
Performance Modeling and Comparative Analysis

of the MILC Lattice QCD Application su3 rmd

Greg Bauer

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

1205 W. Clark Street

Urbana, IL

gbauer@ncsa.illinois.edu

Steven Gottlieb

Physics Department

Indiana University

727 E. Third St.

Bloomington, IN

sg@iub.edu

Torsten Hoefler

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

1205 W. Clark Street

Urbana, IL

htor@illinois.edu

Abstract—Application performance modeling is an essential
part of application and system development as HPC moves
into the petascale and prepares for the exascale. However,
performance modeling of parallel systems is a difficult task
due to natural variations in measurements and noise effects.
In this paper, we give a detailed example for a semi-analytical
performance-modeling method applied to the ubiquitous HPC
application su3 rmd from the lattice Quantum Chromodynamics
field on a variety of parallel computing platforms. We apply
statistical techniques that are well known in natural sciences to
model the variance in the input system. Using a simple analytical
model to capture the main characteristics of the code, such as
numbers and sizes of passed messages and invocation counts of
serial code blocks in conjunction with statistically sound curve-
fitting methods, we develop an accurate performance model and
use it to characterize application performance on various target
architectures. Our fitting techniques allow us to characterize
the variance of different performance observations on a given
system and show the influence of noise from different sources.
The techniques we developed can be applied to a wide class of
bulk-synchronous applications. With this detailed example, we
aim to motivate the scientific computing community to develop

and use similar performance models for software development
and maintenance.

I. INTRODUCTION

We consider an application from theoretical high-energy

physics as a detailed example for our semi-analytical modeling

method in this paper. Quantum Chromodynamics (QCD) is the

quantum field theory of Nature’s strong force. Although some

field theories such as Quantum Electrodynamics (QED) have a

weak coupling and can be dealt with using perturbation theory,

QCD has a much stronger coupling. Thus, many of the most

interesting issues in QCD require a non-perturbative technique.

Lattice quantum field theory, invented in the mid-1980s, is the

most successful such technique. It is one of the original “Grand

Challenge” problems in scientific computing.

The MIMD Lattice Computation (MILC) collaboration [5]

has been working in lattice QCD for some twenty years, and

has made a suite of codes for lattice QCD freely available. The

collaboration uses 10s of millions of service units annually

on NSF and DOE computers. The code has been used for

hardware diagnostics on the Intel Paragon, for SPEC CPU2006

and SPEC MPI benchmarks, as part of the NERSC and NSF

benchmarks, and as one of the applications whose performance

needed to be analyzed for the NSF Tier 1 solicitation.

Briefly, the MILC application su3 rmd is used to create

sample gauge configurations that are the starting point for

many physics projects. We are using the version of the code

that implements the R algorithm for improved staggered

quarks. Although this is no longer the most efficient algorithm,

it is one that has been benchmarked on many computers and

the major kernels are very similar, if not identical, to those

used by more efficient algorithms such as rational hybrid

molecular dynamics algorithm (RHMD) with Monte Carlo [6].

The essential data types in this work are three component

complex vectors that represent quarks (matter fields), and

3×3 complex unitary matrices that represent the gluons (force

carriers). The quark fields are defined on a 4-dimensional

grid of space time points. The gluon variables are defined

on the “links” joining grid points. The most time consuming

kernel in production runs is the conjugate gradient solver

that determines how the motion of the quarks is affected by

the gluons. The system is parallelized by decomposing the

grid, usually in all four dimensions. Most communications

involve point-to-point communication with the neighboring

processors in a 4-dimensional grid. However, the conjugate

gradient solver also requires global summations.

In general, performance modeling can either be done analyt-

ically, that is, based on first principles, or empirically. Analytic

performance modeling (e.g., [1]) involves counting the number

of basic operations (e.g., floating point operations, memory

accesses, or integer operations), developing, and parametrizing

performance models based on those. Empirical performance

modeling (or black-box modeling, e.g., [4]) is practiced by

observing the performance of a code for a certain combina-

tion of input parameters and machine settings, and forming

performance expectations for different input parameters and

architectures based on those observations.

In this work, we combine analytic and empirical methods

and use semi-analytical (also called semi-empirical) modeling

[9], [14] to build our models. This technique models the

performance of basic code blocks empirically and composes

them analytically to form an application performance model.

Similar techniques are routinely used for performance analysis

of large-scale parallel codes (e.g., [13], [16]). We also discuss

how we can vary the levels of analytical and empirical

modeling in our technique.

The MILC code has long had flop counts for the major

kernels and there are flags that can be set at compile time to

print the time and flop rate for each of those kernel calls. These

performance numbers are very useful for monitoring running

jobs and have frequently been helpful to determine system

problems. MILC has also used single node benchmarks of the

conjugate gradient (CG) phase and microbenchmark results

for point-to-point communication to predict whether it will be

possible to overlap message passing with computation in the

CG. Several studies analyze and compare the performance of

MILC on different architectures [17], [18].

However, we go quite a bit further here. We designed a

detailed semi-analytical performance model that reflects the

composition of the serial kernels to the overall application,

provides detailed message counts, and models performance

variations. This model enables us to express the performance

of the code on different architectures with a small set of

parameters. This concise representation of the overall per-

formance can be used to compute the time to solution on

a specific architecture, compare architectures, extrapolate to

larger process counts or lattice sizes, and much more [9].

Our work shows that the performance of the MILC su3 rmd

code can be captured mathematically and concisely by rig-

orous application of semi-analytical performance modeling

principles. This enables a simple baseline performance report-

ing method that can be used to compare practically relevant

performance characteristics across various publications and

systems. This small number of parameters, which characterizes

the su3 rmd performance on each system, increases the com-

parability, reproducibility, and readability of microbench-

mark results and performance or speedup plots published in

scientific papers and technical reports.

Concisely, the contributions of our work are the follow-

ing: an analytic performance model for MILC su3 rmd, a

description of the semi-analytical modeling methodology that

enables simple modeling of bulk-synchronous applications,

a discussion of the necessary statistical methods to ensure

good model fits in the presence of system noise, and finally

a concise, model-based performance comparison of MILC

su3 rmd on various architectures.

II. THE PERFORMANCE MODEL

We use a semi-analytical performance modeling technique

and apply the six modeling steps as described in [9]:

• A1 identify input parameters that influence runtime

• A2 identify application kernels

• A3 determine communication pattern

• A4 determine communication/computation overlap

• E1 determine sequential baseline

• E2 determine communication parameters

We now discuss in detail how to apply the above steps to

the MILC Lattice QCD application su3 rmd version 7.6.3.

A. Step A1: Identify all Critical Parameters

Table I lists relevant input parameters and briefly de-

scribes their influence on the runtime. Some variables, such

as nflavors1 or nflavors2 are fixed by a particular

type of calculation and are thus assumed to be part of the

algorithm. The best way to gather those parameters is from

the documentation or from a domain expert1.

In our model, we differentiate between two different types

of parameters—simple and complex parameters. Simple pa-

rameters have direct arithmetic relations to the runtime. For

example, an input parameter, which defines the number of loop

iterations, may have a linear influence on the runtime of an

application or kernel. Complex parameters also influence the

runtime but their influence cannot be expressed with simple

arithmetic expressions. For example, an error bound for a

conjugate gradient influences the number of iterations and thus

the runtime. However, the actual number of iterations depends

upon other input parameters such as the quark masses and

beta. It thus is often necessary to rely on experience of the

application scientists in order to predict complex parameters.

In order to handle such parameters in MILC, we introduce

a new meta parameter—niters that models the number of

iterations. The value of niters is based on the experience

of domain scientists.

B. Step A2: Identify all Kernels

Finding the performance-critical application kernels is a

key component of semi-analytical modeling. The empirically

determined runtimes of those kernels serve as the basis for

the composed analytical model. We thus start with a serial

performance model for each kernel. We then use this model

to compose a full semi-analytical serial performance model

and then extend it to a parallel performance model.

1) Performance Model for each Kernel: A kernel can either

be a function or a code block inside a function. A useful

way to identify those blocks is to analyze the call-graph of

a representative run (cf. [9]).

Choosing the right level of abstraction for modeling is very

important. The modeler needs to decide where to cut subtrees

in the call graph, i.e., combine them into a single term and he

needs to determine functions to ignore. Our modeling strategy

ignores several functions in the callgraph, e.g., trace_su3.

This can only be done after ensuring that those functions

do not consume significant time and scale asymptotically

much slower (with all input parameters) than other modeled

functions. This is the first of a number of necessary trade-offs

to balance the complexity of the model with its accuracy.

The MILC code has five performance-critical ker-

nels/functions that account for most of the time: (1)

load_longlinks() (LL), (2) load_fatlinks() (FL),

(3) ks_congrad() (CG), (4) imp_gauge_force()

(GF), and (5) eo_fermion_force_twoterms() (FF).

It is well known that today’s CPU architectures are too

complex to derive performance models of a code from simple

1One of the authors of this paper, S.G., is a co-author of MILC.

parameter name simple complex comment

P x number of PEs (intrinsic parameter)

nx, ny, nz, nt x size in x, y, z, t dimension

warms, trajecs x warmup rounds and trajectories (outer loop)

traj between meas x measurement “frequency” (called meas for brevity)

steps per trajectory x number of “steps” in each trajectory (steps for brevity)

beta, mass1, mass2, error for propagator x physics parameters that influence convergence of the CG

max cg iterations x limits the conjugate gradient iterations

TABLE I
PERFORMANCE-CRITICAL MILC INPUT PARAMETERS

operation counts. Thus, we use semi-analytic modeling where

we establish an asymptotically tight analytic model and derive

the constants with curve fitting. The work required to execute

each kernel scales linearly with the number of lattice sites.

Let Lx = nx, Ly = ny, Lz = nz, and Lt = nt be the

sizes of the dimensions of the lattice on each process and

V = Lx·Ly ·Lz ·Lt and let B ∈ {LL, FL,CG,GF, FF} iden-

tify each kernel. Assuming the linear relation, our model for

each kernel is a simple function of the form T (V) = a+ b ·V
where a is the constant overhead and b is the cost per lattice

site.
However, if the local volume is small, most or all of the

data will reside in the CPU cache, and if the local volume is
large, much of the data will need to be fetched from memory,
slowing the calculation. The parameters a and b will thus be
different depending on V . We thus extend our analytical model
to consider two levels of memory hierarchy. We also simplify
the model by assuming zero constant overhead (a = 0). Lattice
sites in the first level are computed at a rate of b1 per site and
sites in the second level are computed with the rate b2. Our
modeled cache can hold s(B) data elements.

T (B, V) = b1(B) · min{s(B), V } + b2(B) ·max{0, V − s(B)} (1)

Most existing CPU architectures have deeper cache hierar-

chies, however, we found in our study that a single hierarchy

is sufficient to model the performance of MILC accurately (see

Section III-B).

C. Combined Serial Analytic Performance Model

We investigated the call graph and source code to determine
the number of calls to each kernel as function of the parameters
listed in Table I. The analytic model for the total serial
computation time is shown in Equation (2):

Tser(V) = (trajecs + warms) · steps · [T (FF, V) + T (GF, V) + (2)

3(T (LL, V) + T (FL, V))] +
⌊

trajecs

meas

⌋

[T (LL,V) + T (FL, V)] + niters · T (CG,V)

The variable niters represents the total number of conju-

gate gradient iterations for light and heavy quarks and models

the effect of all complex input parameters.

D. Step A3: Determine Communication Pattern

MILC uses point-to-point and collective (allreduce) commu-

nication. Collective communication is performed at the end

of each conjugate gradient iteration on the whole set of P
processes.

1) Point-to-point Pattern: Point-to-point communication is

used to implement nearest-neighbor halo exchange which

depends on the domain decomposition scheme. The 4-

dimensional domain can be decomposed in multiple different

ways. MILC’s 4-d balanced domain decomposition scheme

results in a logical 4-d process grid of P = px · py · pz · pt
processes where px divides nx. In the parallel case, we assume

Lx = nx/px (similarly for the y, z, and t dimensions).

In the following analysis, we assume for simplicity that

the domain is equally decomposed in all four dimensions and

Lx = Ly = Lz = Lt. Recent work by He [8] et al. presents

a study of the influence of the processor grid and sub-volume

layout on the communication performance.

The application uses periodic or anti-periodic boundary

conditions in each direction so all processes have exactly

eight neighbors. Point-to-point messages are sent along the

4-d lattice and are triggered in so-called gather calls. Each

gather call communicates in one direction and uses blocking

communication, however, the conjugate gradient phase enables

computation/communication overlap with nonblocking com-

munication. The number of messages (gathers) n(B) is specific

to each kernel B. The following table shows the message

counts for the case where all dimensions are cut:

B n(B)
FF (trajecs + warms) · steps · 1616
GF (trajecs + warms) · steps · 828

LL (3 · steps · (trajecs + warms) +
⌊

trajecs

meas

⌋

) · 8

FL (3 · steps · (trajecs + warms) +
⌊

trajecs

meas

⌋

) · 288

CG 16 · niters+16
[

2steps · (trajecs + warms) + 2
⌊

trajecs

meas

⌋]

FF , GF , LL, and FL perform a fixed number of gathers

per invocation. Each CG iteration performs one gather for

each of the eight directions of all even (and all odd) sites in a

halo-zone of size three. In addition, at the first invocation, it

needs one additional gather for each direction of all even (and

odd) sites in a halo zone of size one. Each CG invocation

sends 16 messages communicating the su3 vectors one level

deep and 16 messages communicating them three levels deep.

CG is invoked twice every step (light and heavy quarks) and

twice every measurement (which we neglect for simplicity).

The measurements phase occurs after every trajectory and is

when specific scalar quantities are computed.

a) Point-to-point Sizes: The code uses two major types

of point to point operations. The first type is used in FF ,

GF , LL, and FL and communicates su3 matrices with 3x3

complex values (18 floating point values) and a 1-element

wide halo zone. Thus, a halo zone of one element needs to be

communicated at the domain boundaries. As before, Lx, Ly,

Lz , and Lt represent the lattice dimensions per process, Ax

represents the message size sent along dimension x for the

FF , GF , LL, and FL blocks, and f is the size of a single

floating point value:

Ax = 18 · f · Ly · Lz · Lt Ay = 18 · f · Lx · Lz · Lt

Az = 18 · f · Lx · Ly · Lt At = 18 · f · Lx · Ly · Lz.

Like before, we assume Lx = Ly = Lz = Lt and V =
Lx · Ly · Lz · Lt, we get A(V) = 18 · f · 4

√
V 3.

The CG kernel is more complex. It communicates su3

vectors with 3-element complex valued vectors (six floating

point values) for each even (or odd) lattice site in a 3-element

wide halo zone in each iteration. This means the message size

is B(V) = 18
2 · f · 4

√
V 3 = A(V)

2 . Each CG invocation sends

messages communicating the su3 vectors with a halo-zone of

size one (message size B/3) and messages with a halo zone

of size three (message size B). For the case being modeled

the CG kernel is invoked twice every step (once each for light

and heavy quarks) and two times every measurement. We will

write A (or B) instead of A(V) (or B(V)) for brevity.

b) The full Analytic Point-to-point Model: We model the

time to transmit a message of size x with m(x). The full

communication model for point-to-point operations using the

message counts and the messages sizes A, A/2, and A/6 for

the corresponding phases is shown in Equation (3):

Tp2p = m(A) ·

[

3332(trajecs + warms) · steps + 296

⌊

trajecs

meas

⌋]

+

16m

(

A

2

)

· niters+ 16m(
A

6
) · (3)

[

2steps · (trajecs+ warms) + 2 ·

⌊

trajecs

meas

⌋]

2) Collective Communication: Only the CG kernel requires
an allreduce of two floating point numbers during each itera-
tion. An additional allreduce call is needed for initialization at
each first call for heavy or light quarks (once per step and twice
for each measurement). Thus, the total number of allreduce
calls is:

nred = niters+ 2 · (4)
[

steps · (trajecs+ warms) + 2 ·

⌊

trajecs

meas

⌋]

We model a small-message allreduce with the typical log-

arithmic implementation Tred(P) = c + d log(P). Where c
is the startup overhead and d is the time per tree-level. The

total collective communication time is simply Tcoll(P) =
nred · Tred(P).

E. Combined Parallel Analytic Performance Model

In this simplified model, we do not consider the computa-

tion/communication overlap in the CG phase explicitly. Thus,

Step A4 is omitted here. The total runtime of the application

can be expressed as:

Tpar(V, P) = Tser(V) + Tp2p(V) + Tcoll(P) (5)

This analytic model has several open parameters, such as b1,

b2, s(B) for each of the five kernels, m(x) for the message

transmission and c and d for the allreduce communication.

Without an explicit term for shared resource contention the

parameters should be obtained in a manner in which the effect

of such resource sharing is in the measured data. In practice

the application code is run across a single node or across a

few nodes and the compute times are obtained from timed

regions. We now show how to parametrize this model for a

specific parallel computer.

III. PARAMETRIZING THE PERFORMANCE MODEL

Our first test system is a 120 node POWER5+ cluster. Each

node had 16 1.9 GHz cores running AIX6 and all nodes

were connected using an IBM Federation interconnect. The

POWER5+ processor has a 32 KB L1 data cache, a 1.9 MB

L2 cache and a shared 36 MB L3 cache (victim of L2).

To find the parameters, we generally have two different

methods: analytical, where we derive the parameters from

system parameters such as bandwidth or latency, and empirical

where we measure different executions and fit the parameters

to the analytical model.

Analytical modeling of single-core performance is infea-

sible as discussed in Section III-B. Thus, we measured the

execution time on the target architecture of all kernels with

multiple different lattice sizes (V) in order to get b1, b2, and

s by fitting to Equation (1) as discussed in the following

section. We remark here that the relative size of Lx, Ly,

Lz , and Lt has only negligible impact on serial performance.

Another, more time-consuming possibility to determine those

parameters would be to run the kernels on a simulator.

The parameters m(x), c, and d can either be collected with

microbenchmarks in combination with analytic network mod-

els (e.g., LogGP [2], [10]) or empirically by fitting observed

communication performance. We show in detail how a network

model can be used in the following POWER5+ example. For

the other systems we use the simpler fitting method.

A. Statistical Considerations for Fitting Parameters

While parametrization with empirical methods seems sim-

pler than fully analytical modeling, we point out that great care

is needed to guarantee validity of the results. Any measure-

ment of properties of a complex physical system has variations

and inaccuracies. It is very important to understand those

variations to characterize them in the model. In the following,

we describe how to use well-known statistical methods to

determine the number of necessary measurements and to

provide a the parametrized model that includes a measure of

the variation in the measurements.

All parameter fits were generated using a standard non-

linear least-squares method with equal weighting2. Great effort

was given to keeping the number of parameters to a minimum

and to use fitting functions motivated from analytic models

or physical reasoning. Fitting to a general function (such as a

polynomial of an arbitrary degree) was not done as it does not

necessarily provide any physical insight to the behavior being

modeled.

We report the relative residual of the fit as the average of

all relative residuals for all measurement values. The error

2We used the nls method of the R statistics package version 2.11.1.

of the fit is in practice small and is not described by the

relative residual. The measured values reflect natural runtime

variations on the systems that can be viewed as perturbative

processes that move the performance of an application away

from the optimal. In practice, it is the time for inter-node

communication that exhibits this variation due to traffic on

the fabric from other jobs.

B. The Parametrized Kernels

The following table provides the parameters for each critical

block B. It is important to notice that each block has different

parameters which indicates that the working set and the time

per site are different for the modeled operations. As discussed

above, the CG phase is dominated by complex valued matrix-

vector multiplication while the other phases do primarily

complex valued matrix-matrix multiplication. To model the

impact of shared resources the kernel data is obtained from

runs using a full node or multiple nodes such that Tser is

affected by shared CPU and memory resources. The variation

in all measurements and the fitted models have been well

below 1%.

B b1(B)[µs] b2(B)[µs] s(B)
FF 255 326 2500

GF 88 157 1900

LL 1.3 2.2 2500

FL 30 56 2000

CG 0.425 0.483 1200

Figure 1 shows representative serial performance models

for the GF phase (red line) and the actual benchmark results

as boxplots (green boxes). We sampled multiple thousands of

iterations and the measurement variation was very low for the

serial performance measurements.

C. Communication Performance

We used the LogGP benchmark in Netgauge to determine

the parameters for the intra- and internode communication

performance. The LogGP model [2] is a model from the family

of LogP [7] network models. It comprises the four parameters:

L (maximum latency between two endpoints in the network),

o (overhead per sent message), g (gap, i.e., time between

consecutive messages), G (transmission time per byte), and

P (number of processes).

The LogGP parameters can be benchmarked with a set

of point-to-point measurements and parameters fits [10]. The

following table lists the acquired parameter values:

link range [byte] L [µs] o [µs] g [µs] G [µs/b]

intra 0 < S ≤ 32768 2.7 3.5 3.0 0.00068

intra S > 32768 2.7 33.5 3.0 0.00045

inter 0 < S ≤ 32768 5.8 14 3.3 0.0013

inter S > 32768 5.8 40 3.3 0.0011

We also benchmarked the allreduce performance for differ-

ent P and fitted our model function Tred(P) to c = 0 and

d = 3.65µs.

1) Modeling Endpoint Network Congestion: Intra-node

communication uses shared memory to exchange messages.

Since two cores share one memory controller, we assume

a congestion of two for this communication. The intra-node

communication time for messages of size x is thus (for o > g):

mintra(x) = Lintra + 2ointra + (x− 1) · 2Gintra.

Each node has 2 network cards and 16 processes are

utilizing them. Thus, we assume a congestion of eight for inter-

node communication. We assume that the global Clos network

is congestion-free for the sparse communication pattern that

MILC uses. The inter-node communication time is thus:

minter(x) = Linter + 2ointer + (x− 1) · 8Ginter.

2) Communication Parameters: The 16 cores of a

POWER5+ node are provided by 8 dual-core modules (DCM).

The grid cells are packed optimally in 4x4 blocks to the

available nodes. Thus, for P ≥ 256 (a 24 grid of nodes), each

node has neighbors in all four dimensions. In this configura-

tion, exactly half of the communication volume is intra-node

and half is inter-node. In addition, inter-node communication

(DMA operations) and intra-node communication (memory

copies) can overlap most of the communication time. Thus,

we approximate a mixed mode communication model for

P > 256 with

m(x) = max
{

minter

(x

2

)

,mintra

(x

2

)}

= minter

(x

2

)

.

The inter- and intra-node communications happen in par-

allel as shown in the above equation, and thus the effective

bandwidth for messages larger than 32 kiB is 2
0.0011µs/B·8

MB/s ≈ 227 MiB/s.

We will now combine computation and communication into

a full parallel performance model.

D. The Parallel Performance Model

Substituting b1, b2, s, m(x), and c, d in the parallel model

in Equation (5) results in the final parallel model. The model

function and actual measurements are shown in Figure 1(b).

The figure also includes the serial performance model to

visualize the relative cost of computation and communication.

1) Comparing to a Semi-Analytic Network Model: In the

previous sections we showed an analytic communication

model on the POWER5+ system and have been able to

mostly ignore the network congestion due to the full-bisection

fat-tree. At this point, we want to remind the reader that

the LogGP model does not account for network congestion.

The (relatively low) effect of congestion on our POWER5+

system leads to only slightly underestimated runtimes for large

process counts in Figure 1(b). We now compare the fully

analytic network model with an semi-analytical model that we

construct with curve fitting. For this, we will use a simplified

network model that only considers the effective latency (cf.

L) and the effective bandwidth (cf. 1/G) and sets all other

parameters zero (cf. o=g=0). The models in Section III enable

us to determine the effective bandwidth bw and latency lat
for each application run (with varying lattice sizes) such that

m(x) = lat+ x
bw . Since the latency is known to be 5.8µs, we

fixed the latency parameter in the fitting. The following table

256 1152 2160 3072 4096 5120 6400

0
.0

0
.4

0
.8

1
.2

Lattice Volume per Process (V)

ti
m

e
 [

s
e

c
o

n
d

s
]

In Cache Out of Cache

data
model

(a) Serial GF Model Performance Data and Model

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000

T
im

e
 [

s
]

Lattice Volume (V)

P=16
P=256

P=1024
Serial Model

Model P=1024

(b) Complete Parallel Performance Model

256 4096 10000

5
0

1
0

0
1

5
0

Lattice Volume per Process (V)

ti
m

e
 [

m
ic

ro
s
e

c
o

n
d

s
]

data
avg. model
max. model

(c) Communication Performance Data and Models

Fig. 1. Figures (a) and (c) show performance models and the measured performance as box-plots for the GF phase and the overall communication. Figure
(b) shows the overall analytic parallel performance model for POWER5+ which shows the effects of network congestion for large lattice volumes. Figure (c)
compares the data to models based on average data or selecting best data.

provides the communication parameters for the 256 and 1024

process cases for the GF phase (all other phases were similar).

P lat [µs] bw [MiB/s] bw variation

256 5.8 250 5.6%

1024 5.8 209 5.0%

We conclude that the 256 process case is limited by the

aggregate bandwidth (≈ 227 MiB/s, see Section III-C2). The

effective bandwidth is slightly higher due to communication-

induced on-node process skew. At 1024 processes we observe

a reduced bandwidth due to network congestion in the fat-tree.

The variation in our model is a good indicator for the variance

between different measurements.

IV. PERFORMANCE ON VARIOUS ARCHITECTURES

In the following, we demonstrate how the developed per-

formance model can be used to concisely compare the per-

formance of MILC on various architectures. We will present

parameters for the semi-analytical serial computation model

and the parallel communication model. We will consider

multiple architectures with a low bisection bandwidth (low-

dimensional Torus topologies) and will thus use empirical

methods to fit the data to the communication models presented

in Section III.

The effects of varying process counts (contention, interfer-

ence) are hard to capture analytically because a model would

need to consider the application communication topology,

the network topology and routing, and the process-to-node

mapping. Thus, we provide separate model parameters for

each process count P . Finding semi-analytical models with

P as open parameter is an interesting topic for future work.

We observed a huge variation in measured network per-

formance among iterations (and identical runs) on some of

the investigated production systems (e.g., Cray) while others

(e.g., POWER5+ and BG/P) showed very little variation. We

attribute this variation to interference with other applications

(cf. network noise in [12]). However, using the statistical

methods explained in Section III-A, we are able to provide

the relative variance for each of the parameters in brackets.

We also use our performance models to demonstrate the

performance loss due to network congestion and variation.

We derive three parametrized models for each process count:

(1) an ideal network model that assumes an idealized full-

bisection bandwidth network where the communication is only

limited by the injection parameters (cf. the LogGP model),

(2) the best observed performance without application inter-

ference, i.e., a noiseless network, and (3) the mean (expected)

performance for the executed runs.

The performance on an ideal network can easily be con-

structed with analytical modeling of the serial base-case and

LogGP parameters as discussed in Section III-C. We provide

latency numbers and theoretical per-core bandwidth numbers

for all investigated architectures. In order to parametrize the

noiseless model, we run a long series of experiments and

model the iteration with the lowest observed congestion (i.e.,

the highest performance). The expected network performance

model is derived from all observed measurements (across

multiple iterations and runs) with statistical methods (cf.

Section III-A).

All reported numbers in this section were run without

special tuning and with default parameters on the architectures.

We used existing MILC optimizations (e.g., fast compiler

flags, SSE optimizations on x86, and derived datatypes) to

provide best effort performance numbers. However, the focus

of this work is on modeling the observed performance on the

given systems not on finding the combination of flags and code

variations that give the best performance.

A. Performance on BlueGene/P

We measured the performance of the different phases on

Surveyor at Argonne National Laboratory. Each compute node

contains a quad-core 850MHz PowerPC 450 processor and all

jobs were run using all cores (VN mode). The L1 and L2

caches are 32 KB and a 2 KB prefetch buffer, respectively.

There is a shared 8 MB L3 cache. The performance measure-

ments of the serial kernels had a very low variation (less than

0.3%), leading to the following serial model parameters:

B b1(B)[µs] b2(B)[µs] s(B)
FF 1410 (0.02%) 1479 (0.05%) 1500

GF 483 (0.09%) 567 (0.20%) 2000

LL 8.33 (0.10%) 9.4 (0.20%) 2500

FL 178 (0.04%) 200 (0.05%) 2500

CG 3.04 (0.06%) 3.05 (0.20%) 4000

The percentages in brackets represent the variance of the

measurements compare to the fit. Like on the POWER5+

system, we did not observe significant network noise, thus,

the effective noiseless and expected network performance is:

P lat [µs] bwmean [MiB/s] bwmax [MiB/s]
64 19.2 (3.1%) 303 (0.9%) 304

2048 16.4 (1.1%) 205 (0.1%) 206

4096 16.1 (2.0%) 118 (0.2%) 119

The latency and bandwidth values are reported as observed

by the application. This means that the effective latency is

higher than the observed nearest-neighbor latency (≈9.8µs)

because it includes multiple hops in the torus network and

congestion effects (depending on the process-to-core map-

ping). Similarly, the effective bandwidth is, due to network

contention, lower than the nearest neighbor bandwidth per

core, which is
(

≈ 375 MiB/s·6 directions
4 cores

≈ 562 MiB/s
)

.

B. Performance on Cray XT5

Kraken is a Cray XT5 installed at the National Institute for

Computational Sciences. Each compute node contains two 6-

core AMD Istanbul 2.6 GHz processors. The L1 and L2 caches

are 128 KB and 512 KB, respectively. There is a shared 6 MB

L3 cache on each processor. The nodes are networked via the

Cray SeaStar2+ chips connected in a 25× 16× 24 3D Torus.

B b1(B)[µs] b2(B)[µs] s(B)
FF 195 (0.4%) 610 (0.2%) 1000

GF 74 (0.4%) 387 (0.3%) 1500

LL 1.96 (1.5%) 7.9 (0.2%) 1500

FL 23 (0.2%) 131 (0.2%) 1500

CG 0.66 (4.7%) 1.37 (0.7%) 1000

The effective network performance is:

P lat [µs] bwmean [MiB/s] bwmax [MiB/s]
1024 12.1 (10%) 167 (7%) 231

2048 10.3 (5%) 211 (3.8%) 264

We measured a nearest-neighbor latency of 8.4 µs and a

bandwidth of 1.88 GiB/s. The theoretical maximum injection

bandwidth per core is ≈ 3.2 GiB/s
12 cores

≈ 266 MiB/s while the net-

work bandwidth in the Torus is much higher [15]. The effective

allreduce parameters (cf. Section III-C) are a = 238µs and

b = 51µs. The low performance of allreduce may be due to

communication imbalance in the system because the allreduce

time, as observed by the application, includes synchronization

overheads.

C. Performance on Cray XE6

We measured the performance of the different phases on

the Hopper supercomputer. Hopper is a Cray XE6 installed

at the National Energy Research Scientific Computing Center

(NERSC). Each compute node contains two 12-core AMD

6172 (MagnyCours) 2.1 GHz processors. The L1 and L2

caches are 128 KB and 512 KB, respectively. There are two

6 MB L3 caches per processor. Each cache is shared among

six cores. The nodes of Hopper are connected by the Cray

Gemini Network and connected in a 17× 8× 24 3D Torus.

B b1(B)[µs] b2(B)[µs] s(B)
FF 232 (0.5%) 483 (0.3%) 1000

GF 81 (0.4%) 261 (0.4%) 1500

LL 1.56 (0.2%) 4.8 (0.1%) 1500

FL 27 (0.5%) 90.7 (0.4%) 1500

CG 0.57 (0.7%) 1.07 (0.2%) 600

The effective network performance is:

P lat [µs] bwmean [MiB/s] bwmax [MiB/s]
1024 13.8 (7.0%) 595 (2.0%) 718

2048 6.6 (7.2%) 459 (0.8%) 486

8192 41.5 (4.8%) 232 (1.7%) 253

We measured a latency of 2.08 µs and a bandwidth of

2.5 GiB/s for the slowest link between two neighboring

nodes (not sharing the same Gemini). The theoretical available

injection bandwidth per core is ≈ 7 GiB/s
24 cores

≈ 292 MiB/s. See

Alverson, Roweth, and Kaplan [3] for details on the Cray

Gemini interconnect. The observed bandwidth for small P
is higher than the per-core bandwidth because parts of the

communication are done through shared memory in the large

SMPs (cf. Section III-C2). The effective allreduce parameters

(cf. Section III-C) are a = 21.5µs and b = 8.5µs.

D. Performance on an InfiniBand Cluster

The ds1 cluster at Fermilab was designed for lattice QCD

applications. Each node contains four 8-core 2.0 GHz AMD

Opteron 6128 processors. The L1 and L2 caches are 128 KB

and 512 KB, respectively. There is a shared 12 MB L3 cache.

The nodes are connected via a QDR InfiniBand network. The

leaf switches have 36 ports and there is a 3:1 oversubscription

between the leaves and the spine switch.

B b1(B)[µs] b2(B)[µs] s(B)
FF 247 (0.3%) 435 (0.1%) 2000

GF 83 (0.2%) 225 (0.2%) 2000

LL 1.6 (0.8%) 4.3 (0.6%) 2000

FL 27 (0.2%) 79 (0.2%) 2000

CG 0.71 (2.1%) 0.97 (0.6%) 1000

The effective network performance is:

P lat [µs] bwmean [MiB/s] bwmax [MiB/s]
1024 26.7 (10%) 269 (2.7%) 315

2048 33.6 (16%) 164 (3.0%) 209

We measured a latency of 1.5 µs and a bandwidth of

2.46 GiB/s. The theoretical available injection bandwidth per

core is thus ≈ 77 MiB/s. Again, parts of the communications

are done through shared memory, leading to the high effective

bandwidth. The network performance on InfiniBand showed a

high variation between runs and iterations and our statistical

model captures the variation in the latency and bandwidth

parameters.

V. SUMMARY AND DISCUSSION

In this work, we presented a semi-analytical model for the

MILC su3 rmd code. We showed how performance of a full

application can be combined from the serial performance of

application kernels and communication overhead by combin-

ing analytic methods (counting message numbers, sizes, and

kernel invocations based on the code) and empirical methods

(parameter fitting actual performance to serial and parallel

performance models).

We show that the performance of MILC su3 rmd can be

expressed with a small set of parameters that enable prediction

of execution times, observation of performance bottlenecks,

and effective comparison of architectures (also across different

publications). We show that our model can be applied to

multiple different architectures with relatively low error rates.

The performance models can be used for several tasks

and can be extended in multiple directions. We now discuss

possible use-cases of our parametrized performance model. It

is now clear that one can easily compare the in-cache serial

performance (b1) that is mainly influenced by the on-chip

design and the out-of-cache serial performance (b2) that is

mainly influenced by the memory subsystem. One interesting

observation is that the older AMD Istanbul CPUs in the XT5

perform better than the newer MagnyCours in XE6 due to the

higher CPU frequency for small lattice volumes. However, the

slower memory subsystem on XT5 shows lower performance

than XE6 for larger lattice volumes. We also see that a

BlueGene core is about a factor of 4–7 slower than an x86

core, however, for out-of-cache computations, the difference

is only a factor of 2–3. The developed serial models can be

used to design a system with the right relation between CPU

and memory performance for MILC.

The network is important for large-scale computations. Our

semi-analytical network models show the ideal, the noise-

less, and the expected performance of the networks. The

effective bandwidth depends on the network topology, the

routing strategy, the application communication topology, and

the process-to-node mapping. This complex relation makes it

nearly impossible to derive analytic models for the effective

bandwidth of realistic applications running on a nontrivial

network topology and routing. For example, we show that

congestion in the 3D torus topologies reduces the effective

bandwidth significantly (up to a factor of four for large runs).

We also model how network noise (background traffic) affects

the effective bandwidth and show a nearly 50% degradation

due on the InfiniBand system. We conjecture that this is due

to the static routing in InfiniBand [11].

This enables us to quantify the expected loss in application

performance due to network noise for different lattice sizes

(the difference between the best seen and the statistically

expected performance). Figure 2(a) plots the performance

loss for the whole application run. Small lattice sizes are

less effected because the relative variance for small messages

is lower (cf. Figure 1(c)) and very large lattice sizes are

dominated by computation. BlueGene/P has no significant

performance loss due to network noise while all other systems

are affected.

0 500 1000 1500 2000

0
1

2
3

4
5

Lattice Volume per Process (V)

A
ve

ra
g
e
 P

e
rf

o
rm

a
n
c
e
 L

o
s
s
 [
%

]

BG/P
Cluster
XT4
XT5

(a) Network Bandwidth Variation

0 500 1000 1500 2000

0
5

1
0

1
5

2
0

2
5

Lattice Volume per Process (V)

A
ve

ra
g
e
 P

e
rf

o
rm

a
n
c
e
 L

o
s
s
 [
%

]

BG/P
Cluster
XT4
XT5

(b) Network Congestion

Fig. 2. Lost Application Performance due to network parameters for
steps=meas=1 and niters=2000.

We can also investigate the performance loss due to the net-

work topology and routing, compared to an ideal congestion-

less network (full effective bisection bandwidth). Figure 2(b)

shows the relative loss for a full application run showing up

to 25% lower performance.

The two examples show overheads of the certain properties

of the network that depend on the communication/compu-

tation ratio and other application and system parameters. A

performance model helps to design a computer system for the

application requirements (e.g., optimize the money-bandwidth

trade-off) and also offers multiple other avenues for analyzing

the effect of optimizations and architectural parameters, such

as communication optimizations.

Acknowledgments: This work was supported by NCSA’s Blue Waters

project (NSF OCI 07-25070 and the State of Illinois); and DOE grants

FG02-91ER 40661 and DE-FC02-06ER41443. One of us (S.G.) gratefully

acknowledges sabbatical support from NCSA. We thank the ALCF (Surveyor),

NICS (Kraken), NERSC (Franklin and Hopper), and the LQCD Computing

Project at FNAL (ds1) for access to computers used for benchmarking.

REFERENCES

[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache model.
ACM Trans. Comput. Syst., 7:184–215, May 1989.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:
Incorporating Long Messages into the LogP Model. Journal of Parallel

and Distributed Computing, 44(1):71–79, 1995.
[3] R. Alverson, D. Roweth, and L. Kaplan. The gemini system inter-

connect. In High Performance Interconnects (HOTI), 2010 IEEE 18th

Annual Symposium on, pages 83 –87, aug. 2010.
[4] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,

and M. Schulz. A regression-based approach to scalability prediction. In
International conference on Supercomputing, ICS ’08, pages 368–377,
New York, NY, USA, 2008. ACM.

[5] C. Bernard et al. Studying Quarks and Gluons On Mimd Parallel
Computers. International Journal of High Performance Computing

Applications, 5(4):61–70, 1991.
[6] M. A. Clark and A. D. Kennedy. Accelerating fermionic molecular

dynamics. NUCL.PHYS.PROC., 140:838, 2005.
[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: towards a realistic model of
parallel computation. In Princ. Pract. of Par. Progr., pages 1–12, 1993.

[8] J. He et al. Layout-Aware Scientific Computing: A Case Study with
MILC. In Scala Workshop, SC’11, 2012. To appear.

[9] T. Hoefler, W. Gropp, W. Kramer, and M. Snir. Performance modeling
for systematic performance tuning. In State of the Practice Reports, SC
’11, pages 6:1–6:12, New York, NY, USA, 2011. ACM.

[10] T. Hoefler, A. Lichei, and W. Rehm. Low-Overhead LogGP Parameter
Assessment for Modern Interconnection Networks. In Proc. of the 21st

IEEE Intl. Par. & Distr. Proc. Symp. IEEE Comp. Soc., March 2007.
[11] T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage Switches are

not Crossbars: Effects of Static Routing in High-Performance Networks.
In Proc. of the 2008 IEEE Intl. Conf. on Cluster Comp., Oct. 2008.

[12] T. Hoefler, T. Schneider, and A. Lumsdaine. The Impact of Network
Noise at Large-Scale Communication Performance. In 23rd IEEE Int.

Par. & Distr. Proc. Symp. (IPDPS), LSPP Workshop, May 2009.
[13] D. J. Kerbyson et al. Predictive performance and scalability modeling

of a large-scale application. In SC’01: 2001 ACM/IEEE Conf. on

Supercomputing, pages 37–37, New York, NY, USA, 2001. ACM.
[14] M. M. Mathis, N. M. Amato, and M. L. Adams. A general performance

model for parallel sweeps on orthogonal grids for particle transport
calculations. In ICS, pages 255–263, 2000.

[15] K. T. Pedretti, C. Vaughan, K. S. Hemmert, and B. Barrett. Application
sensitivity to link and injection bandwidth on a cray xt4 system. In
Proc. of the 2008 Cray Users’ Group Annual Conference, 2008.

[16] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli. Hybrid performance
modeling and prediction of large-scale computing systems. In Proc. of

CISIS 2008, pages 132–138, 2008.
[17] N. J. Wright, W. Pfeiffer, and A. Snavely. Characterizing Parallel

Scaling of Scientific Applications using IPM. In proc. of the 10th LCI

Conference, Mar. 2009.
[18] W. Xingfu and V. Taylor. Performance analysis and modeling of the

scidac milc code on four large-scale clusters. Technical report, College
Station, TX, USA, 2007.

