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Abstract—We present a distributed system for stor-
age, processing, three-dimensional visualisation and
basic analysis of data from Earth-observing satellites.
The database and the server have been designed for
high performance and scalability, whereas the client
is highly portable thanks to having been designed as
a HTML5- and WebGL-based Web application. The
system is based on the so-calledMEAN stack, a modern
replacement for LAMP which has steadily been gaining
traction among high-performance Web applications.
We demonstrate the performance of the system from
the perspective of an user operating the client.

Index Terms—Distributed processing, geospatial-
data analysis, Web application, MEAN stack, Mon-
goDB, AngularJS, Express, Node.js, WebGL.

I. Introduction
The processing of satellite observations of Earth is

highly data-intensive. Many satellites produce high-
resolution images of the Earth. Many observational mis-
sions were or have been in operation for decades. In some
cases the raw input itself may not be so large but pro-
cessed, analysis-ready data is. Either way, Earth-observing
satellites can now be considered a fully fledged source of
Big Data.

One such source has been the Michelson Interferometer
for Passive Atmospheric Sounding on the ESA Envisat
satellite, a Fourier-transform spectrometer. MIPAS oper-
ated between 2002 and 2012, and measured geotemporal
distribution in the atmosphere of more than 30 trace
gasses relevant to atmospheric chemistry and climate-
change research. Data from MIPAS is stored in several
different data archives, including the Large-Scale Data Fa-
cility (LSDF) [1] at the Karlsruhe Institute of Technology
(KIT). As of August 2015, the complete MIPAS archive at
LSDF requires around 30 TB for the storage of calibrated
measurement data released by the ESA (“level-1B data”)

and around 64 TB for processed (“level-2”) data produced
from the former at KIT. Both parts will continue to grow
in the near future.

MIPAS data at LSDF consists primarily of compressed
text and PostScript files as well as some classic-format
NetCDF files. Analysis of this data involves several dif-
ficulties: there are many different sources of input, data
is separate from at least parts of its metadata, repeated
parsing of text can be time consuming, compressed files
must be wholly decompressed on the fly, data inside classic
NetCDF files is not indexed. In short, working with file-
system MIPAS data can be quite slow.

The situation becomes even more complicated when a
comparative analysis of data from different experiments
is desired, for example from MIPAS and the Microwave
Limb Sounder (MLS) on the NASA Aura satellite. With
different experiments structuring their data in different
ways, the conventional analysis approach requires devel-
oping and running several different pipelines even though
the analysis algorithm itself remains the same. Moreover,
even when multiple experiments cover the same locations
and time span, exact coordinates and time stamps of their
respective data points are only similar, not the same —
requiring another round of data processing in order to
match them.

In light of the above we have proposed and implemented
an alternative, distributed and scalable solution, which
takes advantage of Big Data tools and methods in order
to improve performance of working with MIPAS and
similar data. In the following sections we shall describe
our system and present an analysis of chosen aspects of
its performance.

The structure of the following parts of the paper is as
follows. In Section II we describe the architecture of our
system, discussing each of its tiers, whereas Section III
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presents the evaluation of the system’s performance from
the point of view of the user of the client application.
Section IV mentions several related tools and systems.
Finally, in Section V we present our conclusions and the
the outlook for the project.

II. System Architecture
The goals we set while designing our system were as

follows:
• it should scale well as the amount of data stored in it

grows;
• it should facilitate the use of data from multiple

sources;
• the basic user interface should be easy to access and

use.
We have chosen the standard multi-tier design model

consisting of the database, the server and the client,
common among Big Data applications. It allows for in-
dependent growth of each of the tiers as needed as well
as performing computation-intensive processing on more
powerful systems than what the client might have at their
disposal or data-size reduction closer to the database. Our
system is based on the NoSQL database MongoDB, the
server-side runtime platform Node.js, the Web-application
framework Express and the JavaScript MVC framework
AngularJS, known together as the MEAN stack and
offering a number of advantages over more established
stacks such as LAMP to both users and developers [2]. The
eventual architecture of our system is shown in Figure 1.

We implement the data browser as a Web application to
ensure portability and make it easier for users to keep it up
to date. Furthermore, by making our client a single-page
application we essentially add another degree of scalability
to the system.

A. The Database
Our MongoDB system presently runs on a single, ded-

icated server and contains data from MIPAS, MLS and a
number of other, smaller experiments, each with its own
database. Data for each geotemporal location constitutes
a single document.

We have developed several tools which communicate
directly with the database server using appropriate Mon-
goDB drivers, for example a Python tool which can be used
to perform general matching of data from two different
sources (e.g. MIPAS and MLS); it is capable of multi-
threaded operation and has already been used to demon-
strate superior performance of MongoDB comparing to a
SQL database system [3].

B. Server-side Processing and REST API
Since our main client is a Web application, making

our instance of MongoDB accessible from the Internet
is impractical because it would require adding a Mon-
goDB driver to the user’s browser. Using an intermediate
server means a server-installed driver can be used, whereas

communication with clients occurs using HTTP. Such a
server can also perform pre-processing before passing the
data between the client and the database. The underlying
platform of our server is Node.js and the HTTP Repres-
entational State Transfer (REST) client API is based on
Express. Data is transferred in JSON format.

Our server is based on an in-house distributed solution
called Node Scala [4]. The reason for this is that while un-
doubtedly optimised for performance, Node.js applications
are by design restricted to a single thread. Distributed
systems featuring multiple instances of the same applic-
ation accessed through a common interface such as the
same HTTP server, can be constructed using the standard
Node.js module Cluster (on a single host) or third-party
solutions built on top of it such as StrongLoop Process
Manager (which can support multiple hosts), however
neither of these solutions allow for parallel processing.
Conversely, Node Scala does allow parallel execution of
tasks with intelligent distribution of chunks among back-
end servers (i.e. workers) and supports the spawning and
monitoring of back-end servers on both the same and
multiple hosts. Please see [4] for more information about
Node Scala and its performance.

In its current configuration our Node Scala instance runs
on a single, dedicated server. It uses a single front-end
server offering the MIPAS REST API over HTTPS and
two back-end servers which handle communication with
the database server as well as data processing. Following
the rule of least privilege, back-end servers are only allowed
to read from the database.

C. The Client
Our new client application, KAGLVis, is a data browser

which displays selected observables as 3D points at correct
coordinates on a virtual globe. At present it can display
orbital paths of Envisat as well as cloud altitude measured
by MIPAS, in the latter case allowing the user to specify
criteria defining clouds. The data is fetched from the server
in the background, depending on the user’s preferences
either set by set or simultaneously for the whole selected
range. The view, which can be either a sphere, a plane or
that of poles and which allows for selection of a number
of different Earth images as background, can be freely
rotated and zoomed. The colour map in the legend is
drawn dynamically on a HTML5 canvas element and
synchronised with the contents of the 3D view.

It is worth emphasising at this point that KAGLVis is
not meant as a replacement for the plethora of stand-
ard data-processing tools used in geosciences. Instead,
KAGLVis aims to provide basic visualisation and analysis
capabilities as easily as possible.

The internal logic of KAGLVis has been implemen-
ted using AngularJS, with each component of the view
assigned its own controller. All communication between
components occurs explicitly through messages sent via
a dedicated internal service; no communication through
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Figure 1. Architecture of our system. For clarity, the diagram omits internal management components of Node Scala (the controllers and
the scheduler) as well as the Web server used to serve KAGLVis files to users.

e.g. global variables is allowed. Another service provides
access to configuration of the application. Finally, the
third service provides an interface to the data source —
which by default is our REST server but can if need be,
for testing for instance, switched to a local JSON file.

The heart of KAGLVis, the 3D display, is based on
WebGL Globe — a lightweight JavaScript virtual globe
created by Google Data Arts Laboratory which can display
longitude-latitude data as spikes. As the name suggests,
Globe uses WebGL to leverage local GPU power for 3D
rendering. Our version of Globe has been customised to
support other views than the original sphere as well as
selection of the background texture, reduce memory con-
sumption at a cost of disabling certain visual effects, and
most importantly to allow caching of previously displayed
data sets should the user want to return to them at some
point.

Testing has shown KAGLVis is indeed highly portable
— it has been confirmed to run without errors on many
Web browsers and operating systems, including on mobile
devices.

We use a minimal Express-based Web server to serve
KAGLVis to users. The server is hosted on the same
system as the REST server because, as a single-page ap-
plication, KAGLVis adds only minimal load to the server
hosting it.

III. Evaluation
We have measured performance and resource use of

KAGLVis under realistic operating conditions. There are

Figure 2. A screenshot of KAGLVis showing cloud altitude measured
by MIPAS against flat Earth view.

three reasons for focusing on the client: it is the component
through which our system is experienced by most users,
Web browsers are not as strongly optimised for perform-
ance as MongoDB and Node.js, and some benchmarks of
back-end components of our system have already been
published (see e.g. [3], [4]).
Our tests were executed on a PC with an Intel Core i5-

4300U CPU with HD 4400 graphics, 12 GB of DDR3/1600
RAM, and a LCD screen at its native resolution of
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Figure 3. Number of data points for each day of Envisat MIPAS
data used in subsequent tests. Horizontal axis: index of the day in
the complete test sample. Vertical axis: number of data points the
day contains.

1920x1200 pixels at 60 Hz. The system ran an up-to-date
64-bit installation of Gentoo Linux, including X.org server
1.16.4 and the video driver xf86-video-intel 2.99.917. All
tests were run in the Chromium 44.0.2403.89 Web browser
using one of its built-in developer tools, Timeline [5].
The client connected to our production REST server (the
technical details of which can be found in [4]), using IPv4
over a Gigabit Ethernet connection.

We benchmarked the visualisation of cloud altitude
measured by MIPAS. This application relies on user input
and thus requires some client-side processing of data. For
each test and iteration we launched Chromium fresh and
recorded Timeline events from KAGLVis for up to 20 days’
worth of data, a number high above typical usage patterns
— already at 5 days parts of the map become too crowded
to be read comfortably.

The number of usable MIPAS data points per day varies.
Figure 3 shows the number of points for each day displayed
during testing. In order to account for differences in data-
set size we, where appropriate, normalised results of our
measurements to the number of points in each day.

A. Time to Display
To measure how responsive KAGLVis it is to input, we

first measured how long takes to display a new data set
on the screen — i.e. convert JSON input to a 3D mesh,
add that mesh to the WebGL scene and update the view
to reflect the changes — after it has been requested by
the user. Subsequent days are combined with previously
displayed content instead of replacing it so that we can
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Figure 4. Time required to add a day’s worth data to the view.
Horizontal axis: index of the day in the complete test sample. Vertical
axis: time required to display the day divided by the number of data
points it contains.

watch for possible scalability problems. We explicitly ex-
cluded data-transfer time from the benchmark because
network transfers in KAGLVis occur asynchronously in the
background, not affecting interface responsiveness.

As Figure 4 shows, for most data sets it consistently
takes around 300 µs per point, or 0.3 s whole, to display.
The exception, day 4, seems to be caused by the WebGL
implementation in Chromium — Timeline shows that
while the time required to add this day to the scene is
consistent with that for other data sets of similar size,
the subsequent animation-frame update not only takes
considerably longer than for all other data sets but is in
fact split into three separate steps.

For days low-point days 8–11 the behaviour is different
— around 600 µs per data point (amounting to 1–2 s per
whole data set), with considerable fluctuations between
iterations. Given the detailed structure of Timeline events
for these and other days appears to be very similar, it
is believed that for data sets so small the measured time
becomes dominated by the processing overhead.

Finally, for day 1 the time of almost 780 µs per point
is even slightly higher, while fluctuating less, than for
other small data sets As the Timeline structure of the
animation-frame update step here is very different from
that for subsequent data sets, we concluded what we see
here is both processing overhead and effects of WebGL
initialisation.

B. Memory Consumption
Secondly, we measured the growth of the JavaScript

heap of KAGLVis as we load more and more data sets
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Figure 5. Evolution of memory consumption as more and more
data is added to the view. Horizontal axis: index of the day in the
complete test sample. Vertical axis: difference in JavaScript heap size
after another day’s worth of data has been displayed and before it
has been loaded into the view, divided by the number of data points
in each day.

into it. The results can be found in Figure 5.
A consistent increase of around 12 kB per data point

can be observed from day 3 onward — suggesting the
test system could cache hundreds of days’ worth of data
before running out of physical RAM. Above-average value
of 22 kB per point measured for day 1 is consistent with
our earlier hypothesis of the loading of the first data set
triggering initialisation of internal data structures. It is
presently not fully understood why an above-average value
can also be observed for day 2.

C. Frame Rate
Finally, we used the FPS counter built into Chromium

to measure the frame rate of KAGLVis window as a
function of the number of simultaneously shown data
sets. As integrated graphics chipsets are generally not
performance-oriented, we repeated this test on an oth-
erwise similar PC with an AMD Radeon HD 4770 PCIe
graphics card. Apart from the graphics driver (Mesa-10.3.7
with Gallium3D driver “r600” + X.org driver xf86-video-
ati 7.5.0) the software on both systems was identical.

What makes this comparison particularly interesting is
that we are comparing a relatively recent Intel graphics
chipset with a device which while originally marketed as
mid-range is now quite old — the two were released in late
2013 and early 2009, respectively.

Measurements were repeated five times for each set-up
and their results can be found in Figure 6.

The frame rate drops dramatically as more data is
added to the view. With all points visible it is just under
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Figure 6. Frame rate as a function of the number of data points
simultaneously displayed on screen. Black: results from our standard
test system. Red: results from a machine with AMDRadeon graphics.

12 FPS, resulting in noticeable jerkiness of animation
during rotation or zooming. That said, frame rates in
the typical use range of under 5,000 points appear to be
sufficient.

Despite its age the Radeon card outperforms the Intel
chipset: around 34 FPS for all points and above 50 FPS
in the typical use range.

A number of peculiarities can be observed in the results.
To begin with, the frame-rate drop does not scale linearly
with the number of points. Instead, it becomes smaller and
smaller as more data is added to the view. It is furthermore
interesting that such low frame rates are seen for a fairly
uncomplicated and essentially static scene, especially given
the very same system consistently outputs more than
30 FPS running a highly dynamic and complex WebGL
water simulation. All in all it would seem that the observed
behaviour is driven primarily by the properties of the
WebGL engine provided by Chromium, although given the
behaviour of the aforementioned water test optimisation
of WebGL use in Globe might improve its 3D performance
as well.

IV. Related Work
Given both the number of different components a sys-

tem capable of comprehensive handling of geospatial data
must contain and how widespread the handling of such
data has become in modern science, it is not surprising the
amount of work put into this topic has been considerable.
Here are some examples.

On the database side one should definitely mention
PostGIS [6], a spatial database extension for the Postgr-



eSQL relational database system which is supported by a
wide range of GIS applications. However, as a RDBMS it
is not in direct competition with NoSQL-based systems
like ours.

Even if only Node.js-based solutions are considered, the
number of alternatives for server-side code is considerable.
Then again, each of them has certain shortcomings —
which ultimately led us to develop Node Scala. Please
see [4] for details on this matter.

Likewise there are many solutions for visualisation of
geospatial data and each of them has disadvantages from
our perspective. For example, the popular and open NASA
World Wind [7] is presently only suitable for standalone
applications and would introduce another programming
language (Java) into the stack, while at the same time a
lot of its features and detail are simply unnecessary while
dealing with high-altitude data from satellites. Another
alternative, Google Earth Engine [8], is not unlike our own
system in that it is an all-in-one solution handling both
storage, data-management and analysis through a highly
distributed Web application — but does not presently give
most of its users the possibility to develop own processing
algorithms, is a closed platform tied to Google computing
infrastructure, and most importantly can only be used to
process data made available by Google.

Another example is the highly popular UltraScale Visu-
alisation Climate Data Analysis Tools (UV-CDAT) frame-
work [9]. UV-CDAT and our system complement rather
than compete with each other: the latter attempts first
and foremost to provide high-performance access to data,
the latter focuses on data analysis.

Finally, the German Satellite Data Archive (D-SDA) of
the Earth Observation Center at the German Aerospace
Center (DLR) [10] at a glance seems to serve the same
purpose as our system yet is backed by considerably more
resources. There are, however, differences: it is tied to DLR
infrastructure, keeps both data and metadata as files in
storage rather than in a database, and most importantly
follows considerably different philosophy — its primary
goal is to achieve long-term data preservation over more
than 20 years with nearly exponentially growing data
capacity, whereas our archive has been designed primarily
to provide high-performance access to a fixed chunk of
data. One could therefore imagine the two systems as
complementary — ours for rapid application-specific pro-
cessing, D-SDA for long-term storage.

V. Conclusions and Future Work
We have demonstrated a distributed, high-performance

and scalable system based on the so-called MEAN stack,
which is used to store, process and visualise data from
the ESA Envisat Earth-observing satellite. Benchmarks
of the system as seen from the end-user’s perspective
demonstrating good performance even beyond the typical

use range and on a system without a discrete graphics
device.

In the near future we will continue importing further
MIPAS data into MongoDB as well as prepare for the
migration of the production database to a sharded cluster.
The REST server shall be extended accordingly, with new
use cases and more back-end servers. Finally, we would like
to improve KAGLVis user experience on mobile devices.
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