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Abstract—Hadoop has become the de-facto large-scale data
processing framework for modern analytics applications. A major
obstacle for sustaining high performance and scalability in
Hadoop is managing the data growth while meeting the ever
higher I/O demand. To this end, a promising trend in storage
systems is to utilize hybrid and heterogeneous devices — Solid
State Disks (SSD), ramdisks and Network Attached Storage
(NAS), which can help achieve very high I/O rates at acceptable
cost. However, the Hadoop Distributed File System (HDFS) that
is unable to exploit such heterogeneous storage. This is because
HDFS works on the assumption that the underlying devices
are homogeneous storage blocks, disregarding their individual
I/O characteristics, which leads to performance degradation.
In this paper, we present hatS, a Heterogeneity-Aware Tiered
Storage, which is a novel redesign of HDFS into a multi-tiered
storage system that seamlessly integrates heterogeneous storage
technologies into the Hadoop ecosystem. hatS also proposes data
placement and retrieval policies, which improve the utilization
of the storage devices based on their characteristics such as I/O
throughput and capacity.

We evaluate hatS using an actual implementation on a
medium-sized cluster consisting of HDDs and two types of
SSDs (i.e., SATA SSD and PCIe SSD). Experiments show that
hatS achieves 32.6% higher read bandwidth, on average, than
HDFS for the test Hadoop jobs (such as Grep and TestDFSIO)
by directing 64% of the I/O accesses to the SSD tiers. We
also evaluate our approach with trace-driven simulations using
synthetic Facebook workloads, and show that compared to the
standard setup, hatS improves the average I/O rate by 36%,
which results in 26% improvement in the job completion time.

Keywords-Tiered storage; Hadoop Distributed File System
(HDFS); data placement and retrieval policy.

I. INTRODUCTION

In recent years, the implementation of MapReduce [10]

in Hadoop [2] has emerged as an efficient framework that

is being extensively deployed to support a variety of big-

data applications [3], [13], [22]. The main challenge faced

by researchers and IT practitioners in sustaining Hadoop is

how to evolve the underlying storage and I/O infrastructure to

deal with the exponentially growing data volumes, and to do

so in an economically viable fashion.

A promising trend in storage technologies is the emergence

of heterogeneous and hybrid storage systems [38], [26], [5],

[4] that employ different types of storage devices, e.g., SSDs,

ramdisks, etc. Moreover, the networking infrastructure band-

width is growing at a pace that is an order of magnitude

higher than the I/O bandwidth improvements in hard disk

drives (HDDs) [9]. The two trends are enabling realization

of distributed, hierarchical, hybrid and heterogeneous storage

solutions that are efficient and cost effective, e.g., Hystor [5]

and ConquestFS [35]. These systems typically integrate HDDs

with fast emerging storage mediums, e.g., ramdisks, SSDs, etc.

The faster storage serves as a buffer for frequently accessed

data and yields very high I/O rates, while the HDDs store the

infrequently accessed data and provide cheap high-capacity

storage for the large data volumes.

TABLE I
SPECIFICATIONS OF DIFFERENT STORAGE DEVICES USED IN THE HDFS

TEST, AND THE FRACTION OF TOTAL READS (Grep) AND WRITES

(TeraGen) SERVICED BY EACH.

Device
Type

Write BW
MB/s

Read BW
MB/s

IOPS # of
devices

% of
writes

% of
Reads

PCIe SSD 245 533 70k 3 7 6
SATA SSD 139 191 25k 9 16 27

HDD 46 61 3.5k 27 77 67

Inspite of the above developments, it is a challenge to lever-

age advanced storage solutions in the context of Hadoop. This

is because the Hadoop Distributed File System (HDFS) [32]

— that serves as the storage substrate for Hadoop clusters —

is not designed to handle heterogeneous storage. HDFS treats

all the underlying storage components to be comprised of

blocks with same I/O characteristics. Thus data is distributed

uniformly across all the storage devices, irrespective of their

I/O characteristics and capacity, which leads to inefficiencies

and resource wastage. To highlight these problems, we ran two

representative Hadoop applications, TeraGen and Grep [20],

on a 28-node cluster. The cluster storage is provided by two

types of SSDs (PCIe SSD and SATA SSD) and one type of

HDD. The PCIe and the SATA SSDs have a measured IOPS

rate that is 20× (9× random read bandwidth, 5× random write

bandwidth) and 7× (3×, 3×) that of the HDDs, respectively.

Thus, the SSDs are provisioned to serve more requests at a

higher throughput than HDDs. Table I records the percentage

of reads and writes for each device under the test runs. We

observe that even though the faster SSDs were available, the

device characteristics oblivious uniform data distribution of

HDFS leads to a large amount of data stored on the HDDs.

Thus the HDDs serviced 77% and 67% of the accesses for



TeraGen and Grep, respectively. This entails a performance

loss of 72% and 61%, respectively, compared to the ideal case

for the tests where all of the accesses were serviced by the

SSDs that were available for use. This small test shows that

HDFS is unable to exploit the benefits of individual devices

in a hybrid setting.
One way to incorporate emerging storage devices into

Hadoop is to equip the nodes with one type of device only,

e.g. SSD of the same type. However, this is impractical as the

cost per GB of such devices is still far from the economical

storage offered by HDDs, and this cost gap is expected to

remain high in the near future [23]. Thus cluster deployments

are likely to adapt the hybrid approach of using HDDs along

with a variety of storage devices. Moreover, large clusters

typically go trough several upgrade phases [12] during their

lifetime, thus all the nodes can not be expected to have

homogeneous storage performance even if only HDDs are

utilized. Yet another source of heterogeneity is the emergence

of enterprise consolidated storage solutions for Hadoop [29],

[30], [11], [20], which couple node-local storage with network-

attached central storage to provide ease of data management

while sustaining high I/O rates. Thus there is a need for

enhancing the Hadoop storage layer to manage heterogeneity

in the underlying storage systems.
In this paper, we explore the utility of heterogeneous storage

devices in Hadoop and address challenges therein by designing

hatS, a heterogeneity-aware tiered storage for Hadoop. hatS

logically groups all storage devices of the same type across

the nodes into an associated “tier.” A deployment has as many

tiers as the different type of storage devices used, and a node

with multiple types of devices is part of multiple tiers. For

instance, if a deployment consists of nodes with a SSD and

a HDD, all the SSDs across the nodes will become part of a

SSD tier, and similarly all the HDDs will form the HDD tier.

By managing the tiers individually, hatS is able to capture the

heterogeneity and exploit it to achieve high I/O performance.
Contrary to HDFS that only considers network-aware data

placement and retrieval policies, hatS proposes additional

policies to replicate data across tiers in a heterogeneity-aware

fashion. This enhances the utilization of the high-performance

storage devices by efficiently forwarding a greater number

of I/O requests to the faster tier, thus improving overall I/O

performances. To facilitate this, in addition to the standard

HDFS APIs, hatS also provides custom APIs for seamless

data transfer across the tiers and management of stored data in

each tier. These features allow hatS to integrate heterogeneous

storage devices into Hadoop to extract high I/O performance.

Specifically, we make the following contributions in this paper:

• Design and implement hatS, a novel enhancement for

HDFS, which considers storage characteristics as a part

of the property of the associated node, and provides the

ability to distinguish between different types of storage

devices attached to Hadoop DataNodes. This ability can

then be used to match application I/O needs with appro-

priate storage devices.

• Implement data placement and retrieval policies based on
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Fig. 1. HDFS architecture with default data placement policy.

storage device characteristics, which enables utilization of

high speed storage devices in an efficient manner.

• Provide APIs to easily specify application storage needs,

and to move replicas between tiers automatically based

on characteristics such as performance and cost, so as to

extract high I/O performance from the storage system.

• Validate hatS design and techniques therein using in-

depth simulations and experiments on a real deployment.

We evaluated hatS using a deployment on a 28-node Hadoop

cluster equipped with three types of storage devices (Table I).

For each of the studied Hadoop applications, namely TeraGen,

Grep, and TestDFSIO, hatS improved the utilization of the

PCIe SSDs by 91% by servicing 64% more requests from

the SSDs than HDDs. Our analysis of data placement and

retrieval policies on these applications shows that hatS stores

37% more and retrieves 33% more data from the SSDs,

compared to the default HDFS policies. This improves the

read throughput of the storage system by 32.6%. We replay

a publicly available synthetic Facebook production trace in

our simulation framework and observe that hatS improves the

average I/O rate of HDFS by 36% and the overall execution

time for the trace by 26%.

II. BACKGROUND: HADOOP DISTRIBUTED FILE SYSTEM

A node in a Hadoop deployment consists of both compute

processors and directly-attached storage. A small number of

nodes (typically 12 − 24 [12]) are grouped together and

connected with one network switch to form a rack. A Hadoop

cluster may consist of one or more such racks. Figure 1 shows

the architecture of HDFS that provides data management and

storage. The main functions of HDFS are to ensure that tasks

are provided with the needed data, and to protect against

data loss due to failures. HDFS consists of a master data

management component, NameNode, which manages worker

components called DataNodes running on each node. All the

nodes also run corresponding components for task execution,

i.e., JobTracker and TaskTrackers [37].

HDFS divides all stored files into fixed-size blocks (chunks)

and distributes them across DataNodes. Moreover, the system

typically maintains three replicas of each data block, two

placed within the same rack and one on a different rack. Unlike

traditional high-performance computing clusters, all storage

needs are supported by HDFS using node-attached storage,

and no network-attached consolidated storage is necessary

(though may be used for additional backups etc.). Thus,



there are two reasons for using replication in HDFS. First,

Hadoop deployments often consist of less reliable off-the-

shelf commodity machines or are at such a scale that failure

is the norm and not an exception [28]. Replication prevents

data loss due to such node failures. Second, having multiple

copies of a block means that they can be read in parallel,

thus providing higher I/O rates. Replication also improves the

chance of finding a block with better proximity to the node

on which the application is running, thus reducing the network

cost of sending the request across racks [10], [32], [37].

The extant implementation of HDFS considers all storage

devices managed by DataNodes to be homogeneous, irrespec-

tive of the I/O characteristics of the devices [10]. The storage

and retrieval schemes supported by HDFS are optimized

from the perspective of network utilization. When storing

a block, the HDFS client component—that handles the I/O

requests for the application—queries the NameNode for a set

of potential DataNodes on which to store the multiple replicas

of the block [32], [37]. The NameNode normally replies with:

the local machine on which the application instance storing

the block is running, a randomly chosen node on the same

rack that contains the local machine, and a randomly chosen

node from a rack different from the local machine’s. This

policy provides resilience against both node and rack failures.

However, storage availability and other constraints may change

the replica placement, e.g., if a local machine does not have

enough storage space a local replica cannot be generated.

Similarly, for retrieving a file, the client queries the NameNode

for nodes that store a replica of the file blocks, and receives

a DataNode list sorted according to the network proximity to

the client. The client uses the list along with the load on the

DataNodes to select nodes from where to retrieve the blocks.

As highlighted in the example of Table I, HDFS does not

consider storage characteristics in data placement and retrieval.

Thus, if heterogeneous storage devices are employed, the

current implementation will not be able to exploit the full

performance potential of the devices. The new implementation

of HDFS in Hadoop 2.0 [34] continues to face the same

challenges from storage heterogeneity. This is because the

focus in Hadoop 2.0 is to remove central points of failure

by supporting multiple NameNodes and allow for a larger

namespace than was previously possible. However, all storage

on a node is still managed by a single DataNode that has the

implicit homogeneity assumption. Thus, innovation is needed

to enhance and adapt HDFS for emerging storage trends.

III. DESIGN

hatS enhances HDFS for heterogeneous storage devices by

creating a storage hierarchy based on the performance char-

acteristics of the devices, and designing heterogeneity-aware

data placement and retrieval policies that improve overall I/O

performance in Hadoop clusters.

A. System Architecture

Figure 2 shows the overall architecture of hatS. An impor-

tant difference between hatS and HDFS is the design of the
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Fig. 2. hatS architecture overview.

DataNode. In HDFS, each participating node hosts a single

DataNode instance, constituting multiple storage devices, re-

gardless of their characteristics such as supported I/O rates

and capacity. In contrast, each participating node in hatS hosts

multiple DataNode instances, where each instance represents

only one type of storage device. For example, a node with

two HDDs and a SSD will have two DataNodes in hatS, one

associated with the HDDs and the other with the SSD.

All devices of the same type and similar I/O characteristics,

e.g., all similar HDDs, across all the participating nodes are

logically grouped into a virtual storage “tier.” For example, a

tier of HDD Type X will encompass all DataNode instances

in a deployment that are associated with Type X HDDs

attached to the nodes. This enables hatS to not only capture

the unique characteristics of heterogeneous storage devices

but also distinguish between different storage tiers and utilize

them accordingly. To achieve this, we modify the DataNode

to also include a tier identifier as part of its characteristics

specification. At the time of cluster configuration the adminis-

trator specifies the tiers for the DataNodes. We also modify the

NameNode to use tier identifiers to group the DataNodes into

their associated tiers. Each node can be part of multiple tiers

depending on the devices that are attached to it. Moreover, a

tier typically will have only one kind of device; but multiple

kinds, such as HDDs that have only slightly different I/O

characteristics, can also be associated with the same tier at the

administrator’s discretion. The number of DataNodes making

up a tier vary based on the hardware composition of the cluster.

In the example shown in Figure 2, Node 1 has three DataNodes

belonging to three different tiers and Node 5 has only one

DataNode belonging to Tier-3. Tier-1, Tier-2 and Tier-3 have

2, 3 and 5 DataNodes, respectively.

hatS exploits the tier information to strategize when and

where to place replicas of a block. We discuss several data

placement policies in the subsequent section, however, hatS

maintains the invariant that a tier contains all blocks belonging

to a file. This is to avoid dividing a file across a slow and a fast

tier, where the slow tier devices will become the bottleneck

and negate the benefits of the fast devices. Moreover, a tier can

have more than one replica of a file, and a file can be replicated

in multiple tiers as long as each tier contains a complete copy

of the file. This provides for routing accesses to frequently

used files to faster tiers, and relegating the infrequently used



files to slower tiers. Note that, this approach still provides for

replicating data within and across racks as in standard HDFS,

but imposes the additional constraint of keeping a complete

copy of a file in a given tier. One concern is that the whole

copy invariant may be violated in case of node failures. To

overcome this, we introduce a new monitoring daemon on the

NameNode, which ensures that any re-replication is done in a

tier-aware fashion.

B. hatS Data Management APIs

In addition to the file system APIs provided by HDFS,

hatS provides new APIs specified in Table II to manage the

tiered storage. The main functions of hatS include associating

DataNodes to appropriate administrator-specified tiers, and

providing data access based on different policies. DataNodes

are added to the tier during initialization only, and can not

be modified at runtime. This is because the I/O and capacity

characteristics that are considered in our tiers are specific to the

devices used and do not change while the system is running.

Thus, the main runtime APIs allow the system to move files

between tiers, create a replica of an already existing file in

a specified tier, delete a file from a specified tier, and create

new replicas based on specified replica management policy.

We note that, similarly as in HDFS, all the APIs modify data

placement in the granularity of a file and do not support block

level modification.

C. Data Placement and Retrieval Policies

A challenge in hatS is to determine when and where the

data, i.e., a replica of a file, should be placed. This is a

crucial design decision as naive replication can compromise

performance and reduce the efficacy of our approach. More-

over, since hatS like HDFS is a write-once read-many file

system, provisioning for efficient data retrieval is also crucial

for improving overall system I/O performance, and depends on

the placement policy employed. In the following, we describe

several data placement and retrieval policies that we consider.

1) Network-Aware Policy: The first policy that we consider

is the default network-aware placement and retrieval used in

HDFS (Section II). The placement policy distributes each data

block across multiple racks to ensure fault tolerance against

node and rack failure. However, network-aware data placement

does not take into account the performance of underlying

storage devices. Under this policy, the blocks are randomly

distributed across DataNodes in a rack, so a file may be

replicated across tiers such that the portion of the file stored

in a tier will depend on the number of DataNodes in that

tier. Similarly, for data retrieval a list of DataNodes ordered

with respect to network proximity to the application instance

is obtained from the NameNode and the nearest replicas are

used. While this approach reduces network traffic, the nearest

replica can be on a slower device. In contrast, a more distant

but faster replica could have provided higher overall I/O and

would have been a better alternative. Network-aware retrieval

is oblivious to this information and hence cannot leverage such

heterogeneity-based trade-offs. Thus, this policy is not a good

match for hatS as it crosses tier boundaries and will lead to

performance imbalance when multiple types of devices are

involved, e.g., SSDs and HDDs. Moreover, given that not all

tiers are expected to be provisioned with the same amount of

storage, and there will be more DataNodes in HDD tier (given

the low $/GB) than tiers containing expensive devices such as

SSDs and ramdisks, this policy will direct most accesses to

the slower devices even when faster devices are available in

the system.

2) Tier-Aware Policy: The next policy we consider is tier-

aware placement and retrieval, which takes into account the

storage characteristics of the underlying storage devices and

completely replicates a file in multiple tiers. For clusters

having more than one storage tier, we replicate the file to up

to three different tiers. For clusters with more than three tiers,

we chose the first replica to be placed in a fast tier, the second

in a slow tier, and the third in a randomly chosen tier with

intermediate performance. Since the first replica is treated as a

source for the second replica [32], [37], storing the first replica

on a faster tier will also speedup the replication process. Tier-

aware placement does not consider the underlying network

infrastructure as such, and only ensures that a node stores a

single replica even if the node has multiple DataNodes. This

prevents data loss in case of node failure, as the replica can

be re-created from other sources.

For data retrieval, the ideal would be to always access

the data from the fastest tier. However, doing so in Hadoop

will result in hotspots where some DataNodes are overloaded,

and will affect the performance of the system. Moreover,

given that the capacity and number of faster tiers is limited,

retrieving data only from the fastest available tier will also

entail higher cross-rack network traffic and related overheads.

To this end, we associate a weight to each tier from which a

block can be retrieved, and then employ a weighted random

function to determine which DataNode to use for retrieval.

The assigned weights of each tier are determined using storage

characteristics, such as IOPS and capacity, of the DataNode.

This approach is effective in distributing the requests to a file

among multiple tiers and each tier will serve varying number

of blocks. For example, an SSD with 70k IOPS will be able to

serve at least 10× more request than a HDD with 3.5k IOPS

as we show later in the evaluation (Section V).

While this policy takes into account tier characteristics, all

the replicas of a block may be stored on one rack, and the

data may be exposed to rack failures. Moreover, replication

of blocks across racks is desirable for load balancing and

providing better data locality for read operations. To avoid

such data placement skewness, network characteristics have

to be considered along with tier information, which we do in

our next approach.

3) Hybrid Policy: Tier-aware data placement and retrieval

policy improves the I/O performance by making replicas

in specific tiers, while network-aware placement improves

resilience by making replicas across racks. For improving

I/O throughput, reducing cross-rack traffic to efficiently use

the network, and fault tolerance, we need to have replicas



TABLE II
HATS APIS TO ENHANCE HDFS.

API Arguments & Return Type Description

boolean createFileTier(...) Creates a replica of a file in the specified tier.
String filename Name of the file to be replicated.
String tier Tier in which the replica will be created.
boolean return_value Returns 0 on success, 1 on failure.

boolean deleteFileTier(...) Removes a replica of a file from a tier.

String filename Name of the file whose replica will be deleted.
String tier Tier from which to remove the replica.
boolean return_value Returns 0 on success, 1 on failure.

boolean moveTier(...) Moves replicas of a file across tiers.
String filename Name of the file to be moved.
String from_tier Source tier from which replica will be removed.
String to_tier Destination tier for the new replica.
int number_of_replicas Number of file replicas to be moved.
boolean return_value Returns 0 on success, 1 on failure.

Void setRepPolicy(...) Modifies the replication policy for a file.
String filename Name of the file to be affected.
String policy Storage policy to use.
int number_of_replicas Number of replicas under the new policy.

across tiers as well as across racks. To this end, we design

a hybrid network- and tier-aware data placement policy that

works as follows. The first replica is placed with one of the

DataNodes on the local node. The second replica is placed

in a different rack than the one used for the first replica

and also on a different storage tier than that of the first

replica. The third replica is placed on a tier different from

the other two replicas, but rack-local to either of the replicas.

Moreover, the tier selection is done similarly as in the tier-

aware placement policy. The key advantage of this policy is

that it achieves the same replica distribution as that of standard

HDFS, which is effective in ensuring high I/O with good

resilience to failures, while also considering the heterogeneous

storage characteristics.

Similarly, for retrieval we adjust the weights used in our

tier-aware policy to also factor in network proximity and the

cost of transferring a block over the network to achieve higher

I/O throughput as well as to reduce cross-rack traffic.

While the hybrid policy has the same expected fault tol-

erance as in HDFS before a failure occurs, after a failure

occurs special steps have to be taken by hatS in replica

regeneration to ensure that a new replica is stored on an

appropriate tier in addition to being on an appropriate rack.

Moreover, if a DataNode is overloaded with requests or low on

capacity, replica creation or regeneration may not be possible

on appropriate tiers. However, we then utilize the monitoring

daemon to detect placement anomalies and move the data to

appropriate tiers.

D. Discussion

In this section, we discuss the impact of hatS on other cluster

components. First, the Hadoop job scheduler is network-

aware and aims to schedule jobs on or near nodes that hold

the needed data. Our hybrid approach preserves the network

proximity, thus no change is required in the scheduler to avail

the higher I/O rates offered by hatS.

Second, hatS tries to utilize faster tier resources whenever

possible. However, the number of such devices is likely to be

limited given their high cost. This would mean that the faster

tiers may quickly become full, and the applications needing

more data can no longer benefit from them. We remedy this

by using the monitoring daemon along with replica movement

APIs to flush the unused data from the faster to slower tiers.

Third, hatS requires nodes to run multiple DataNode in-

stances instead of just one as in standard HDFS. This can

potentially increase the load on the node and affect perfor-

mance. We argue that this additional overhead is distributed

across all the nodes and is negligible because of the following

reasons. (i) The different types of devices attached to a node is

expected to be small. (ii) The total number of blocks stored on

the node is similar as under HDFS and is independent of the

number of DataNodes. The in-memory data structures at the

NameNode depend on the number of data items and number

of replicas, but not on the number of DataNodes. Since, we do

not increase the number of replicas, we expect this factor to be

the same as well, so hatS is not expected to add any significant

overhead to the NameNode. (iii) The overhead associated with

accessing a block is also similar to HDFS, as hatS modifies

only the metadata space of these blocks.

Fourth, hatS proposes to utilize SSDs in the Hadoop storage

tier. There is a concern that such devices have limited erase

cycles, and may affect the MTTF. We argue that incorporating

SSDs in Hadoop is not unique to our approach, and other

state-of-the-art works have also purported the same. Moreover,

numerous SSD optimization approaches are available [33], [7]

to remedy this. Thus, SSD endurance is orthogonal to our

design; is useful even in when no SSDs are used but different

kinds of HDDs are employed.

In summary, hatS provides a variant of HDFS, which

considers the characteristics of the underlying storage devices

and network infrastructure for its data access policies, thus

yielding improved I/O performance.

IV. IMPLEMENTATION

We have implemented hatS as described in Section III. In

total, we modified or added about 1800 lines of Java code in

Hadoop 0.20.1 to add the features of tiering and heterogeneity

awareness and to enable the APIs of Table II.



a) Tier identification: We modify the

hadoop-daemon.sh script to enable a Hadoop node

to have multiple logical DataNodes, and to coalesce

DataNodes with similar storage characteristics into respective

tiers. We introduce a new parameter dfs.tier.id in the

Hadoop configuration file (hdfs-site.xml), which

the cluster administrator can use to identify the tiers for

the different storage devices. Next, we modify HDFS’s

DataNodeDescriptor data structure to incorporate the tier

information as an additional global characteristic of each

DataNode. The extended descriptor can then be used by the

HDFS’s DataNodeRegistration process for registering the

tier-based DataNode with the NameNode.

b) Data placement: To support data placement policies

based on storage device characteristics, we modify the Na-

meNode’s ReplicationTargetChooser component to implement

different data placement schemes. A list of nodes is chosen

from the NetworkTopology structure that provides information

about various racks and tiers in the cluster (clusterMap). To

ensure that a DataNode is not used to store multiple replicas of

the same block, we re-purpose the block-specific excludenode

list by adding the already chosen DataNode as well as the

other DataNodes on the same node to the list. This results in

a node having only one copy of a block as desired.

After a DataNode is chosen to store a block, the block and

its corresponding INodeFile structure are associated with the

DataNode’s tier. This is to enable re-replication of the block

in the same tier in case of a failure. A background daemon

periodically runs to ensure that the blocks are associated

with the appropriate tier, and if not, the daemon initiates our

moveTier API to move the replicas to the appropriate tiers.

c) Data retrieval: Data retrieval in HDFS uses weighted

random approach to select a replica from the list of DataNodes

that store the data. To support our different retrieval policies,

we implemented weighted random methods in NetworkTopol-

ogy. The weights can be re-adjusted for this selection based

on the policy, i.e., network-aware, tier-aware or hybrid. For

instance, network-aware scheme will assign weights to a

DataNode based on its proximity to the client, tier-aware

scheme will assign weights based on the characteristics of the

storage device that the DataNode supports, and hybrid scheme

will consider both the factors. In our current implementation,

we have used fixed hard-wired values for the weights as

our testbed characteristics are known to us a-priori, but in

a real setup, the administrator can specify the weights in a

configuration file.

V. EVALUATION

In this section, we present the evaluation of hatS using both

a real deployment on a medium-scale cluster and simulations.

We compare the effectiveness of different data placement and

retrieval policies discussed in Section III-C, and their impact

on the I/O performance of Hadoop jobs. For comparison, we

also consider a random data placement and retrieval policy,

which is oblivious of both tier and network information.

A. Experimental Setup

Our testbed consists of a master node and 27 worker nodes

configured in three racks of nine nodes each. The nodes have

two 2.8 GHz quad-core Intel Xeon processors, 8 GB of RAM,

and one SATA HDD. The HDDs are 500 GB 7200 RPM

Seagate Barracuda ES.2 drives. In addition to HDDs, three

of the worker nodes in each rack are provisioned with an

Intel 520 series 128 GB SATA SSD and one worker node in

each rack is provisioned with an additional OCZ RevoDrive

series PCIe 128 GB SSD. Table I shows the performance

specifications of these storage devices. In our setup, Tier-

1, Tier-2, and Tier-3 contain all the DataNodes that are

equipped with the PCIe SSDs, the SATA SSDs, and the HDDs,

respectively. Moreover, a node is associated with at most two

tiers. The nodes are connected using both a dedicated 1 Gbps

Ethernet switch as well as a dedicated 10 Gbps InfiniBand

switch. We use InfiniBand as our default interconnect, using

the slower connection only where specified in the following

discussion. Each worker node is configured with six map slots

and two reduce slots so as to use all of the available cores

on the node. The considered benchmarks are mostly map

intensive, so there are more map slots than reduce slots.

The master node runs both the Hadoop JobTracker and

NameNode for all the experiments, and all the worker nodes

contribute to both TaskTracker and DataNode. Worker nodes

with more than one type of storage devices have multiple

DataNodes, thus our testbed has 39 DataNodes co-existing

with 27 TaskTrackers. As the focus of our experiments is to

study the impact of HDFS I/O operations, the intermediate

shuffle data is stored on the HDDs local to the TaskTracker.

The replication factor is fixed at the default three, and the

block size used is 64 MB.

B. Performance Under Different Policies

We analyze the read and write performance of hatS under

different data placement and retrieval policies using the HDFS

benchmark TestDFSIO. Each worker node writes a 1024 MB

file (16 blocks) during the write test and reads a file of the

same size during the read test. Figure 3 shows the results for

the write accesses. We measure the overall I/O throughput for

each of the map tasks and calculate the average I/O rate across

all map tasks. We observe that the network-aware and hybrid

policies behave similarly. This is because the write operation

succeeds after it writes to the OS buffer cache and does not

wait for the data to be synced to the storage device. We see a

reduction in the throughput and average I/O rate for the tier-

aware and random policies, which is expected as they do not

consider network proximity and associated overhead.

Figure 4 shows the TestDFSIO results for the read test.

As the hybrid policy considers network proximity and tier

information, it offers significantly higher I/O rates than the

other studied policies. Similarly as in the write test, the

network-aware and the tier-aware policies perform better than

the random policy. An interesting observation here is that the

network-aware policy has a higher throughput than the tier-

aware policy, whereas the average I/O rate of the tier-aware
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policy is better than that of the network-aware policy. The

tier-aware policy is network oblivious, thus the probability of

using a local fast tier for an access is similar to that of using

a remote slow tier, which is seen as a high standard deviation

in the average I/O rates in the Figure. Moreover, the tier-

aware policy aggressively tries to utilize the storage devices

in the fast tier without considering the network constraints.

This sometimes results in network contention, causing the I/O

rate to be quite low for some map tasks. We also observe

that the hybrid policy offers 32.6% better I/O throughput and

36% better average I/O rate compared to that of the default

network-aware policy.

C. Impact of Placement Policy

In our next experiment, we used TeraGen to generate a

27 GB file consisting of 432 blocks. By default, TeraGen uses

only two mappers to generate all of its data, so each Task-

Tracker generated 13.5 GB. In the network-aware and hybrid

placements, while storing the local replica of the data, all the

blocks of the 13.5 GB file will be skewed to one DataNode

(corresponding to the TaskTracker generating the data). To

avoid this, TeraGen uses one mapper per TaskTracker, with

each mapper generating a 1024 MB (16 blocks) file.

Figure 5 shows the distribution of files across racks and

tiers. To obtain this information, we parse and analyze HDFS’s

block map that stores information about all the blocks associ-

ated with a DataNode. For the network-aware policy, we find

that more replicas of a file are placed in Tier-3 than in Tier-

1 and Tier-2. This is because there are a fewer number of

Tier-1 and Tier-2 DataNodes in comparison to Tier-3. In this

policy, the distribution of replicas across the tier is directly

proportional to the number of DataNodes contained in the

tier. The results for the tier-aware and hybrid policies reveal

replication of a block across all tiers. Since all the racks have

the same number of nodes, even the network oblivious policies

– random and tier-aware – have equal number of replicas

across racks. The difference between these and the network-

aware policy is that, in the later, each block is replicated across

multiple racks to achieve resilience against rack failures. For

the case of network oblivious policies, we see that 12% of the

blocks are replicated only within one rack and will be exposed

to data loss in case of a rack failure.

D. Impact of Retrieval Policy

In the next set of experiments, we study the role of the

retrieval policies of hatS. We used Grep to read the data

generated by TeraGen using six mappers per TaskTracker.

Figure 6 shows the results. We observe that the random and the

network-aware retrieval policies do not read a large number

of files from the faster Tier-1 or Tier-2. This is mainly due to

the fast tiers having a fewer number of blocks. Moreover, the

probability that an access to a replica will be sent to a specific

tier depends on the number of DataNodes in that tier, thus a

tier with fewer blocks have fewer accesses. We find that the

network-aware policy has 22% and 33% less remote requests

than the random and tier-aware policies, respectively.

As expected, the tier-aware and hybrid policies access more

requests from the fast tiers compared to the slow tiers. We

observe that the hybrid policy results in 4× more accesses

to the Tier-1 than the network-aware policy, and only 13%

more remote accesses than the network-aware policy. Further

examination reveals that the hybrid policy results in 30% more

accesses to Tier-1 and Tier-2, though at the cost of 15%

increase in non-node-local (rack-local and remote) accesses.

This trade-off between tier and network awareness offers an

effective control knob that can be modified based on the infras-

tructure provisioning of a cluster to maximize performance.

E. Impact of Network Speed on hatS Performance

In the next set of experiments, we compare the average

I/O rate of the studied data management policies under our

two testbed interconnects: 1 Gbps Ethernet and InfiniBand. In

Figure 7, we see that the average I/O rate under InfiniBand
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Fig. 9. Disk usage under the network-aware policy.

 20

 40

 60

 80

 100

 120

 10  20  30  40  50  60  70  80

I/
O

 T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Time (s)

(a) DataNode with HDD.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10  20  30  40  50  60  70  80

I/
O

 T
h
ro

u
g
h
p
u
t 
(M

B
/s

)
Time (s)

(b) DataNode with SATA SSD.
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Fig. 10. Disk usage under the hybrid policy.
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Fig. 11. Network usage under the network-aware policy.
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Fig. 12. Network usage under the hybrid policy.

is better than that achieved under the 1 Gbps Ethernet. While

expected, this result serves as a sanity check that our enhance-

ments do not have unintended side-effects. Moreover, in the

1 Gbps Ethernet setup, we find that the network-aware policy

performs better than other policies. We observe no additional

advantages of the tier-aware policies with 1 Gbps Ethernet. In

case of the random policy, the performance is better than the

tier-aware policy. This is because of the network contention for

the fast tier DataNodes as more requests are routed to them.

From this test, we observe that better network provisioning is

necessary to avail the benefits of hatS. However, this is not a

limitation, as better interconnects are typical in enterprise data

center deployments.

F. Network and Disk Utilization in hatS DataNodes

Next, we compare the network and disk usage of hatS for the

read operation under two policies: network-aware and hybrid.

For this purpose, we repeated the test described in Section V-D

and used SAR [21] to collect detailed disk and network usage

statistics for the DataNodes. Figures 9, 10, 11, and 12 show

the behavior of one DataNode in each tier; similar patterns

were observed for other DataNodes in the respective tiers.

As shown in Figure 9, under the network-aware policy, the

HDD utilization is 40% higher than the combined utilization

of the SATA SSD and the PCIe SSD. This highlights the

disadvantage that the network-aware policy does not effec-

tively utilize the expensive high performance storage devices.

In contrast, Figure 10 shows the disk usage statistics under

the hybrid policy. In this case, the number of requests to

the DataNodes contained in Tier-3 are minimized. The SATA

and PCIe SSDs together service 36% more read accesses than

HDDs, and effectively utilize their high I/O bandwidth. Under

hybrid policy, the utilization of PCIe SSDs has increased

by 91%, and its maximum I/O throughput is 10× of that

achieved under the network-aware policy. This shows the

advantages of hatS over standard HDFS in better managing
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the heterogeneous storage devices.

Similarly, Figure 11 and Figure 12 show the network

throughput of DataNodes belonging to different tiers under the

network-aware and hybrid policies. The network utilization is

observed to be almost the same for DataNodes with the HDD

and SATA SSD, whereas for DataNodes with the PCIe SSD the

maximum bandwidth throughput is very high. This is because,

under hybrid policy, three PCIe SSDs serve 28% more requests

than under the network-aware policy, resulting in an increase

in remote accesses.

G. Impact of Storage Characteristics on Hadoop Performance

In out next experiment, we study the impact of different

storage devices on Hadoop. For this test, we provision HDFS

to service all the requests from only one type of device for

its storage. Our testbed contains only three PCIe SSDs but

27 HDDs, so as to ensure fairness and avoid performance

bottleneck due to network contention for the SSD DataNodes,

we reduce the number of worker nodes for this experiment to

five nodes per rack. Each rack contains one PCIe SSD, three

SATA SSDs and five HDDs. Figure 8 compares the execution

time of TeraGen and Grep for three cases: HDFS with three

PCIe SSDs, with six SATA SSDs, and 15 HDDs. TeraGen,

which is a write-intensive application, performs better with

HDDs and SATA SSDs than with PCIe SSDs. This is similar

to our observation in Section V-B for TestDFSIO-write.

After each benchmark, we clear the contents of the DataN-

odes’ buffer caches to prevent cross-benchmark pollution. For

Grep, which involves a significant amount of read operations,

we find that even though there is a small number of the PCIe

SSDs, they perform significantly better than the SATA SSDs

and HDDs. The three PCIe SSDs perform 20% faster than the

15 disks. We repeated the experiment with 21 worker nodes

and found that the read performance of the three PCIe SSDs

was similar to that of 21 HDDs.

H. Simulation-Based Experiments

For our next set of experiments, we developed an accurate

simulator for hatS to observe the behavior of the considered

data management policies on a large cluster setup. Our fine-

grained simulator takes into account details such as the effect

of intermediate shuffle data, network and storage infrastruc-

ture, and application I/O patterns. We simulated a 500-node

cluster, with each node equipped with six 1 TB disks and

one 256 GB PCIe SSD. These nodes are interconnected using

two 10 Gbps InfiniBand links. We use the publicly available

synthetic Facebook production traces [6] for driving the simu-

lation. We replay the traces using HiBench [17] applications to

process 70 TB of input data, generate 17 GB of intermediate

shuffle data and 13 GB of output data spanning over three

weeks. To make room for newly generated data, we use Least

recently used (LRU) policy to evict the data.

Figure 13 compares the average I/O rate (the higher the

better), network usage and trace execution time for the studied

policies normalized to the case of the network-aware policy.

We observe that the hybrid policy yields a 37% higher I/O

rate as compared to the network-aware policy, and at the cost

of 9% increase in the network usage (the lower the better).

The tier-aware policy results in the highest network usage,

i.e., 23% more than the network-aware policy. Data placement

and retrieval behavior observed in the simulations is similar

to that observed for the real testbed experiments. We see that

overall SSD usage was improved by 68% with over 52% of

the data accessed from the PCIe SSD. Finally, we also study

the execution time (the lower the better) of the benchmarks

under different policies. Our hybrid policy offers the best

execution time, which is 26% better than the extant network-

aware policy.

In summary, our evaluation of hatS reveals that it offers

a viable solution to enhancing HDFS to incorporate hetero-

geneous storage, and does so efficiently. Our hybrid data

management policy captures both tier awareness and network

awareness to offer higher I/O rates and reduced execution time.

These features are key to sustaining Hadoop for emerging

architectures and applications.

VI. RELATED WORK

Several recent projects [18], [40], [1], [14], [27] focus

on tiered storage for general purpose enterprise comput-

ing, mainly due to its ease of management and business

value. These systems typically employ SSD based tiering

and caching, along with data management across tiers, to

get higher I/O rates than just from HDDs. In hatS, we

aim to extend such storage solutions to beyond individual

nodes and servers, and into Hadoop’s distributed setting. The

recent HDFS-2832 [16] also calls for enabling support for

heterogeneous storage in HDFS. hatS offers such support as

well as provide different storage and data retrieval schemes to

exploit the heterogeneity.

Spark [39] aims to avoid expensive HDD accesses by

providing primitives for in-memory MapReduce computing.

Our own Localized Storage Node (LSN) [20] proposes to

divide a Hadoop cluster rack into several sub-racks, and

consolidate disks of a sub-racks compute nodes into a separate

shared LSN. MixApart [24] reduces the cost and inefficiencies

of shared storage systems by offering a single consolidated

storage back-end for managing enterprise data and servicing

all types of workloads. AptStore [19] is a federated file system

for Hadoop with a unified view of data from a multitude of

sources, but stores all replicas of a file on one type of device.



These works share with hatS the focus on using tiered storage,

but differ in that they do not support storage heterogeneity.

In the distributed setting, Zebra [15], GPFS [31], and

Panasas [36], offer techniques to improve read and write

throughput. Similarly, Flat Datacenter Storage [25] that em-

ploys an advanced network topology, and Camdoop [8] that

uses a directly-connected network topology, argue the need

for better provisioning and utilization of the disk bandwidth

in the modern big data applications. These works are com-

plementary to our design. Significant research has been done

on network provisioning for Hadoop but incorporating fast

storage technologies along with the traditional disks has not

been previously explored.

VII. CONCLUSIONS

In this paper, we design and implement a novel

heterogeneity-aware and tier-based enhancement for HDFS,

hatS. Our solution also supports tier-aware data storage and

retrieval policies to exploit the individual advantages of the

various types of storage elements. We design easy-to-use

APIs to allow movement of stored data across tiers, modify

the number of replicas of a file in a tier, and monitor the

capacity of the available tiers. Thus, hatS offers a flexible

storage solution that can yield higher I/O performance by

matching the application needs to appropriate storage tiers.

We evaluate hatS using a range of representative applications

and configuration parameters. Our analysis shows that, for the

studied applications and setup, grouping storage devices in

tiers according to their I/O bandwidth increases the utilization

of the high performance storage devices by 91%, enabling

them to service 64% more requests. This results in 32.6%

improvement in throughput and 26% improvement in job

completion time.
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