
Towards Trusted Services:
Result Verification Schemes for MapReduce

Chu Huang, Sencun Zhu and Dinghao Wu
School of Information Science and Technology

Pennsylvania State University, State College, PA 16802
{cuh171,sxz16,dwu12}@psu.edu

Abstract—Recent development in Internet-scale data ap-
plications and services, combined with the proliferation of
cloud computing, has created a new computing model for
data intensive computing best characterized by the MapReduce
paradigm. The MapReduce computing paradigm, pioneered by
Google in its Internet search application, is an architectural
and programming model for efficiently processing massive
amount of raw unstructured data. With the availability of
the open source Hadoop tools, applications built based on the
MapReduce computing model are rapidly growing.

In this work, we focus on a unique security concern on
the MapReduce architecture. Given the potential security risks
from lazy or malicious servers involved in a MapReduce task,
we design efficient and innovative mechanisms for detecting
cheating services under the MapReduce environment based
on watermark injection and random sampling methods. The
new detection schemes are expected to significantly reduce
the cost of verification overhead. Finally, extensive analytical
and experimental evaluation confirms the effectiveness of our
schemes in MapReduce result verification.

Keywords-MapReduce, watermark injection, random sam-
pling, result verification, trustworthy

I. INTRODUCTION

Recently, a new wave of large-scale data processing tech-
nologies has emerged in various research and business areas,
such as genomic analysis, visualization, simulation and busi-
ness intelligence, etc. Due to the ever increasing demands
in those fields, more and more people and organizations
have come to realize the increasing needs of computational
resources. MapReduce was first proposed by Google in
2004 [1]. As a compensation mechanism to make up for
individual’s lack of computation resources, the MapReduce
framework enables huge data processing by dynamically
building up the computation environment which consists
of a large number of computers. Considering its benefits,
MapReduce has been widely adopted by a number of large
companies, such as Google, Yahoo, Amazon, Facebook and
AOL [2]. An open source implementation of MapReduce
called Hadoop [3], was then developed by Yahoo. The ease
of application development using Hadoop further encourages
wide adoption of MapReduce.

*This work was supported by NSF CAREER 0643906

Often operated in the open environment with its emphasis
on Internet-wide accessibility, Mapreduce provides flexible
and scalable computing services for its clients. However,
this also leaves MapReduce vulnerable to third party attacks
and misbehavior. Given that MapReduce clients have no
control over their data once it gets fed into the distributed
applications, many of them have their worries on common
security issues, such as the violations of data integrity and
data disclosure. Besides all those common privacy threats
and security risks, MapReduce also has its own unique
security deficiencies on data miscalculation while lazy or
malicious servers involved in a MapReduce task. In this
paper, we mainly focus on two main motivations lying
behind this malicious service providing, including attacks
by arbitrary purpose and attacks by strategic purpose.

To address the above challenges, we present two
lightweight results verification schemes for detecting the
cheating behaviors within the MapReduce framework. We
primarily focus on some text retrieval related applications,
which involve simple operations (e.g., count, addition) on
large amount of text and graph data. Expanded from those
text retrieval related applications, we believe our proposed
scheme can also be effectively applied to other MapReduce
based text processing applications, such as distributed grep,
log data processing, speech recognition and machine trans-
lation.

II. RELATED WORK

Security of distributed systems has been studied by many
researchers, but only a few of them really focus on MapRe-
duce. Xiao et al. [4] presented an accountable MapReduce
platform which checks all working machines and detects
malicious nodes in real time. By replaying the tasks executed
by workers and matching output with the original results, au-
ditors are able to generate verifiable evidence once inconsis-
tency occurs. The Airavat system proposed by Roy et al. [5]
provides strong security and privacy guarantees for sensitive
data computation of MapReduce. Their work focuses on
protecting privacy issues of untrusted code of data-mining
and data-analysis algorithms executed on MapReduce. Wei
et al. [6] proposed a secure scheme called SecureMR which
aims at protecting the computation integrity issue of MapRe-



duce. SecureMR detects misbehavior of mappers by sending
same tasks to multiple mappers, and check consistency of
results. Existing security frameworks for MapReduce have
the same limitation: reducers and master need to be trusted.
This assumption might not be practical in real world.

Several other result checking techniques have been pro-
posed in different areas other than MapReduce. Golle and
Mironov [7] proposed a Ringer scheme to protect against
coalitions of lazy cheaters, which ensures client that most
of the work are done correctly with high probability. Szajda
et al. [8] extended this ringer scheme, and presented a
probabilistic verification scheme to prevent against mali-
cious behavior in grid computing. A generic verification
scheme based on redundancy was presented by Golle and
Sutbblebine [9]. They described a security framework for
commercial distributed computing by simple task redun-
dancy. Szajda et al. [10] presented another redundancy-based
strategy. Their work requires fewer resources compared
to Golle and Sutbblebine’s, but it can achieve the same
effective cheating detection rate. Another generic approach
was proposed by Zhao et al. [11]. This result verification
scheme is called Quiz for peer-to-peer grid computing. They
inject indistinguishable tasks into a job with other normal
tasks. Then the verifier checks the correctness of all quiz
results.

Most of the above mentioned existing studies are based
on replication techniques, with either tasks being duplicated
and sent to two or more different participants for processing,
or re-do partial of a task then match it with the pre-calculated
result. Such redundant tasks waste resources in the system,
and there is lack of an efficient way to detect colluding
participants. We remove the constraints that master and/or
reducers have to be trusted and provide a scheme based
on watermark injection and weighted sampling techniques.
Our scheme can efficiently detect cheating behavior of
MapReduce computing in the context of text processing
problems.

III. SYSTEM MODEL

A. MapReduce Programming Model

The MapReduce framework consists of a single master
JobTracker and more than one slave Task Trackers. Master
is responsible for task assignment, scheduling, and manage-
ment. A slave that contributes to the computation resources
is also called worker in this model. Workers execute the tasks
as directed by Master. Besides master and workers, the other
important entity in MapReduce system is the distributed file
system. Typically, a file in Hadoop Distributed File System
(HDFS) [1], the file system underlying the Hadoop system,
is gigabytes to terabytes in size. Our work will follow the
Hadoop implementation of MapReduce.

As shown in Figure 1, the process of MapReduce data
processing can be divided into two phases: map and reduce.
In the beginning of the map phase, input data is first sliced

Figure 1: The MapReduce programming model

into n splits. Then master assigns these splits to different
workers for paralleled processing. Workers on the map phase
are called mappers. In this phase, each mapper processes one
split, produces an intermediate result and outputs the inter-
mediate result in the (key, value) key-value pair format to its
local disk. The intermediate results from each mapper are
then partitioned into m parts by a partition function. In the
reduce phase, workers read partitioned intermediate results
from mappers in the preceding map phase, process them
independently, and merge all intermediate results associated
with the same key into a final result. Workers running the
reduce function are called reducers correspondingly. What to
follow for reducers is storing final results to their local disks.
Eventually, the final result will be stored in the distributed
file system.

B. Model of Cheaters

In the MapReduce computation model, we consider an
attack model in which the adversary is rational and econom-
ically motivated. We classify cheating behaviors using two
different adversary models. We assume the input domain for
MapReduce is U , and the task for MapReduce is to compute
F : f2(f1(x)) for all the input domain, in which f1 is a map
function while f2 is a reduce function.

- Lazy Cheating Model: In this model, the cheating
worker follows the master’s computation with two ex-
ceptions: 1) it will not start processing its task from the
beginning of its task, or drop a task at any point before
finishing the task. 2) for every x ∈ U , MapReduce uses
G : g2(g1(x)) as the result instead of F : f2(f1(x)),
where function G is usually much less expensive than
function F . The goal of this kind of cheaters is to
save computation resources and maximize their profit
by performing more tasks in the same period of time.



- Malicious Cheating Model: In this model, the behavior
of a malicious worker is either arbitrary or strategic.
For any specific x, instead of returning F (x) = (k, v),
it would manipulate the final result and return (k′, v′).
In other words, the worker intentionally returns wrong
results to client. Arbitrarily cheaters intentionally return
wrong results for the purpose of disrupting the compu-
tation. Strategic cheaters falsify only a tiny portion of
the results with a purpose (e.g., improve its website
rank for search engines), and therefore is more difficult
to identify.

Based on the models, we provide two secure schemes to
prevent the computation provider from cheating the client
by claiming that they have done the job that they actually
did not, and also to protect from malicious behavior of
MapReduce.

IV. RESULT VERIFICATION FOR MAPREDUCE

A. Watermark Injection

Our watermark injection scheme is an application-specific
verification scheme. The basic idea of watermark injection
is to inject indistinguishable marks into normal documents.
Figure 2 shows the process of this watermark injection
scheme. We assume that if the marks we injected are all
computed correctly, the workers have executed the tasks
honestly. Otherwise, workers, one or many, have not con-
ducted the task honestly. We outline this watermark injection
scheme as follows.

- Setup (Watermark generation): Before handing the data
to the computation provider, the verifier pre-processes
the input files by inserting a number of watermarks into
the task documents.

- Computation: MapReduce performs computation tasks
and returns final results to the client.

- Verification: The client verifies the correctness of the
results and accepts the result if no inconsistency is
found.

- Recovery: Then it recovers the injected documents and
removes the impact of the watermark. Otherwise, the
client discards the results.

Because marks are randomly injected and cannot be
distinguished from other data items in the task documents,
MapReduce will not be able to identify them in an easy
manner. Consequently, if some task executer cheats on a task
that contains injected marks, its corresponding computation
result will be inconsistent with what was pre-computed. Next
we use an example application, inverted index, to illustrate
our proposed scheme.

1) Inverted Index: An inverted index is a data structure
that maps terms to their locations. Using this approach, a
search engine easily identifies the appropriate documents for
terms, without scanning each document in the whole web.

Figure 2: Watermark-based verification scheme. A watermark
generation module preprocesses raw data and injects watermarks.
Upon received output from MapReduce, the verifier performs
verification. If the computation from MapReduce is accepted, the
verifier will call a recovery module to remove the effect introduced
by injecting watermarks.

Many modern search engines on the web use an inverted
index scheme for data storage.

The large amount of computation may incentivize compu-
tation service provider to cheat for saving both storage and
computational resources. One way to cheat is to skip the
computation and return wrong (randomly picked) result from
its own vocabulary. For strategic cheaters, they might only
pick certain words and manipulate their corresponding lo-
cations. To detect and hence prevent cheating phenomenon,
we apply the watermark injection scheme on the inverted
index application.

Let D = {D1, D2, · · · , Dk} be a collection of documents
being indexed. Let d1, d2, · · · , dk′ be a collection of water-
mark files. The verifier then injects watermarks by encoding
certain words in each selected document, and records the
document id and the corresponding words. We outline the
detailed process for generating watermark as follows:

- Randomly selects k′ documents d1, d2, · · · , dk′ among
all the input documents before handing over to MapRe-
duce

- For each selected documents di(i = 1, 2, · · · , k′), the
verifier conducts a simple alphabet substitution [12] on
every ε words. A substitution table T should be pre-
defined by the verifier. The verifier also needs to store
the information about injection distance ε, the encoded
words and the corresponding document ID.

- For each encoded term in document collection d =
{d1, d2, · · · , dk′}, the verifier builds a posting list. The
computation overhead for building a small inverted
index I ′ for all encoded terms is far lower than building
a complete inverted index I(I ′ ∈ I).

Only the client knows which documents have been chosen
and which words have been marked. The verifiable compu-



tation scheme for inverted index is performed as follows:
1. Setup: Before handing over the data to a computation

provider, the verifier pre-processes the data and gen-
erates watermark following the detailed procedure of
watermark generation above. Meanwhile, the verifier
stores information about which words are encoded and
constructs an index I ′ of encoded (watermark) words.

2. Computation: MapReduce performs the task of con-
structing an inverted index I and returns I to client.

3. Verification: The verifier checks the results from
MapReduce by 1) examining whether all encoded terms
appearing in the dictionary of I ′ are all included in the
dictionary of I; 2) comparing the posting list of each
term in I ′ with the results from the MapReduce system.
If both steps return a matching conclusion, the verifier
accepts the results. Otherwise, the verifier concludes
MapReduce has cheated and discards the results.

4. Recovery: If the result is accepted, the verifier needs to
recover these words that have been marked. In order to
do so, the verifier needs to decode those words based
on the same substitution table T . For each term in the
index I ′: if its corresponding document ID in its posing
lists of I , then doing nothing; otherwise, insert a posting
list with idx as document ID into index I .

2) Security Analysis: The security of the watermark
injection scheme is based on the assumption that workers
of MapReduce cannot determine whether the input file has
been marked or not. The only way to escape detection
is to correctly compute all encoded words. To determine
whether a word is actually encoded or not, lazy workers
of MapReduce needs to perform brute force search over all
words in its dictionary (assuming it contains all words in real
world). The computation overhead of this process is much
heavier than that of indexing itself. If the purpose of the
cheating workers were to save computation resource, they
would lose the incentive to cheat. If lazy workers do not
process the data, or give wrong results by random guess,
the results from MapReduce would be inconsistent with
the pre-computed value. Misbehavior is going to be caught
with a high probability as long as they ever cheat on the
computation.

To convince readers the high accuracy of the watermark
injection scheme, we provide a brief theoretical derivation on
a simplified scenario. Let D = {D1, D2, · · · , Dn} represent
the set of documents to be sent to computation providers.
We randomly select p1 percent of totally n documents,
np1, to inject watermarks. In each document, we encode
p2 percentage of words to do the watermark injection. If
we assume that each document contains roughly the same
number of words, w, the total number of watermarked
word would be np1wp2. Suppose we have m mappers and
r reducers in a MapReduce system. MapReduce divides
all n task documents evenly and distributes them to the
m mappers. Thus each mapper gets n/m documents. The

probability of this situation is

Pr(Detected|one mapper cheats) = 1− (1− p1)n/m

Then the probability that a mapper cheats without being
detected is (1−p1)n/m. A similar analysis should be applied
to the reducer step. The nw words are randomly assigned
to r reducers and each reducer receives on average nw/r
words. The probability that a word is watermarked is p1p2.
When a reducer decides to cheat, it escapes the detection
only if this reducer does not receive any watermarked words.
Thus, the probability is (1− p1p2)nw/r.

When there are more mappers or more reducers cheating,
the detection rate is even higher. Say, x mappers and y
reducers cheat, the probability of detection is

Pr(Detected|x, y) = 1− (1− p1)xn/m(1− p1p2)ynw/r (1)

Let us denote (1 − p1)xn/m(1 − p1p2)ynw/r as f(x, y),
describing the probability that the verification scheme fails
when x mappers and y reducers have cheated. Assume each
mapper and each reducer may cheat with a fixed probability,
pm and pr, respectively. The probability that x mappers and
y reducers cheat is

Pr(x, y) =
m!

x!(m− x)!
(1−pm)m−xpxm

r!

y!(r − y)!
(1−pr)r−ypyr

(2)
Thus, the conditional probability of detection is

Pr(Detected|Cheating) =
x∑

[0,m]

y∑
[0,r]

Pr(x, y)Pr(Detected|x, y)

(3)
Using what we have,

Pr(Detected|Cheating) = 1−
x∑

[0,m]

y∑
[0,r]

Pr(x, y)f(x, y) (4)

In this summation, x ∈ [0,m] and y ∈ [0, r]. Thus

Pr(Detected|Cheating) = 1− (1− pm + pm(1− p1)n/m)m ·
(1− pr + pr(1− p1p2)nw/r)r

Let’s suppose m = 15, pm = 0.10 and r = 15, pr = 0.10
and look at the detection rate of this verification system.
Assume n = 1500 and w = 1500 and we can plot the
detection rate vs. small values of p1 and p2 by using MatLab
(as shown in Figure 3). Before proceeding, we examine the
equation first. We have n/m = 100 and (1−p1)100 = 0.9100

that is almost 0. Similarly, we have (1 − p1p2)nw/r ≈ 0.
Thus, the equation is approximately:

Pr(Detected|Cheating) = 1− (1− pm)m(1− pr)r (5)

This means that when each mapper or each reducer has
to deal with a large number of documents or words and
the system cheats, the probability that the verifier detects
this cheating is independent of the percentage of the wa-



Table I: The effectiveness of the watermark injection scheme
for text problems.

MapReduce cheats MapReduce not cheat

Results Rejected 1− (1− pm)m(1− pr)r 0

Results Accepted (1− pm)m(1− pr)r 1

termarked files/words (as long as they are not too small).
Consequently,

Pr(Detected|Cheating) = 0.9576 (6)

Table I shows the effectiveness of the watermark injection
scheme for the inverted index problem. The two cells
represent the probability that the verifier rejects or accepts
the computation results from the MapReduce system, when
the system cheats or does not cheat. As shown, the accuracy
is fairly high and the Type I error rate is 0.

Figure 3: The theoretical performance of the watermark injection
scheme for text problems.

B. Random Sampling

1) PageRank: In the real world, the number of web pages
could be very large and it is still growing exponentially.
According to WorldWideWebSize.com [13], the size of the
World Wide Web contains about 17.5 billion indexed pages.
Such a worldwide graph contains billions of nodes and
several billions of links. If we assume that each URL takes
0.5KB to store, the whole Internet, containing trillions of
unique URLs, will take more than 400TB space. Calculating
the PageRank values frequently using the classic PageRank
algorithm [14], [15] on such a big data set is computationally
expensive. MapReduce provides a solution to tackle this kind
of scaling challenges in a highly distributed manner.

We introduce a basic PageRank model here. The web
pages and hyperlinks on the Web can be modeled as nodes
and edges in a directed graph G = (V,E). Let N be the total
number of web pages and use 1, 2, · · · , N to index these N
web pages. Let L(u) be the number of out-links from page

u where u = 1, · · · , N . The corresponding adjacency matrix
is defined as follows:

Au,v =

{
1/L(u) , if there is an edge from u to v;

0 , otherwise.
(7)

Note that the value of Au,v can be any number between
0 and 1 in this case. The PageRank value for a page v is
given as follows [14]:

PR(v) =
1− d
N

+ d
∑

u∈B(v)

PR(u)

L(u)
(8)

The damping factor [15] d in the equation is used to
represent the probability that a Web surfer follows the
random behavior pattern. The value of d is usually set to
0.85.

In order to retrieve a stable solution for the PageRank
values of all webpages, we set the PR(i) value to be
1/N and keep running iterations until stationary values are
obtained or only small differences exist between the results
from adjacent iterations. Note that in the rest of our work,
we will use the term “node” and “page” interchangeably.

2) Ranking Pages with MapReduce: Suppose a client
rents MapReduce to process a large set of web pages for
finding a way to characterizing structure of the web graph
and computing the importance of every web page using the
classic PageRank algorithm. This task needs multiple map
and reduce phases to accomplish. Since values needed for
an iteration of a page only depend on previous page ranks
of its in-links, every task sent to workers of MapReduce is
independent and can be executed in parallel. This iteration
will continue until convergence.

The watermark injection scheme does not work very well
under the context of PageRank calculation. The reason is
that in order to do the verification, we need to pre-calculate
the PageRank values for these marked or injected pages.
However, doing this calculation means we need to do the
calculation for the whole data set. If so, using MapReduce to
distribute the complex task is not meaningful anymore. We
propose another approach for the problem: verification by
sampling. We provide two sampling templates for cheating
detection for PageRank: naive random sampling and in-
degree weighted sampling.

Naive Random Sampling: In this naive random sam-
pling scheme, the verifier randomly selects pages with
an equal probability for each page. Using the PageRank
scores returned from MapReduce, the verifier checks if the
PageRank equation holds. The PageRank values of the in-
nodes of the sampled nodes and the out-degree of these
in-nodes need to be collected as well, according to the
equation. Computation providers cannot possibly guess or
make a reasonable solution that holds the equation for all
the nodes in the network without actually computing the
page rank. Thus, under any type of cheating models, there



must be a great number of webpages on which the equation
does not hold. Thus, the detection rate of this naive sampling
verification scheme is almost 1.

However, there might be cases when computation
providers intentionally modify the PageRank value for cer-
tain webpages for their personal sakes. The percentage of
these modified pages may take only a small portion of the
whole data set. Consequently, the naive sampling approach
cannot guarantee a high detection rate in this scenario.
Thus, we propose a weighted sampling scheme to tackle
this concern.

In-degree Weighted Sampling: When selecting one
page and checking if Equ.8 holds for this page, we are
actually checking this page as well as all its in-nodes. If
the page rank of one of its in-nodes of itself is modified,
the equation will not hold and hence we have detected
the cheating behavior. On the basis of this fact, when we
select a page that has a high in-degree, we are actually
checking a number of pages in the set. Thus, an intuitive
suggestion is to sample those pages with high in-degrees
as much as possible. In order to prevent the computation
providers figure out our verification approach, we should
add a randomness degree to the sampling. In the in-degree
weighted scheme, we add a weight that is proportional to in-
degree to each page and adopt a weighted sampling method.
Thus, pages with higher in-degrees have a higher probability
to be selected.

3) Security Analysis: When computation providers inten-
tionally change the value of a small portion of pages, such
as increasing the PageRank value of their own pages and
decreasing the value of their opponent’s pages, there might
be only a small number of nodes for which Equation (1) does
not hold. Let’t look at the effectiveness of the two sampling
schemes here. Assume N is the total number of pages and
er is the error rate—the percentage of pages which do not
satisfy Equation (8). The verifier selects M pages by one
of the two sampling schemes. As mentioned, the in-degree
values of these M pages affect the verification effectiveness.
Let’s use f(x) to describe the in-degree distribution of all
pages in the data set and x in the following equations refers
to the in-degree value. Use c to represent the detection rate.
When we only check one page whose in-degree is x, we are
actually checking this node and all the x in-nodes. Thus,
the detection rate is g(x) = 1 − (1 − er)x+1. The overall
detection rate should be the expectation value of g(x), with
respects to the distribution of x. Thus,

c(Naive) = E(1− (1− er)M(1+x))

=

∫
f(x)(1− (1− er)M(1+x))dx

According to Jamakovic and Uhlig [16], in a regulatory
network, the in-degrees follow an exponential distribution.
Let’s assume that x follows an exponential distribution, we
have, f(x) = K exp(−Kx), x ∈ [0, inf).

Table II: The effectiveness of the watermark injection
scheme for text problems.

MapReduce cheats MapReduce not cheat

Results Rejected 1− (1− pm)m(1− pr)r 0

Results Accepted (1− pm)m(1− pr)r 1

Substituting f(x) into the detection rate equation, we
obtain,

c(Naive) = 1− K(1− er)M

1− (1− er)MerK
(9)

when (1− er)MerK < 1, which can be easily satisfied.
For the in-degree weighted sampling algorithm, instead

of f(x), we should have (x+ 1)f(x)/A in the integration.
(x+1)A represents the effect of the weights and A =

∫
(x+

1)f(x)dx is only a normalization coefficient. Thus,

c(Weighted) = E(1− (1− er)M(1+x))

=

∫
(x+ 1)f(x)(1− (1− er)M(1+x))dx/A

For the same exponential distribution of x, we obtain,

c(Naive) = 1− K(1− er)M

(1− (1− er)MerK)2A
(10)

The relationship between A and K is that A=1+1/K. Let’s
set K = 1/4 (the average in-degree number is 4) and er =
0.05. Let’s increase M from 10 to 100 and compare the
two schemes under this simple scenario. Figure 4 shows
the plots for the detection rates. Apparently, the weighted
scheme outperforms the naive one.

For the Internet, Jamakovic and Uhlig [16] concluded that
the in-degrees of the Internet follow a power law distribution
f(x) = ax−γ , x ∈ [0, inf). Under this circumstance, we can
conduct a similar derivation and obtain the following results.

c(Naive) =

∫
[1− (1− er)M(1+x)]f(x)dx

= 1− (1− er)Ma
∫

[(1− er)M ]x · x−γdx

c(Weighted) =

∫
[1− (1− er)M(1+x)]xf(x)/Adx

= 1− (1− er)Ma/A
∫

[(1− er)M ]x · x1−γdx

Computational simulations lead to similar numeric results as
shown in Figure 4.

Table II shows the effectiveness of the weighted sampling
scheme for the PageRank calculation problem.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our verification scheme, a
prototype of watermark injection and random sampling ver-
ification schemes is implemented to test the overall method



Figure 4: The theoretical performance of the two sampling
schemes for PageRank.

performance. Experiments conducted in this research aim to
mainly measure the detection rate under different types of
cheating models.

A. Experiment Setup

The experiment is running on a small cloud with 10
machines. We use 9 host machines as workers that offer
MapReduce services and one host as a master. All host ma-
chines run on a 3.4GHz Intel Core Quad-core i7 processor.
Each virtual machine has 512MB of memory and 20GB disk
and was installed Ubuntu Linux 10.04.2, Sun JDK 6 and
Hadoop 0.20.2. We conduct our experiment using inverted
index application and PageRank calculation based on the
Google PageRank algorithm. Since this experiment is not
focused on optimization of Hadoop configuration, we just
use the default configuration of Hadoop.

B. Performance Analysis

Figure 5: The performance of the watermark injection scheme
from computational simulations

Figure 6: The performance of the two sampling schemes under
computational simulations

1) Watermark Injection: Every data point shown in Fig-
ure 5 can be viewed as a test conducted with settings of
varied watermark injection proportions within documents
and words. Given that 200 simulations are run for each of
those tests, mean values are calculated as the data points
as shown in this figure. Consistent with the conceptual
modeling, p1 in this case is the percentage of documents
with injected watermarks, ranging from 1% to 5%. In the
same way, p2, also with the same range values, indicates
the proportion of words within each document which are
encoded with watermarks. One can interpret from the above
figure that among all the 16810 results points, only less than
0.5% of them have a detection rate less than 95%. Moreover,
more than half of the simulations have their detection rates
larger than 99%.

Besides, when considering p1 and p2’s effects on the over-
all detection rates, we further find that, compared with p1,
p2 seems to have non-significant impact on the experiment
results. It seems that detection rates do not change very much
along with the variances in the percentage of watermark in-
jected words. However, if viewing across the p1 axis, one can
notice that along with the growth of the watermark injected
document numbers, detection rates of cheating behaviors
begin to increase until the injection percentage reaches 3%.
In other words, it shows relatively lower detection rate when
the watermark injected document proportions are less than
3%. Beyond that injection percentage, detection rates begin
to reach about 100%.

2) Random Sampling: In order to simulate the cheating
behavior of the malicious and lazy workers, intentional
miscalculations of PageRank values were injected into the
final evaluation dataset at an error rate of 1% to 5%,
respectively.

Figure 6 demonstrates the distributions of the experimen-
tal detection rates over the increasing number of sampling



ratios. Overall, we can see that the random sampling ap-
proaches, both naive and weighted, perform nicely on the
PageRank cheating detection task under the MapReduce
environment.

As defined as the percentage of miscalculations, error
rates ranging from 1% to 5% are represented by five different
colors as shown in the figure. Dashed lines are corresponding
to the naive-based random sampling approach, whereas solid
lines are for the more advanced weighted-based random
sampling methods. Detection rates increase dramatically
with lower sampling ratios, in particular when sampling
ratios are less than 0.15% in the weighted approach or less
than 0.3% in the naive-based method.

Almost all of the weighted experiments reach high detec-
tion rates of over 80%, while in contrast, results of the naive
based approach are not as desired as the weighted ones under
small sampling sizes. Weighted samplings gradually lost its
absolute superiority in detection rates as the sampling ratios
increases. Except naive samplings under 1% and 2% error
rates, all sampling settings tested, both naive and weighted
schemes, in this study, achieve about the same detection rates
when sampling more than 35 pages out of the total 10,000
ones.

VI. DISCUSSION AND CONCLUSION

In this work, we have proposed two verification schemes
for detecting lazy and malicious behaviors that MapReduce
systems may have when they are conducting specific tasks.
Although we have only explained our schemes on two text
retrieval related applications for easy-to-understand purpose,
we would like to remark that our work can also be gen-
eralized straightforward to other text-intensive tasks, such
as word count, distributed grep, log data processing, speech
recognition and machine translation. In fact, given any com-
putational task with text input, watermark injection enables
MapReduce task executors to verify the results based on
those watermarked items. Likewise, for computational tasks
with graph input, our proposed random sampling scheme
can also be effectively applied, considering the probabilistic
generalizations of the general random sampling approach.

Although as mentioned above, our proposed schemes
can be effectively extended to some other MapReduce text
processing applications, they may not be very well gener-
alized to numerical data-intensive computational tasks, such
as knowledge discovery, pattern recognition, and more ad-
vanced statistical analysis. Also limited by the scope of this
study, only lazy and malicious attacks have been considered.
Although they do cover a large proportion of the possible
security risks, still there are threats in specific purpose from
those strategic attackers. For instance, attackers who only
manipulate their proposed keywords in the inverted index
application. In that case, our watermark injection method
would not work as well as it did while detecting the lazy
and malicious attacks. Therefore, with small watermark

percentages, it would be hard to detect this kind of cheating
behavior using the watermark scheme as we proposed.
Considering all those aforementioned limitations, developing
a more generic solution for MapReduce applications remains
an open question for our future research.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[2] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of com-
putation for mapreduce,” in Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms. So-
ciety for Industrial and Applied Mathematics, 2010.

[3] Hadoop, “Apache hadoop.” [Online]. Available:
http://hadoop.apache.org

[4] Z. Xiao and Y. Xiao, “Accountable mapreduce in cloud
computing,” in SCNC 2011.

[5] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for mapreduce,” in Proceedings
of the 7th USENIX conference on Networked systems design
and implementation. USENIX Association, 2010.

[6] W. Wei, J. Du, T. Yu, and X. Gu, “Securemr: A service
integrity assurance framework for mapreduce,” in Computer
Security Applications Conference, 2009.

[7] P. Golle and I. Mironov, “Uncheatable distributed computa-
tions,” Topics in Cryptology—CT-RSA 2001.

[8] D. Szajda, B. Lawson, and J. Owen, “Hardening functions
for large scale distributed computations,” In Proceedings of
IEEE Symposium on Security and Privacy, May 2003.

[9] P. Golle and S. Stubblebine, “Secure distributed computing
in a commercial environment,” in Financial Cryptography.
Springer, 2002.

[10] D. Szajda, B. Lawson, and J. Owen, “Toward an optimal
redundancy strategy for distributed computations,” in Cluster
Computing, 2005. IEEE International. IEEE, 2005.

[11] S. Zhao, V. Lo, and C. Dickey, “Result verification and trust-
based scheduling in peer-to-peer grids,” in Proc. Fifth IEEE
Intl Conf. Peer-to-Peer Computing (P2P 05), Sept. 2005.

[12] Wikipedia, “Substitution cipher.” [Online]. Available:
http://en.wikipedia.org/wiki/Substitution cipher

[13] M. de Kunder, “Daily estimated size of the world wide
web.” [Online]. Available: www.worldwidewebsize.com

[14] S. Brin and L. Page, “The anatomy of a large-scale hyper-
textual web search engine,” Computer Networks and ISDN
Systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web.” Stanford
Digital Library Technologies Project, Tech. Rep., 1998.

[16] A. Jamakovic and S. Uhlig, “On the relationships between
topological measures in real-world networks,” Networks and
Heterogeneous Media, vol. 3, no. 2, p. 345, 2008.


