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Abstract—Gang migration refers to the simultaneous live
migration of multiple Virtual Machines (VMs) from one set
of physical machines to another in response to events such as
load spikes and imminent failures. Gang migration generates
a large volume of network traffic and can overload the core
network links and switches in a datacenter. In this paper, we
present an approach to reduce the network overhead of gang
migration using global deduplication (GMGD). GMGD identifies
and eliminates the retransmission of duplicate memory pages
among VMs running on multiple physical machines in the cluster.
We describe the design, implementation and evaluation of a
GMGD prototype using QEMU/KVM VMs. Evaluations on a 30-
node Gigabit Ethernet cluster having 10GigE core links shows
that GMGD can reduce the network traffic on core links by up
to 65% and the total migration time of VMs by up to 42% when
compared to the default migration technique in QEMU/KVM.
Furthermore, GMGD has a smaller adverse performance impact
on network-bound applications.

I. INTRODUCTION

Live migration of a virtual machine (VM) refers to the

transfer of a running VM over the network from one physical

machine to another. Within a local area network (LAN),

live VM migration mainly involves the transfer of the VM’s

CPU and memory state, assuming that the VM uses network

attached storage, which does not require migration. Some of

the key metrics to measure the performance of VM migration

are as follows.

• Total migration time is the time from the start of migra-

tion at the source to its completion at the target.

• Downtime is the duration for which a VM’s execution is

suspended during migration.

• Network traffic overhead is the additional network traffic

due to VM migration.

• Application degradation is the adverse performance im-

pact of VM migration on applications running anywhere

in the cluster.

We address gang migration [8], i.e. the simultaneous live

migration of multiple VMs that run on multiple physical

machines in a cluster. The cluster is assumed to have a high-

bandwidth low-delay interconnect such has Gigabit Ether-

net [10], 10GigE [9], or Infiniband [15]. Datacenter adminis-

trators may need to perform gang migration to handle resource

re-allocation for peak workloads, imminent failures, cluster

maintenance, or powering down of several physical machines

to save energy.

This paper specifically focuses on reducing the network

traffic overhead due to gang migration. Since gang migration

can transfer hundreds of Gigabytes of data over the network,

it can overload the core links and switches of the datacenter

network. Gang migration can also adversely affect the per-

formance at the network edges where the migration traffic

competes with the bandwidth requirements of applications

within the VMs. Reducing the network traffic overhead can

also indirectly reduce the total time for migrating multiple

VMs and the application degradation, depending upon how

the traffic reduction is achieved.

Our approach to reduce the network traffic overhead uses the

following observation. VMs within a cluster often have similar

memory content, given that they may execute the same oper-

ating system, libraries, and applications. Hence, a significant

number of their memory pages may be identical [26], [30].

One can reduce the network overhead of gang migration using

deduplication, i.e. by avoiding the transmission of duplicate

copies of identical pages. We present an approach called gang

migration using global (cluster-wide) deduplication (GMGD).

During normal execution, a duplicate tracking mechanism

keeps track of identical pages across different VMs in the

cluster. During gang migration, a distributed coordination

mechanism suppresses the retransmission of identical pages

over the core links. Specifically, only one copy of each

identical page is transferred to a target rack (i.e. the rack where

a recipient physical machine for a VM resides). Thereupon, the

machines within each target rack coordinate the exchange of

necessary pages. In contrast to GMGD, gang migration using

local deduplication (GMLD) [8] suppresses the retransmission

of identical pages from among VMs within a single host. Our

main contributions are as follows:

• We present a technique to identify and track identical

memory pages across VMs running on different physical

machines in a cluster, including non-migrating VMs

running on the target machines.

• We present a technique to deduplicate these identical

pages during gang migration, while keeping the coordi-

nation overhead low.

• We describe a prototype implementation of GMGD on

the QEMU/KVM [18] platform.

• We evaluate GMGD on a 30-node cluster testbed hav-

ing three switches, 10GigE core links and 1Gbps edge

links. We compare GMGD against two techniques – the

QEMU/KVM’s default live migration technique, which

we call online compression (OC), and GMLD.



Prior efforts to reduce the data transmitted during VM

migration have focused on live migration of a single VM [5],

[20], [13], [16], live migration of multiple VMs running on

the same physical machine (GMLD) [8], live migration of

a virtual cluster across a wide-area network (WAN) [22], or

non-live migration of multiple VM images across a WAN [17].

Compared to GMLD, GMGD faces the additional challenge

of ensuring that the cost of global deduplication does not

exceed the benefit of network traffic reduction during live

migration. In contrast to migration over a WAN, which has

high-bandwidth high-delay links, we focus on migration within

a datacenter LAN, which has high-bandwidth low-delay links.

This difference is important because hash computations, which

are used to identify and deduplicate identical memory pages,

are CPU-intensive operations. When migrating over a LAN,

hash computations become a serious bottleneck if performed

online during migration, whereas over a WAN, the large round-

trip latency can mask the online hash computation overhead.

The rest of the paper is organized as follows. Section II

and III describes the design and implementation of GMGD

respectively. Section IV compares the performance of GMGD

against OC and GMLD. Section V presents related work.

Section VI concludes with a summary of contributions.

II. ARCHITECTURE OF GMGD

In this section, we describe the high-level architecture of

GMGD. For simplicity of exposition, we first describe how

GMGD operates when VMs are live migrated from one rack

of machines to another rack, followed by a description of its

operation in the general case. For each VM being migrated,

the target physical machine is provided as an input to GMGD.

Target mapping of VMs could be provided by another VM

placement algorithm that maximizes some optimization crite-

ria such as reducing inter-VM communication overhead [27] or

maximizing the memory sharing potential [29]. GMGD does

not address the VM placement problem nor does it assume the

lack or presence of any inter-VM dependencies.

As shown in Figure 1, a typical cluster consists of multiple

racks of physical machines. Machines within a rack are con-

nected to a top-of-the-rack (TOR) switch. TOR switches are

connected to one or more core switches using high-bandwidth

links (typically 10Gbps or higher). GMGD does not preclude

the use of other layouts where the core network could become

overloaded.

Migrating VMs from one rack to another increases the

network traffic overhead on the core links. To reduce this

overhead, GMGD employs a cluster-wide deduplication mech-

anism to identify and track identical pages across VMs running

on different machines. As illustrated in Figure 1, GMGD

identifies the identical pages from VMs that are being migrated

to the same target rack and transfers only one copy of each

identical page to the target rack. At the target rack, the first

machine to receive the identical page transfers the page to

other machines in the rack that also require the page. This

prevents duplicate transfers of an identical page over the core

network to the same target rack.
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Fig. 1: Illustration of GMGD. Page P is identical among all four
VMs at the source rack. VM1 and VM3 are being migrated to
target rack 1. VM2 and VM4 are being migrated to target rack
2. One copy of P is sent to host 5 which forwards P to host 6 in
target rack 1. Another copy of P is sent to host 9 which forwards
P to host 8 in target rack 2. Thus identical pages headed for same
target rack are sent only once per target rack over core network.

In our prototype, we implemented GMGD within the default

pre-copy mechanism in QEMU/KVM. The pre-copy [5] VM

migration technique transfers the memory of a running VM

over the network by performing iterative passes over its

memory. Each successive round transfers the pages that were

dirtied by the VM in the previous iteration. Such iterations

are carried out until very small number of dirty pages are

left to be transferred. Given the throughput of the network, if

the time required to transfer the remaining pages is smaller

than a pre-determined threshold, the VM is paused and its

CPU state and the remaining dirty pages are transferred. Upon

completion of this final phase the VM is resumed at the target.

For GMGD each VM is migrated independently with the pre-

copy migration technique. Although our GMGD prototype is

based on pre-copy VM migration, nothing in its architecture

prevents GMGD from working with other live VM migration

technique such as post-copy [13].

We next describe two phases of GMGD, namely duplicate

tracking and live migration.

A. Duplicate Tracking Phase

This phase is carried out during the normal execution of

VMs at the source machines before the migration begins. Its

purpose is to identify all duplicate memory content (presently

at the page-level) across all VMs residing on different ma-

chines. We use content hashing to detect identical pages. The

pages having the same content yield the same hash value.

When the hashing is performed using a standard 160-bit

SHA1 hash [12], the probability of collision is less than the

probability of an error in memory or a TCP connection [4].

In each machine, a per-node controller process coordinates

the tracking of identical pages among all VMs in the machine.

The per-node controller instructs a user-level QEMU/KVM

process associated with each VM to scan the VM’s memory



image, perform content based hashing and record identical

pages. Since each VM is constantly executing, some of the

identical pages may be modified (dirtied) by the VM, either

during the hashing, or after its completion. To identify these

dirtied pages, the controller uses the dirty logging mode of

QEMU/KVM. In this mode, all VM pages are marked as read-

only in the shadow page table maintained by the hypervisor.

The first write attempt to any read-only page results in a trap

into the hypervisor which marks the faulted page as dirty

in its dirty bitmap and allows the write access to proceed.

The QEMU/KVM process uses a hypercall to extract the dirty

bitmap from KVM to identify the modified pages.

The per-rack deduplication servers maintain a hash table,

which is populated by carrying out a rack-wide content

hashing of the 160-bit hash values pre-computed by per-node

controllers. Each hash is also associated with a list of hosts in

the rack containing the corresponding pages. Before migration,

all deduplication servers exchange the hash values and host list

with other deduplication servers.

B. Migration Phase

In this phase, all VMs are migrated in parallel to their

destination machines. The pre-computed hashing information

is used to perform the deduplication of the transferred pages

at both the host and the rack levels. QEMU/KVM queries

the deduplication server for its rack to acquire the status of

each page. If the page has not been transferred already by

another VM, then its status is changed to sent and it is trans-

ferred to the target QEMU/KVM. For subsequent instances

of the same page from any other VM migrating to the same

rack, QEMU/KVM transfers the page identifier. Deduplication

servers also periodically exchange the information about the

pages marked as sent, which allows the VMs in one rack to

avoid retransmission of the pages that are already sent by the

VMs from another rack.

C. Target-side VM deduplication

The racks used as targets for VM migration are often

not empty. They may host VMs containing pages that are

identical to the ones being migrated into the rack. Instead of

transferring such pages from the source racks via the core

links, they are forwarded within the target rack from the hosts

running the VMs to the hosts receiving the migrating VMs.

The deduplication server at the target rack monitors the pages

within hosted VMs and synchronizes this information with

other deduplication servers. Per-node controllers perform this

forwarding of identical pages among hosts in the target rack.

D. Reliability

When a source host fails during migration, the reliability

of GMGD is no worse than that of single-VM pre-copy in

that only the VMs running on the failed source hosts will

be lost, whereas other can continue migrating successfully.

However, when a target host fails during migration, more

VMs may suffer collateral damage using GMGD than using

single-VM pre-copy. This is because the failed target host in

GMGD may hold pages that are required by VMs migrating

to other machines in the target rack. GMGD can be modified

to solve this problem by resending copies of the lost pages

from respective source hosts when a target host fails.

III. IMPLEMENTATION DETAILS

We implemented a prototype of GMGD in the QEMU/KVM

virtualization environment. Our implementation is completely

transparent to the users of the VMs. With QEMU/KVM, each

VM is spawned as a process on a host machine. A part of the

virtual address space of the QEMU/KVM process is exported

to the VM as its physical memory.

A. Per-node Controllers

Per-node controllers are responsible for managing the dedu-

plication of outgoing and incoming VMs. We call the con-

troller component managing the outgoing VMs as the source

side and component managing the incoming VMs as the target

side. The controller sets up a shared memory region that is

accessible only by other QEMU/KVM processes. The shared

memory contains a hash table which is used for tracking

identical pages. Note that the shared memory poses no security

vulnerabilities because it is outside the physical memory

region of the VM in the QEMU/KVM process’ address space

and is not accessible by the VM itself.

The source side of the per-node controller coordinates the

local deduplication of memory among co-located VMs. Each

QEMU/KVM process scans its VM’s memory and calculates

a 160-bit SHA1 hash for each page. These hash values are

stored in the hash table, where they are compared against each

other. A match of two hash values indicates the existence of

two identical pages. Scanning is performed by a low priority

thread to minimize interference with the VMs’ execution.

The target side of the per-node controller receives incoming

identical pages from other controllers in the rack. It also

forwards the identical pages received on behalf of other

machines in the rack to their respective controllers. Upon

reception of an identical page, the controller copies the page

into the shared memory region, so that it becomes available to

incoming VMs. The shared memory region is freed once the

migration is complete.

B. Deduplication Server

Deduplication servers are to per-node controllers what per-

node controllers are to VMs. Each rack contains a dedupli-

cation server that tracks the status of identical pages among

VMs that are migrating to the same target rack and the VMs

already at the target rack. Deduplication servers maintain a

content hash table to store this information. Upon reception

of a 160-bit hash value from the controllers, the last 32-bits

of the 160-bit hash are used to find a bucket in the hash table.

In the bucket, the 160-bit hash entry is compared against the

other entries present. If no matching entry is found, a new

entry is created.

Each deduplication server can currently process up to

200,000 queries per second over a 1Gbps link. This rate can



potentially handle simultaneous VM migrations from up to

180 physical hosts. For context, common 19-inch racks can

hold 44 servers of 1U (1 rack unit) height [25]. We have also

built a certain level of scalability into the deduplication server

by using multiple threads for query processing, fine-grained

reader/writer locks, and batching queries from VMs to reduce

the frequency of communication with the deduplication server.

Finally, the deduplication server does not need to be a

separate server per rack. It can potentially run as a background

process within one of the machines in the rack that also runs

VMs provided that a few spare CPU cores are available for

processing during migration.
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Fig. 2: Deduplication of identical pages during migration.

C. Operations at the Source Machine

Upon initiating simultaneous migration of VMs, the con-

trollers instruct individual QEMU/KVM processes to begin

the migration. From this point onward, the QEMU/KVM

processes communicate directly with the deduplication servers,

without any involvement from the controllers. After commenc-

ing the migration, each QEMU/KVM process starts transmit-

ting every page of its respective VM. For each page it checks

in the local hash table whether the page has already been

transferred. Each migration process periodically queries its

deduplication server for the status of next few pages it is about

to transfer. The responses from the deduplication server are

stored into the hash table, in order to be accessible to the

other co-located VMs. If the QEMU/KVM process discovers

that a page has not been transferred, then it transmits the

entire page to its peer QEMU/KVM process at the target

machine along with its unique identifier. QEMU/KVM at the

source also retrieves from the deduplication server a list of

other machines in the target rack that need an identical page.

This list is also sent to the target machine’s controller, which

then retrieves the page and sends it to the machines in the

list. Upon transfer the page is marked as sent in the source

controller’s hash table. The QEMU/KVM process periodically

updates its deduplication server with the status of the sent

pages. The deduplication server also periodically updates other

deduplication servers with a list of identical pages marked as

sent. Dirty pages and unique pages that have no match with

other VMs are transferred in their entirety to the destination.

Figure 2 shows the message exchange sequence between the

deduplication servers and QEMU/KVM processes for an inter-

host deduplication of page P .

D. Operations at the Target Machine

On the target machine each QEMU/KVM process allocates

a memory region for its respective VM where incoming pages

are copied. Upon reception of an identical page, the target

QEMU/KVM process copies it into the VM’s memory and

inserts it into the target hash table according to its identifier.

If only an identifier is received, a page corresponding to the

identifier is retrieved from the target hash table, and copied

into the VM’s memory. Unique and dirty pages are directly

copied into the VMs’ memory space. They are not copied to

the target shared memory.

E. Remote Pages

Remote pages are deduplicated pages that were transferred

by hosts other than the source host. Identifiers of such pages

are accompanied by a remote flag. Such pages become

available to the waiting hosts in the target rack only after the

carrying host forwards them. Therefore, instead of searching

for such remote pages in the target hash table immediately

upon reception of an identifier, the identifier and the address

of the page are inserted into a per-host waiting list. A per-

QEMU/KVM process thread, called a remote thread, peri-

odically traverses the list, and checks for each entry if the

page corresponding to the identifier has been added into the

target shared memory. The received pages are copied into

the memory of the respective VMs after removing the entry

from the list. Upon reception of a more recent dirtied copy

of the page whose entry happens to be on the waiting list,

the corresponding entry is removed from the list to prevent

the thread from over-writing the page with its stale copy.

The identical pages already present at the target rack before

the migration are also treated as the remote pages. The per-

node controllers in the target rack forward such pages to the

listed target hosts. This avoids their transmission over the core

network links from the source racks. However, pages dirtied

by VMs running in the target rack are not forwarded to other

hosts and they are requested by the corresponding hosts from

their respective source hosts.

F. Co-ordinated Downtime Start

A VM cannot be resumed at the target unless all of its pages

have been received. Therefore initiating the VM’s downtime

before completing target-to-target transfers can increase its

downtime. However, in the default QEMU/KVM migration

technique, downtime is started at the source’s discretion and

the decision is made solely on the basis of the number of

pages remaining to be transferred and the perceived link

bandwidth at the source. Therefore, to avoid the overlap

between the downtime and target-to-target transfers, we imple-

ment a co-ordination mechanism between the source and the



target of each QEMU/KVM process. We prevent the source

QEMU/KVM process from starting the VM downtime and

keep it in the live pre-copy iteration mode until all of its pages

have been retrieved at the target and copied into memory.

Thereon, the source is instructed by the target to initiate the

downtime. This allows VMs to reduce their downtime, as only

the remaining dirty pages at the source are transferred during

the downtime. While the source side waits for a permission to

initiate the downtime, the VM may dirty more pages. Hence,

depending on its dirtying rate, the transfer of additional dirty

pages may lead to an increase in the amount of data transferred

and hence the total migration time.

G. Desynchronizing page transfers

We also implemented an optimization to improve the effi-

ciency of deduplication. There is a small time lag between the

transfer of an identical page by a VM and the status of the page

being reflected at the deduplication server. This lag can result

in duplicate transfer of some identical pages if two largely

identical VMs start migration at the same time and transfer

their respective memory pages in the same order of page

offsets. To reduce the likelihood of such duplicate transfers,

each VM transfers pages in different order depending upon

their assigned VM number. With desynchronization, identical

memory regions from different VMs are transferred at different

times, allowing each QEMU/KVM process enough time to

update the deduplication servers about the sent pages before

other VMs transfer the same pages.

IV. EVALUATION

We evaluated GMGD in a 30-node cluster testbed having

high-bandwidth low-delay Gigabit Ethernet. Each physical

host has two quad-core 2GHz CPUs, 16GB of memory, and

1Gbps network card. Figure 3 shows the layout of the cluster

testbed consisting of three racks, each connected to a different

top of rack (TOR) Ethernet switch. The TOR switches are

connected to each other by a 10GigE optical link, which acts

as the core link. Although we had only the 30-node three-

rack topology available for evaluation, GMGD can be used

on larger topologies. Live migration of all VMs is initiated

simultaneously and memory pages from the source hosts

traverse the 10GigE optical link between the switches to reach

the target hosts. For most of the experiments, each machine

hosts four VMs and each VM has 2 virtual CPUs (VCPUs)

and 1GB memory. We compare GMGD against the following

VM migration techniques.

(1) Online Compression (OC): This is the default VM mi-

gration technique used by QEMU/KVM. Before transmission,

it compresses pages that are filled with uniform content (pri-

marily pages filled with zeros) by representing the entire page

with just one byte. At the target, such pages are reconstructed

by filling an entire page with the same byte. Other pages are

transmitted in their entirety to the destination.

(2) Gang Migration with Local Deduplication (GMLD):

[8] This technique uses content hashing to deduplicate the

pages across VMs co-located on the same host. Only one copy

of identical pages is transferred from the source host.

In our initial implementations of GMGD prototype, we

considered the use of online hashing, in which hash compu-

tation and deduplication are performed during migration (as

opposed to before migration). Hash computation is a CPU-

intensive operation. In our evaluations, we found that the

online hashing variant performed very poorly, in terms of

total migration time, on high-bandwidth low-delay Gigabit

Ethernet. For example, online hashing takes 7.3 seconds to

migrate a 1GB VM and 18.9 seconds to migrate a 4GB

VM, whereas offline hashing takes only 3.5 seconds and 4.5

seconds respectively. We found that CPU-heavy online hash

computation became a performance bottleneck and, in fact,

yielded worse total migration times than even the simple

OC technique described above. Given that the total migration

time of online hashing variant is considerably worse than

offline hashing while achieving only comparable savings in

network traffic, we omit the results for online hashing in the

experiments below.

A. Network Load Reduction

1) Idle VMs: Here we migrate an equal number of VMs

from each of the two source racks, i.e. for 12 x 4 configuration,

4 VMs are migrated from each of the 6 hosts on each source

rack. Figure 4 shows the amount of data transferred over

the core links for the three VM migration schemes with an

increasing number of hosts, each host running four 1GB idle

VMs. Since every host runs identical VMs, the addition of

each host contributes a fixed number of unique and identical

pages. Therefore for all three techniques we observe the linear

trend. Among them, since OC only optimizes the transfer of

uniform pages, a set that mainly consists of zero pages, it

transfers the highest amount of data. GMLD also deduplicates

zero pages in addition to the identical pages across the co-

located VMs. As a result, it sends less data than OC. GMGD

transfers the lowest amounts of data. For 12 hosts, GMGD

transfers 65% and 33% less data through the core links than

OC and GMLD respectively.

2) Busy VMs: To evaluate the effect of busy VMs on the

amount of data transferred during their migration, we run

Dbench [6], a filesystem benchmark, inside VMs. Dbench

performs file I/O on a network attached storage. It provides an

adversarial workload for GMGD because it uses the network

interface for communication and DRAM as a buffer. We

initiate the execution of Dbench after the deduplication phase

of GMGD to ensure that the memory consumed by Dbench

is not deduplicated. We migrate the VMs while execution of

Dbench is in progress. Figure 5 shows that GMGD yields up

to 59% reduction in the amount of data transferred over OC

and up to 27% reduction over GMLD.

B. Total Migration Time

1) Idle VMs: To measure the total migration time of dif-

ferent migration techniques, we measure the end-to-end (E2E)

total migration time, i.e. the time taken from the start of the

migration of the first VM to the end of the migration of the

last VM. Cluster administrators may be concerned with E2E
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when migrating busy VMs.

Hosts x VMs
Idle VMs Busy VMs

OC GMLD GMGD OC GMLD GMGD

2x4 7.28 3.79 3.88 8.6 5.17 4.93

4x4 7.36 3.89 4.08 8.74 5.10 5.06

6x4 7.39 3.92 4.17 8.69 5.15 5.01

8x4 7.11 4.12 4.16 8.77 5.13 4.90

10x4 7.38 4.08 4.27 8.75 5.18 4.91

12x4 7.40 4.05 4.27 8.53 5.06 4.98

TABLE I: Total migration time (in seconds)

total migration time of groups of VMs since it measures the

time for which the migration traffic occupies the core links.

The idle VM section of Table I shows the total migration time

for each migration technique with an increasing number of

hosts containing idle VMs. Note that even with the maximum

number of hosts (i.e. 12 with 6 from each source rack), the

core optical link remains unsaturated. Therefore, for each

migration technique we observe nearly constant total migration

time, irrespective of the number of hosts. Further, among all

three techniques, OC has highest total migration time for any

number of hosts, which is proportional to the amount of data

it transfers. GMGD’s total migration time is slightly higher

than that of GMLD, approximately 5% higher for 12 hosts.

The difference between the total migration time of GMGD

and GMLD can be attributed to the overhead associated with

GMGD for performing deduplication across the hosts. While

the migration is in progress, it queries with the deduplication

server to read, or update the status of deduplicated pages. Such

requests need to be sent frequently for effective deduplication.

2) Busy VMs: Table I shows that Dbench increases the total

migration time of all the VM migration techniques compared

to their idle VM migration times. Since the Dbench traffic

competes with the migration traffic for the source NIC, the

total migration time of each technique is proportional to the

amount of data it transfers. Therefore GMGD’s total migration

time is slightly lower than that of GMLD.

C. Downtime

Figure 6 shows that increasing the number of hosts does

not have a significant impact on the downtimes for all three

schemes. This is because each VM’s downtime is initiated

independently of other VMs. Downtime of all the techniques

is in the range of 90ms to 120ms.

D. Background Traffic

In datacenters the switches along the migration path of

VMs may experience network traffic other than the VM

migration traffic. In overloaded switches, the VM migration

traffic may impact the performance of applications running

across the datacenter, and vice versa. We first compare the

effect of background network traffic on different migration

techniques. Conversely, we also compare the effect of different

migration techniques on other network-bound applications in

the cluster. For this experiment, we saturate the 10GigE core

link between the switches with VM migration traffic and

background network traffic. We transmit 8Gbps of background

Netperf [2] UDP traffic between two source racks such that it

competes with the VM migration traffic on the core link.

Figure 7 shows the comparison of total migration time with

UDP background traffic for the aforementioned setup. With an

increasing number of VMs and hosts, the network contention

and packet loss on the two 10GigE core links also increases.

We observe larger total migration time for all three techniques

compared to the corresponding idle VM migration times listed

in Table I. However, observe that GMGD has lower total

migration time than both OC and GMLD, in contrast to Table I

where GMGD had higher TMT compared to GMLD. This is

because, in response to packet loss at the core link, all VM

migration sessions (which are TCP flows) backoff. However,

the backoff is proportional to the amount of data transmitted

by each VM migration technique. Since GMGD transfers

less data, it suffers less from TCP backoff due to network

congestion and completes the migration faster. Figure 8 shows

the converse effect, namely, the impact of VM migration on

the performance of Netperf. With an increasing number of

migrating VMs, Netperf UDP packet losses increase due to

network contention. For 12 hosts, GMGD receives 15% more

packets than OC and 7% more UDP packets than GMLD.

E. Application Degradation

Table II compares the degradation of applications running

inside the VMs during migration using 12x4 configuration.

Sysbench: Here we evaluate the impact of migration on

the performance of I/O operations from VMs in the above

scenario. We host a Sysbench [24] database on a machine

located outside the source racks and connected to the switch

with a 1Gbps Ethernet link. Each VM performs transactions on

the database over the network. We migrate the VMs while the
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Fig. 8: Background traffic perfor-
mance.

Benchmarks W/o Migration OC GMLD GMGD

Sysbench (trans/sec) 31.08 19.32 22.25 26.15

TCP-RR (trans/sec) 1271.6 515.7 742.7 888.33

Sum of Subsets (sec) 6.68 7.07 7.07 7.06

TABLE II: Application degradation in migrating 48 VMs.

benchmark is in progress to observe the effect of migration on

the performance of the benchmark. Table II shows the average

transaction rate per VM for Sysbench.

TCP RR: We used the Netperf TCP RR VM workload to

analyze the effect of VM migration on the inter-VM communi-

cation. TCP RR is a synchronous TCP request-response test.

We use 24 VMs from 6 hosts as senders, and 24 VMs from

the other 6 hosts as receivers. We migrate the VMs while the

test is in progress and measure the performance of TCP RR.

Table II shows the average transaction rate per sender VM.

Due to the lower amount of data transferred through the source

NICs, GMGD keeps the NICs available for the inter-VM

TCP RR traffic. Consequently, it least affects the performance

of TCP RR and gives the highest number of transactions per

second among the three.

Sum of Subsets: is a CPU-intensive workload that, given

a set of integers and an integer k, finds a non-empty subset

that sum to k. We run this program in the VMs during their

migration to measure the average per-VM completion time of

the program. Due to the CPU-intensive nature of the workload,

the difference in the completion time of the application with

the three migration techniques is insignificant.

F. Performance Overheads

Duplicate Tracking: Low priority threads perform hash

computation and dirty-page logging in the background. With

4 VMs and 8 cores per machine, a CPU-intensive workload

(sum of subsets) experienced 0.4% overhead and a write-

intensive workload (random writes to memory) experienced

2% overhead. With 8 VMs per machine, the overheads were

6% and 4% respectively due to CPU contention.

Worst-case workload: To evaluate the VM migration

techniques against a worst-case workload, we run a write-

intensive workload inside VMs that reduces the likelihood of

deduplication by modifying two times as much data as the

size of each VM. We observe that GMGD does not introduce

any additional overheads, compared against OC and GMLD.

Space overhead: At the source side, the shared memory

region for local deduplication contains a 160-bit hash value

for each VM page. In the worst case when all VM pages are

unique, the source side space consumption is around 4% of

the aggregate memory of VMs. At the target side, the worst-

case space overhead in the shared memory could be 100%

the aggregate memory of VMs when each page has exactly

one identical counterpart on another host. However, target

shared memory only contains identical pages. Unique pages

are directly copied into VMs’ memories, so they do not incur

any space overhead. Further, both the source and the target

shared memory areas are used only during the migration and

are freed after the migration completes.

V. RELATED WORK

Two lines of research are related to our work – content

deduplication among VMs and optimization of VM migration.

Deduplication has been used to reduce the memory footprint

of VMs in [3], [26], [19], [1], [29] and [11]. These techniques

use deduplication to reduce memory consumption either within

a single VM or between multiple co-located VMs. In contrast,

we use cluster-wide deduplication across multiple physical

machines to reduce the network traffic overhead when simul-

taneously migrating multiple VMs.

Non-live migration of a single VM can be speeded up

by using content hashing to detect blocks within the VM

image that are already present at the destination [23]. VM-

Flock [17] speeds up the non-live migration of a group of VM

images over a high-bandwidth high-delay wide-area network

by deduplicating blocks across the VM images. In contrast,

we focus on reducing the network performance impact of the

live and simultaneous migration of the memories of multiple

VMs within a high-bandwidth low-delay datacenter network.

Cloudnet [28] optimizes the live migration of a single VM

over wide-area network. It reduces the number of pre-copy

iterations by starting the downtime based on page dirtying rate

and page transfer rate. [31] and [28] further use page-level

deduplication along with the transfer of differences between

dirtied and original pages, eliminating the need to retransmit

the entire dirtied page. [16] uses an adaptive page compression

technique to optimize the live migration of a single VM.

Post-copy [13] transfers every page to the destination only

once, as opposed to the iterative pre-copy [20], [5], which



transfers dirtied pages multiple times. [14] employs low-

overhead RDMA over Infiniband to speed up the transfer of

a single VM. [21] excludes the memory pages of processes

communicating over the network from being transferred during

the initial rounds of migration, thus limiting the total migration

time. [30] shows that there is an opportunity and feasibility

for exploiting large amounts of content sharing when using

certain benchmarks in high performance computing.

In the context of live migration of multiple VMs, our prior

work on GMLD [8] deduplicates the transmission of identical

memory content among VMs co-located within a single host.

It also exploits sub-page level deduplication, page similarity,

and delta difference for dirtied pages, all of which can be

integrated in our GMGD prototype. Shrinker [22] migrates

virtual clusters over high-delay links of WAN. It uses an

online hashing mechanism in which hash computation for

identifying duplicate pages (a CPU-intensive operation) is

performed during the migration. The large round-trip latency

of the WAN link masks the hash computation overhead dur-

ing migration. We chose offline hashing, rather than online

hashing, because we found online hashing to be impractical

over low-delay links such as those in a Gigabit Ethernet LAN.

In addition, issues such as desynchronizing page transfers,

downtime synchronization, and target-to-target transfers need

special consideration in a low-delay network. Further, when

migrating a VM between datacenters over WAN, the internal

topology of the datacenters may not be relevant. However,

when migrating within a datacenter (as with GMGD), the

datacenter switching topology and rack-level placement of

nodes play important roles in reducing the traffic on core links.

Our preliminary results on this topic were published in a

workshop paper [7] that focused upon the migration of mul-

tiple VMs between two-racks. This paper presents the com-

prehensive design, implementation, and evaluation of GMGD

for a general cluster topology and also includes additional

optimizations such as better downtime synchronization, im-

proved target-to-target transfer, greater concurrency within the

deduplication servers and per-node controllers, and more in-

depth evaluations on a larger 30-node testbed.

VI. CONCLUSIONS

We presented gang migration with global deduplication

(GMGD) – a solution to reduce the network load resulting

from the simultaneous live migration of multiple VMs within

a datacenter that has high-bandwidth low-delay interconnect.

Our solution employs cluster-wide deduplication to identify,

track, and avoid the retransmission of identical pages over

core network links. Evaluations on a 30-node testbed show that

GMGD reduces the amount of data transferred over the core

links during migration by up to 65% and the total migration

time by up to 42% compared to online compression.
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