only servers that served the client in the previous epoch are
considered. For the clients in the third and fourth group,
servers that served the client in the previous epoch, a set of
servers from each server type with the most unallocated
resources, and possibly some inactive servers (from each
server type) are considered. To differentiate between using
active and inactive servers for VM placement, different slopes
for energy cost for active and inactive servers can be
considered. For example, ��� and ��� + ��� can be used as the
slopes of energy cost for active and inactive servers,
respectively. Note that, to change the slope of the energy cost
for different servers, we need to change the first term in the
objective function in (14).

Algorithm 1 shows pseudo code of DPRA method.

To improve the initial solution, we have used two local
search methods; the first one fixes the resource allocation
parameters and the second one tries to make under-utilized
servers inactive and service their clients with higher energy
efficiency on other active or inactive servers.

B. Resource allocation adjustment

If more than one client is assigned to a server, constructive
resource allocation may not generate the global optimum
allocation policy.

We formulate resource allocation problem in a server with
fixed assignment parameters (�
�) to minimize the energy cost
and SLA violation penalty as a convex optimization problem
(P3):

89:	�����<�
�

∈K'

+<�
��
��
#$%&'()*'+*'$,*-.*/

∈K'

	 (18)

subject to: �
� ≥ �
�22�
��
� − lnℎ
� �
�⁄ 6 �
����7 6,																																			∀9 ∈ L� (19)

∑ �
�
∈K' ≤ 1,																 (20)

where L� denotes the set of VMs assigned to the jth server.
P3 is a convex optimization problem and the solution can

be found using KKT optimality conditions. Note that this part
of the VM placement algorithm is parallelizable and can be
implemented in power managers of the servers.

C. Turn OFF under-utilized servers

To decrease the total cost in the system, it may be possible
to turn off some of the under-utilized servers (after finding the
initial solution) to reduce the idle energy cost of the servers at
the expense of more migration cost (for clients that were
assigned to these under-utilized servers in the previous epoch)
or more SLA violation penalty.

																												+���
��
��
exp2−2����
��
� − �
��
6�
�6

Algorithm 1: Dynamic Programming Resource Assignment

Inputs: ��, ��, 	
��
�, �
, �
�, ���, �
�, �
�, ���, ���, ���, ���, ���, ���, ℎ
� and �

Outputs: �
�, �
� (i is constant in this algorithm)

1 ga= granularity of alpha;
2 For (j = 1 to number of servers)
3 For (αQR = 1/ga to 1)
4 ϕQR= optimal resource shares based on KKT conditions

5 C(j,	αQR) = CUTW %PR� + PRU-ϕQR + zQRcost Q̂

6 End
7 End
8 X = ga, and Y = number of servers
9 For (j =1 to Y)
10 For (x = 1 to X) 11 D[x,y]=	infinity;	//Auxiliary	X×Y	matrix	used	for	DP	12 For	For	For	For	(z	=	1	to	x)	13 D[x,y]=min(D[x,y],D[x-1,y-z]+	C(j,	z/ga))	14 D[x,y]=min(D[x,y],	D[x-1,y])	
15 End
16 End
17 Back-track to find best αQR’s and �
�’s to minimize cost

An iterative method is considered to find the minimum
cost solution based on the results of the previous steps. In each
iteration, a server with utilization less than a threshold (i.e.
20%) is chosen and its VMs are removed. To assign the
removed VMs to other servers, DPRA method is used.
Considering higher energy cost for inactive servers in the
DPRA method encourages the VMC to choose more SLA
violation penalty or migration cost instead of turning on a
server. Note that these iterations are not always decrease the
total cost in the system; therefore, the global lowest total cost
is compared to the total cost after turning off a server, and the
move is ignored if not beneficial.

This iterative method is continued until all servers with
low utilization are examined for consolidation.

VI. SIMULATION RESULTS

To evaluate the effectiveness of the proposed VM
placement algorithm, a simulation framework is implemented.
Simulation setups, baseline heuristics and numerical results of
this implementation are presented in this section.

A. Simulation Setup

For simulation, model parameters are generated based on
the real world parameters. The number of server types is set to
10. For each server type, an arbitrary number of servers are
placed in datacenter. Processors in server types are selected
from a set of Intel processors (e.g. Atom, i5, i7 and Xeon) [20]
with different number of cores, cache, power consumptions
and working frequencies. Idle power consumptions for
different server types are set uniformly between three to six
times the power consumption of their fully-utilized processor.
Memory capacities of the servers are selected based on cache
size of the processors with a constant scaling factor of 1500.
Energy cost is considered to be 15 cents per kilowatt hour at
all times.

Request arrival rates of the client are chosen uniformly
between 0.1 and 1 request per second. The memory
requirements for clients are also selected uniformly between
256MB and 4GB. These parameters are borrowed from the
simulation setup of [16]. In each simulation, five different
client classes are considered. Each client is randomly picked
from one of the client classes. The amount of penalty value for
different client classes is selected based on the on-demand
rates of Amazon EC2 cloud service [21]. Migration costs set
to be equal to downtime penalty of 65ms for each client. Also,
based on the highest possible frequency value of the servers, �
� ’s are set.

Each simulation is repeated at least 1000 times to generate
acceptable average results for each case. In each simulation, a
number of clients are assigned to the servers for the first
epoch. At the end of each epoch, an arbitrary number of
clients leave the datacenter and an arbitrary number of clients
join the datacenter. Less than 10% of current clients join or
leave the datacenter in the beginning of each epoch. Moreover,
inter-arrival rate of the remaining clients in the system
changes for the next epoch arbitrarily. To account for the
datacenter power efficiency, energy cost of the servers is

multiplied by 1.3 as a typical power usage effectiveness of
current datacenters [2].

B. Heuristics for Comparison

We implemented a slightly modified version of FFD [19]
for VM placement, called FFDP, and PMaP heuristic [9] as
baseline. These approaches consider VMs that have fixed
processing size. We choose 1 2⁄ ℎ∗� as expected violation rate
of the SLA response time constraints and based on (3) the
amount of processing unit required for different VMS on
different physical servers can be found.

FFDP method picks clients based on the size of their VM
(highest to lowest) and assigns them to the first server with
available resources from the server type that has the lowest
execution time for the client’s requests.

PMaP is a VM placement heuristic that tries to minimize
the power and migration cost. PMaP determines the amount of
resources that VMs need, determines the active servers and
place the VMs on the servers. After these steps, a power and
migration-aware local search is done to find the final solution.
Details of PMaP can be found in [9].

C. Numerical Results

Table I shows the performance of SPMCM for different
number of clients with respect to the found lower bound on the
total cost. This lower bound is the summation of the lowest
cost VM placement solution for each client. This table shows
that SPMCM generates a near optimal solution for VM
placement problem to minimize the power and migration cost.
Also increasing the number of clients decreases the distance
between the total cost of SPMCM and the lower bound
because of higher consolidation possibility with higher
number of clients.

Table I. Performance of the proposed solution w.r.t. lower bound
cost.

of clients Average performance Worst-case performance
250 1.15 1.36
500 1.14 1.23
1000 1.12 1.20
1500 1.09 1.21
2000 1.10 1.24
3000 1.09 1.19
4000 1.10 1.18

Figure 2 demonstrates the normalized total cost of the
datacenter using SPMCM, FFDP and PMaP heuristics. It can
be seen that, SPMCM algorithm generates solutions with total
cost of on average 35% less than FFDP and 18% less than
PMaP.

Figure 3 shows the average run-time of the SPMCM,
FFDP and PMaP methods for different number of clients.
SPMCM solution is found in less than 25 seconds for average
number of clients equal to 1000 and 1500 servers in the
datacenter. Note that VM placement algorithm is called only a
few times in each charge cycle (one hour in Amazon EC2
service [21]), e.g. 2-3 times per hour.

Figure 4 shows the average ratio of the expected violation
rate of the response time constraint to the maximum allowed
violation rate for different penalty values after VM placement
using SPMCM. As expected, this ratio decreases by increasing

penalty value to avoid big penalty cost. In other words,
increasing the penalty value forces the cloud provider to
provision more resources for the client so that the violation
rate (and expected penalty) decreases.

Figure 2. Relative performance of the proposed solution.

Figure 3. Run-time of SPMCM on 2.8GHZ E5550 server from Intel
for different number of clients.

Figure 4. Ratio of expected percentage of the response time
constraint’s violation to the maximum allowed percentage of

violation.

VII. CONCLUSION

In this paper we considered VM placement to minimize the
power and migration cost in the cloud computing system. Soft
SLA constraints on response time were considered for the
clients in this system. We proposed an algorithm based on
convex optimization method and dynamic programming.
Simulation results demonstrated the effectiveness of our
algorithm with respect to a lower bound and other well known
solutions.

REFERENCES
[1] L. A. Barroso and U. Hölzle, The Case for Energy-Proportional
Computing, IEEE Computer, 2007.
[2] L. A. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool Publishers, 2009.
[3] D. Meisner, B. Gold, and T. Wenisch, PowerNap: eliminating
server idle power, in Proceedings of the ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, March 2009.
[4] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang and X.
Zhu. No "power" struggles: Coordinated multi-level power
management for the datacenter. ACM SIGPLAN Notices 43(3), pp.
48-59. 2008.
[5] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware
consolidation for cloud computing. In Proceedings of the 2008
conference on Power aware computing and systems (HotPower'08).
2008.
[6] X. Wang and Y. Wang. Co-con: Coordinated control of power
and application performance for virtualized server clusters. Presented
at 2009 IEEE 17th International Workshop on Quality of Service
(IWQoS). 2009.
[7] C. Tang, M. Steinder, M. Spreitzer and G. Pacifici. A scalable
application placement controller for enterprise datacenters. Presented
at 16th International World Wide Web Conference, WWW2007, May
8, 2007 - May 12. 2007.
[8] T. Kimbrel, M. Steinder, M. Sviridenko and A. Tantawi.
Dynamic application placement under service and memory
constraints. Presented at Int’l Workshop on Efficient and
Experimental Algorithms. 2005.
[9] A. Verrna, P. Ahuja and A. Neogi. pMapper: Power and
migration cost aware application placement in virtualized systems.
Presented at ACM/IFIP/USENIX 9th International Middleware
Conference. 2008.
[10] A. Beloglazov and R. Buyya. Energy efficient resource
management in virtualized cloud datacenters. Presented at 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid). 2010.
[11] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
Capacity Leasing in Cloud Systems using the OpenNebula Engine,
Workshop on Cloud Computing and its Applications, Chicago,
Illinois, USA, 2008.
[12] R. Buyya, Y S. Chee, S. Venugopal, Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities, IEEE International Conference on High
Performance Computing and Communications, Sept. 2008.
[13] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware
consolidation for cloud computing. In Workshop on Power Aware
Computing and Systems (HotPower ’08). San Diego, USA,
December 2008.
[14] Z. Liu, M. S. Squillante and J. L. Wolf. On maximizing service-
level-agreement profits. Presented at Third ACM Conference on E-
Commerce.
[15] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir and M. Martonosi.
Capping the brown energy consumption of internet services at low
cost. Presented at 2010 International Conference on Green
Computing (Green Comp). 2010.
[16] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, Energy-Aware
Autonomic Resource Allocation in Multi-Tier Virtualized
Environments. IEEE Transactions on Services Computing, 2010.
[17] L. Zhang and D. Ardagna. SLA based profit optimization in
autonomic computing systems. Presented at Proceedings of the
Second Int. Conf. on Service Oriented Computing, November 2004.
[18] A. Chandra, W. Gongt and P. Shenoy. Dynamic resource
allocation for shared clusters using online measurements. ACM
SIGMETRICS 2003.
[19] S. Martello and P. Toth , Knapsack Problems: Algorithms and
Computer Implementations. , Wiley, 1990.
[20] http://ark.intel.com/
[21] http://aws.amazon.com/ec2/#pricing

0

0.2

0.4

0.6

0.8

1

1.2

250 500 1000 1500 2000 3000 4000

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 o
f

di
ffe

rn
et

 a
lg

or
ith

m
s

Number of clients

SPMCM FFDP PMaP

0

20

40

60

80

100

120

140

250 500 1000 1500 2000 3000 4000

R
un

-t
im

e
 o

f
d
iff

e
rn

e
t
a

lg
o

ri
th

m
s

Number of clients

SPMCM

MPP

FDD

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

Penalty value for missing a constraint (1/100 cents)

R
at

io
 o

f
vi

o
la

ti
o

n
 r

at
e

to
 t

h
e

m
ax

im
u

m
 p

o
ss

ib
le

 v
io

la
ti

o
n

 r
at

e

