Lawrence Berkeley National Laboratory
LBL Publications

Title
AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications:

Permalink
https://escholarship.org/uc/item/2039k2ma

Authors

Zhang, Wenzhao
Tang, Houjun
Harenberg, Steven

Publication Date
2016-05-16

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2039k2m6
https://escholarship.org/uc/item/2039k2m6#author
https://escholarship.org
http://www.cdlib.org/

AMRZone: A Runtime AMR Data Sharing
Framework For Scientific Applications

Wenzhao Zhang'3, Houjun Tang', Steven Harenberg'}, Surendra Byna®, Xiaocheng Zou'?,
Dharshi Devendran?, Daniel F. Martin?, Kesheng Wu?, Bin Dongz, Scott Klasky3, Nagiza F. Samatova'-

INorth Carolina State University, Raleigh, NC 27695, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
30ak Ridge National Laboratory, TN 37831, USA

*Corresponding author: samatova@csc.ncsu.edu

Abstract—Frameworks that facilitate runtime data sharing
across multiple applications are of great importance for scientific
data analytics. Although existing frameworks work well over
uniform mesh data, they can not effectively handle adaptive mesh
refinement (AMR) data. Among the challenges to construct an
AMR-capable framework include: (1) designing an architecture
that facilitates online AMR data management; (2) achieving
a load-balanced AMR data distribution for the data staging
space at runtime; and (3) building an effective online index
to support the unique spatial data retrieval requirements for
AMR data. Towards addressing these challenges to support
runtime AMR data sharing across scientific applications, we
present the AMRZone framework. Experiments over real-world
AMR datasets demonstrate AMRZone’s effectiveness at achieving
a balanced workload distribution, reading/writing large-scale
datasets with thousands of parallel processes, and satisfying
queries with spatial constraints. Moreover, AMRZone’s perfor-
mance and scalability are even comparable with existing state-
of-the-art work when tested over uniform mesh data with up to
16384 cores; in the best case, our framework achieves a 46%
performance improvement.

I. INTRODUCTION

Scientific data analytics are often performed in a post-
processing manner, as the data generated by a simulation is
first written to the file system and then read for analytics,
requiring substantial I/O time. Runtime data sharing across
multiple applications is a promising alternative approach to-
wards avoiding these increasingly severe 1/O bottlenecks [30].
For instance, the data generated by a running simulation can
be moved to the memory of a set of dedicated compute
nodes where that data is then retrieved by various analytics
applications, such as visualization and transformation [3], [14].

To facilitate this runtime data sharing, related methods
typically organize a set of nodes to provide an in-memory data
staging and management space on the server side. Through
client side APIs, applications running on other nodes can
efficiently write data to the space and retrieve data from it. Al-
though these methods are effective at handling uniform mesh
data, they currently do not support adaptive mesh refinement
(AMR) data.

AMR represents a significant advance for large-scale scien-
tific simulations [4]-[6]. By dynamically refining resolutions
over time and space, AMR simulations generate hierarchical,

multi-resolution, and non-uniform meshes. This kind of re-
finement provides sufficient precision for regions of interest
at finer levels while avoiding unnecessary data generation for
regions of non-interest [32]. In this paper, we focus on block-
structured AMR, which consists of a collection of disjoint
rectangular boxes (or regions) at each refinement level [32].

To the best of our knowledge, runtime AMR data sharing
across applications has not been well explored. This is a non-
trivial task due to the dynamic characteristics inherent to AMR
data; namely, the numbers, sizes, and locations of the AMR
boxes, are usually unpredictable before a simulation run and
keep changing as the simulation progresses. These charac-
teristics prevent existing methods from effectively handling
AMR data. Moreover, flattening and unifying AMR boxes to
make the data compatible with existing methods is not a viable
solution as AMR’s advantages would be lost and significant
overhead would be introduced [32].

To create a framework that facilitates runtime AMR data
sharing across multiple applications, there are three major
challenges that should be addressed. First, the architecture of
such a framework should enable efficient online AMR data
management. However, runtime AMR metadata synchroniza-
tion across distributed server processes would incur significant
overhead, because of the dynamic characteristics inherent to
AMR data and because the data being written to the staging
space could arrive in any order.

Second, to retain high throughput, the framework should
have a balanced workload distribution at runtime for the nodes
on the server side. However, static data domain partitioning
and distribution methods (e.g., space-filling curves [25]) typ-
ically fail to achieve this goal for AMR data. Due to the
dynamic characteristics of AMR data, those methods can not
determine a suitable partition size until most of the AMR
boxes of a domain have been received and examined, which
would produce a large runtime overhead.

Third, to support data retrieval of a specific spatial region,
the framework needs an efficient online spatial index that
can satisfy AMR’s unique spatial data access patterns, which
typically involve accessing multiple boxes across multiple lev-
els [32]. However, existing spatial indices can not effectively
catch the hierarchical and non-uniform structure of AMR data.

Moreover, due to the dynamic nature of AMR, how to build
the spatial index efficiently at runtime while maintaining high
data transmission performance poses another challenge.

In this paper, we propose AMRZone, a framework for fa-
cilitating runtime AMR data sharing across multiple scientific
applications. In addition to addressing the above challenges,
AMRZone even demonstrates comparable performance and
scalability with existing state-of-the-art work when tested over
uniform mesh data; in the best case, our framework achieves a
46% performance improvement. Specifically, towards address-
ing the above challenges, we make the following contributions
through our framework:

o An architecture that facilitates AMR data management
by dedicating some server processes to handle metadata
exclusively (Section III-A).

¢ Online balanced AMR data distribution on the server
side, by adopting an AMR boxes-based runtime workload
assignment policy (Section III-B).

« A polytree-based online spatial index to facilitate spatially
constrained AMR data retrieval (Section III-C).

II. BACKGROUND

DataSpaces [16] is the current state-of-the-art framework
for runtime data sharing across multiple scientific applica-
tions over uniform mesh data. In the following sections, we
explain three major issues that prevent it from effectively
supporting AMR data. Although other frameworks (described
in Section V) can provide a distributed and in-memory data
manipulating space, we select DataSpaces for comparison
because it is the only framework that can build an explicit
online index over the distributedly staged data as well as
provide effective data access APIs, both of which are key
features that facilitate runtime data sharing across applications.

At the heart of DataSpaces is a distributed hash index that
enables efficient data retrieval from spatial regions of interest.
The index is based on a Hilbert space-filling curve [23] that
is used to partition a global data domain into sub-regions (or
partitions) and then distribute these partitions evenly to the
staging nodes. Although effective at handling uniform mesh
data, there are several non-trivial issues that would arise if
this Dataspaces were applied to AMR data. A 1GB 5-level
dataset generated by BISICLES(a large-scale Antarctic ice
sheet modeling code for climate simulation) [11] is used to
illustrate the hierarchical and non-uniform structure of AMR
data. Its visualization is shown in Figure 1.

A. Issue I: Architecture

DataSpaces has a client-server architecture. The server side
is composed of a set of server processes (or servers) running
on different nodes to form a virtual in-memory space. The
client side is a collection of APIs used to interact with the
space. Each server process is responsible for both maintaining
metadata (the distribution of data sub-regions) and transporting
data. The server side demands a pre-defined global domain size
before any data is written or read. Therefore, once a partition

levels -—O -—1

Fig. 1. The visualization graph of a 1GB block-structured AMR dataset
generated by BISICLES [11]. The coarsest (or lowest) level (level 0) covers
the entire global data domain. A finer (or higher) level is generated by refining
a set of boxes on the adjacent coarser level, only covering some sub-regions
of interest with higher resolution which is defined by a refinement ratio. The
boxes at the finer levels represent spatial regions of more interest.

P e
i iy N
s . b
A Y
e S

: i

JHE N)

bl 3 fﬁr’

- %k .
¥ _”,,_‘/"

Fig. 2. A virtual bounding box over the finest level of the AMR data in
Figure 1 and uniform partitions. These partitions would be distributed to the
staging space according to a space-filling curve (e.g., Hilbert), leading to an
unbalanced workload distribution, among other issues.

size is determined, it is easy to know the total number of sub-
regions and how to map each one to the servers evenly, before
any client connects to the servers. If a client needs to access a
certain region of data, it can get the metadata by contacting any
server, making the metadata management of this architecture
very effective over uniform mesh data.

However, the dynamic nature of AMR data (namely, the
numbers, sizes, and locations of the AMR boxes, are usually
unpredictable before a simulation run and keep changing
as the simulation progresses) makes it impossible for the
framework to determine a balanced workload distribution
before a simulation run (see Section II-B for details). Thus, in
order to maintain consistent metadata between all the servers
to monitor the overall workload status, it is necessary to
frequently exchange metadata between all servers at runtime.
This frequent communication between the servers results in a
high runtime synchronization overhead.

B. Issue II: Online Data Organization

In the data staging space which is based on Hilbert curve,
an unbalanced workload distribution could arise because the
AMR boxes may not be evenly divided across the different
partitions, as illustrated in Figure 2. Due to the dynamic
nature of AMR data, it would be impossible for Dataspaces
to determine a suitable virtual bounding box and partition
sizes for all levels of all time-steps before a simulation run.
Moreover, once the data has been partitioned and distributed
to the server nodes, it would be too time consuming to
dynamically optimize an unbalanced workload distribution, as
that would require retrieving, repartitioning, and redistributing
all of the staged data. On the other hand, attempting to achieve
a balanced workload distribution at runtime would be costly
because the majority of the AMR boxes must be received
and evaluated first before a suitable partition size can be
determined. Arguably, any partition methods that are based on
space-filling curves (e.g., Z, Peano, Hilbert curves, etc. [25])
would not be effective at evenly distributing AMR data onto
a set of nodes at runtime.

C. Issue III: Online Spatial Index

Analytics over AMR data are usually performed over the
boxes from all levels that overlap with the specified spatial
region [32], rather than just the boxes on a single level,
as illustrated in Figure 4. However, to retrieve AMR boxes
from all levels using Datapsace’s hash index, where partitions
are given by the Hilbert space-filling curve, it would be
necessary to check the boxes in every partition that overlaps
with the specified query region. This kind of linear checking
is inefficient when faced with a large number of parallel
queries. Moreover, it would appropriate CPU resources that
could otherwise be used for processing other runtime tasks
(e.g., data transportation), reducing parallelism.

1II. METHODS

AMRZone is designed to facilitate data sharing across mul-
tiple AMR-capable scientific applications. To address the three
issues stated in Section II, AMRZone employs a centralized
metadata management architecture design, an AMR boxes-
based runtime workload assignment policy, and a polytree
based spatial index.

A. Architecture

AMRZone consists of a distributed client-server architec-
ture. The server side consists of a set of server processes (or
servers), which run on a user-defined collection of compute
nodes, providing a shared memory based virtual data staging
and management space with public data access functions.
The client side is a set of APIs that can be integrated by
running applications (e.g., simulations or other data analytics
programs) to access (e.g., write, retrieve, or update) the data
in the space. The architecture of ARMZone is depicted in
Figure 3.

Applicationl
4 » Metadata Flow

Procl‘Proc2+ ----- ‘ProcN

¢ » Binary Data Flow

Client API
K ¢

\\‘
Nodel

dserver Processl

A
NodeO =

- NodeN
mserver Process

dserver Processl
Thread Pool

dserver Process2

dserver ProcessN

'\

dserver Process2
TL|T2|T3] (ﬁ; ‘‘‘‘‘‘

> dserver ProcessN
. Pl

Ny 4 o
Client API

Procl‘ProcZ}"'"‘ProcV

Application2

Fig. 3. The client-server architecture of AMRZone consists of two types
of server processes: (1) mservers that only manage metadata, recording how
AMR boxes are distributed across dservers and constructing spatial index; and
(2) dservers that only manage the binary data. Note that Applicationl
and Application2 could be simulations or other data analytics programs.
Also note that AMRzone does not limit the number of applications that can
connect to the server side.

As described in Section II-A, the architecture design in
which a server process is responsible for both maintain-
ing metadata and transportating data introduces a significant
performance overhead with AMR metadata management. To
avoid this issue, AMRzone uses servers that exclusively handle
either the metadata task or the data transportation task:

e Mservers - responsible for metadata, namely recording on
which data-server an AMR box is placed and building a
spatial index

o Dservers - manage the actual binary data of AMR boxes,
such as data storage and transmission

The mservers act as coordinators between the clients and
dservers. For example, when an application demands to write
or read a certain region of data, it first contacts an mserver.
The mserver updates or searches the metadata, and sends back
the communication addresses of a certain set of dservers where
the application can establish connections and perform the data
transportation. Note that our framework does not limit the
number of applications that connect to the data staging space.

With this architecture design, AMRzone is able to eliminate
much metadata synchronization. To accomplish this, AMR-
Zone uses a single mserver to handle all metadata associated
with a single time-step of a simulation. This design eliminates
the need to exchange metadata at runtime for the servers,
preventing a significant performance overhead.

Concerning mservers and dservers placement on the com-
pute nodes, each compute node contains only one mserver
process. If a single node’s memory is not sufficient, the
metadata of different time-steps can be divided to multiple
mservers on multiple compute nodes. Additionally, an mserver
is able to set up a thread pool to handle incoming requests in
parallel. Because threads can share the same memory space
with a process, the threads inside the same processes do

not need to exchange any metadata. Moreover, because the
metadata-related message sizes are usually very small (a few
dozens of bytes at most), this centralized metadata manage-
ment design would not become a performance bottleneck to
the framework. In contrast, multiple dserver processes run
on a single node and there is no multi-threading inside a
dserver process as there is no metadata sharing requirement for
dservers. With this architecture design, AMRzone is able to
achieve a high parallelism. In fact, as we show in Section IV-A,
this architecture gives satisfactory performance when facing
more than 10,000 writers/readers in parallel.

The write and read functions associated with the client APIs
use AMR boxes as the atomic units. We make this design
decision because AMR data is typically accessed by boxes.
For example, in Chombo [9], a popular block-structured AMR
data manipulation framework, a level’s domain is represented
by a collection of boxes. In a previous AMR data analytics
method [32], analysis tasks are performed over a set of boxes.
For more details of the initial prototype implementation of the
framework, refer to Section III-D.

B. Online Data Organization

As stated in Section II-B, when space-filling curves are used
to partition and distribute AMR data, it is difficult to avoid an
unbalanced online workload placement at the staging space. To
address this issue, the mservers of AMRzone do not perform a
static partition of the data domain and, thus, do not require any
global domain information. An mserver checks each received
AMR box and determines its placement at runtime. To support
this task, an mserver maintains a collection of workload tables
to monitor how much data is stored on each dserver and each
node.

Algorithm 1 gives the general procedure that the mservers
use to decide on which dserver to place the binary data of
an AMR box after a write-AMR-box request is received.
First, it searches the dserver nodes workload table for a node
with minimum workload (lines 1-7). Next, it finds the dserver
process with the minimum workload on the specified node
(line 9-14). By considering each of the AMR boxes received
at runtime, the algorithm avoids any static and uniform data
domain partition, thus realizing a far better data distribution
balance across the staging space than space-filling curves.
According to the results in Section IV-B, our framework’s
read performance over AMR data is comparable to the read
performance over balanced uniform mesh data, demonstrating
the effectiveness of this workload assignment policy.

To store the metadata for an individual AMR box, we
employ a linear hash table because of its effective insertion
and lookup operations. A cell of a hash table corresponds to
an AMR box and a combination of a box’s coordinates is used
as the hash key. Inside each dserver process, there is also a
collection of hash tables corresponding to all the levels of all
time-steps. These are used to store and retrieve the boxes’
binary data. When a dserver receives the binary data of a box,
it only needs to insert the box to a hash table.

After a box is placed in the hash table, an mserver uses a
simple pointer-based list to chain boxes at the same level of a
time-step together. This operation would not compromise the
performance of an mserver, as every insertion only involves the
movement of a few lightweight pointers. These lists could be
used for spatial query or constructing a polytree-based spatial
index (III-C).

Algorithm 1: Algorithm of an mserver determines the
placement for an AMR box at the staging space

Input: 1D array of the workload for all staging nodes:
T1[]; the size of T1: N.
Input: 2D array of the workload for all dservers for each
staging node: T2[N][]; the size of T2[N]: S[]
Result: A suitable dserver to place the box: ds_index
/*Find the node with minimum workload:*/
max_wl = maximum possible workload for a node
node_index =0
for i={0, ..., N—1} do
if T1[i] < max_wl then
max_wl = T1[i]
node_index =i
/*Find the dserver process with minimum workload:*/
max_wl = maximum possible workload for a dserver
10 ds_index =0
u for i ={0, ..., S[node_index| —1} do
12 if T2[node_index][i] < max_wl then
13 max_wl = T2[node_index][i]
ds_index =i

o 0 NN AN R W N -

C. Online Spatial Index

To facilitate AMR data sharing across multiple applications,
the framework needs to be able to effectively retrieve data from
a specific spatial region of interest. As shown in a previous
AMR data analytics work [32], spatial queries over AMR data
usually request data from all levels, rather than a single level
(as illustrated in Figure 4). To achieve this goal, an mserver’s
linear hash table, which is used to store the metadata of the
AMR boxes (as described in III-B), is far from efficient.
The hash table requires linearly checking all AMR boxes,
reducing parallelism by competing with CPU resources from
other runtime tasks, such as data transportation.

However, popular spatial indices (e.g., R-tree [21],
Quadtree [26], UB-tree [2], etc.) are unsuitable for AMR data
because they are not capable of capturing the hierarchical
structure inherent to AMR data. The common idea of these
indices is to organize a set of sub-spaces so that the selection
space in the query can be efficiently narrowed down. A one-
to-many relationship between sub-spaces is a necessary pre-
condition to utilize most of those indices. However, relation-
ships between AMR boxes at adjacent levels are many-to-
many (in other words, one coarse box could cover multiple
fine boxes and multiple fine boxes could cover one coarse
box). Even if it is possible to divide a box into a set of

—Levell /Z Levell
—evelo /7771777
~~~"Spatial

Region LevelO

Fig. 4. A spatial query over AMR data. Typically, boxes are retrieved in
multiple levels, rather than a single level. The boxes at level 1 are refined
from bigger boxes at level 0.

iLevel 1

Level O

Time-Step

Fig. 5. The polytree based spatial index for AMR data. Tree nodes correspond
to AMR boxes. Directed edges denote refinement relationship. It effectively
represents the many-to-many refinement relationships of AMR boxes across
different levels.

smaller boxes to reduce this many-to-many relationship into
a one-to-many relationship, this approach may result in a
large number of boxes and add more complicated runtime
procedures to the framework. Not only could this compromise
index construction and search performance, but it could also
introduce network overhead due to more boxes write/read
operations.

To overcome those issues, we propose a polytree [12] based
spatial index for AMR data, as shown in Figure 5. The root
of the polytree represents a single time-step of the simulation.
Each level of the tree corresponds to an AMR level, and the
nodes at the same level of the tree represent the AMR boxes
of that level. Finally, the directed edges from coarser level
nodes to finer level nodes represent refinement relationships.
This polytree index is constructed over the boxes’ metadata
inside the mservers.

Given this index structure, the many-to-many AMR boxes’
refinement relationships are well represented and spatial
queries can be answered efficiently. After finding the AMR
boxes at a level that overlaps with a given spatial region, the
searching at the next finer level can be limited to the boxes
which are refined from those found boxes at the coarser level.
By performing a search in this manner, AMRZone avoids
inefficiently checking all boxes at a certain level.

Algorithm 2 illustrates this complete depth-first search
procedure. The algorithm starts at the coarsest level (level
0) to search for AMR boxes that overlap with the given
spatial region (lines 3-7). When an overlapping box is found,
a recursive function is invoked (lines 9-15) to check the boxes
at the adjacent finer level that are refined from the found
box. In the function, because we are dealing with boxes at
finer levels, it is necessary to refine the given region by a
refinement ratio (line 12) before checking if a box overlaps
with the given spatial region. When the mserver finds a box

satisfying the criteria, it first instructs the dserver that holds
the box’s binary data to transfer the data to the client, and then
it updates the total number of found boxes (line 5-6 and 13-
14). After the entire search concludes, the mserver sends the
client the total number of found boxes. This number can be
used as the condition variable used to terminate the querying
API function.

Algorithm 2: Algorithm of searching the polytree based
index to perform spatial query over one time-step AMR
data
Input: Specified spatial region: R
Input: 1D array of refinement ratio for all levels: REF[]
Input: The built polytree based spatial index: Index
Input: 1D array of boxes at the coarsest level: BoxesO[]
Input: The size of BoxesO[]: N
Result: The metadata of all found AMR boxes
num_found_box =0
/*Search the coarsest level(level 0) first:*/
for i={0, ..., N—1} do
if region_overlap(R,Boxes0[i]) == TRUE then
num_found_box+ +
process_metadata(Boxes0[i])
spatial Query(Boxes0[i],0)

N A N R W N -

o«

/*Function to search box’s(amr_box) refined boxes:*/
9 Procedure spatialQuery (box, lev)

10 ref_boxes = get_re fined_boxes(box,Index)

11 for j ={0, ..., size_of_ref_boxes—1} do

12 if region_overlap(refine_region(R,REF[lev]),
ref_boxes[j]) == TRUE then

13 num_found_box + +

14 process_metadata(ref_boxes|j])

15 spatialQuery(re f_boxes[j],lev+1)

In order to build this polytree based spatial index, the
mserver needs to iterate over boxes at each level. The iteration
at each level is performed over the boxes lists, which is
described in sub-section (III-B). For each box, it must then
check all the boxes at the next finer level to see if there is
refinement relationship. If so, a pointer to the box at finer level
is added. This kind of linear iterations could be inefficient. To
speed up this procedure, AMRZone’s API can divide a level’s
index-building workload to multiple sub-tasks, which would be
processed by different threads inside the mserver in parallel.

The next major issue is when to build this index, as the
boxes generated by a running application could be sent to the
framework in any order. Building the index while boxes are
being received could introduce significant overhead, because
it requires frequently checking the relationships of received
boxes. Instead, after a box is received, an mserver only chains
it to the boxes list at its corresponding level, as described in
the above sub-section(III-B).

A client API function must be explicitly invoked to request
the mserver to build the index. In this way, clients are given
the freedom of choosing when to build the index. The client



applications that use the API to transport data to the staging
space usually have control over how to send the data and know
when the transportation finishes. Therefore, the applications
can schedule the data-write and index-build tasks in a dis-
joint manner to avoid unnecessary overhead. This practice is
common in many data management fields, such as a DBMS
where, after using SQL insertion statements to write data into
the database, users can execute some index-build procedures
to build a more complicated index over the data.

D. Implementation

To construct a prototype for AMRZone, one of the most
important pieces is to implement a data transportation layer.
We only have a few technical choices, such as TCP/IP based
programming APIs, network native APIs, and MPI [20].

TCP/IP based APIs are not designed for high performance
computing. Libraries that are based on network native APIs,
such as DART [15] which is used to build DataSpaces,
are not very portable. For example, DART uses complicated
network native programming APIs to implement data trans-
mission. In other words, there is a different implementation
for the different types of network connections (e.g., Infini-
Band [24], Gemini [8], etc.). As a result, it currently doesn’t
support newer high performance computing systems, such as
Edison [18] at the Lawrence Berkeley National Laboratory
(LBNL). Moreover, there may be a long transition period
before it can be ported to next generation supercomputers,
namely Summit [28] at the Oak Ridge National Laboratory
(ORNL) and Cori [10] at LBNL. To the best of our knowl-
edge, work that uses a network native API to perform data
transmission face this portability issue, more or less.

Thus, to develop a portable prototype of AMRZone, we use
MPI to implement the server processes and data transportation.
Pthread [27] is used to implement the thread pool inside
mservers. We leverage pthread-based mutex and reader/writer
locks to protect the finely partitioned data structures to manage
the metadata inside the mservers and maintain data consistency
while achieving a high degree of parallelism. Finally, it is
important to note that the methods described in the above
three sub-sections are independent of any specific data trans-
portation implementation.

IV. RESULTS

Evaluations of AMRZone are driven by the goal to show
its high performance compared with the existing state-of-the-
art framework as well as its efficiency in sharing AMR data
across multiple applications. Towards this end, we compare
the scalability of write/read tasks between AMRZone and
DataSpaces over uniform mesh data (Section IV-A). In ad-
dition, we evaluate AMRZone’s performance of write/read
actions and spatially constrained accesses over real AMR data
(Section 1V-B and IV-C, respectively).

The AMRZone prototype implementation is evaluated on
Titan [29] at the Oak Ridge National Laboratory (ORNL).
Titan is a Cray XK7 machine with a total of 18,688 compute
nodes. Each node contains 16-core 2.2GHz AMD Opteron

6274 processors and 32GB memory. A pair of nodes share
a Gemini [8] high-speed interconnect router. For each exper-
iment, the total time of all writes/reads (seconds) is reported.
Each experiment is repeated at least 15 times, and the run with
the smallest write/read time is reported since it has the least
influence from outliers with much larger values.

A. Scalability

To demonstrate that our architecture design could handle
a large data transmissions with many parallel writers and
readers, we compare the weak scalability between AMRZone
and DataSpaces. Specifically, we use the officially distributed
DataSpaces1.6 (the latest version) source code. The same
compilation configuration as the DataSpacesl.6 module on
Titan is adopted. Moreover, the code for testing the DataSpaces
server program is unmodified and the same as the one used
to build the module on Titan. We use the client APIs of both
frameworks to develop our own client testing programs.

Since DataSpaces could not handle real AMR data, we
use synthetic 3D double-precision uniform data. A time-step’s
domain is evenly partitioned to a set of sub-regions (or boxes)
by four partition sizes respectively, which are assigned evenly
to a collection of parallel processes. After launching, the set
of parallel processes of a client testing program first write
their assigned boxes of a time-step to the server space and
then retrieve those written boxes from the space. In each
experiment, the write/read operations are performed over 5
time-steps.

The configuration details of the experiments are summarized
in Figure 6. Every row represents a sub-set of experiments
where a box size is used to partition four different domains. As
the domain size increases, so does the total number of boxes
and parallel client/server processes. By default, we use the
minimum number of Titan nodes to hold the client and server
processes. However, because DART [15], on which DataS-
paces is built, utilizes remote-direct-memory-access (RDMA)
to transport data, and the memory available for RDMA on
each Titan node is about 2GB by default, a large box size or
high number of parallel processes means more nodes must
be used to host the same number of processes, otherwise
DataSpaces crashes. Also note that for AMRZone, Figure 6
only shows how many dserver instances are deployed. For all
the experiment cases, we consistently use one mserver instance
with 15 threads.

Figure 7 shows the results of the experiments. In total, there
are 32 comparison scenarios (each one of the 16 cases in
Figure 6 includes write/read senarios). In 22 of these scenar-
ios, AMRZone performs better than DataSpaces. In the best
case it achieves around a 46% improvement. The min, max,
median and average improvement are around 0.9%, 46%, 22%
and 24%, respectively. In the other 10 scenarios, AMRZone
performs worse. In the worst case, it experiences around a
35% higher execution time. The min, max, median and average
reduction are around 0.05%, 35%, 19% and 15%, respectively.
Regarding scalability, AMRZone generally achieves a better
result (less increased execution time while more compute re-



16GB(1024*1024*20
48) total 80GB

32GB(1024*1024*4096)
total 160GB

64GB(2048+2048+2048)
320GB

128GB(2048*2048*4096)
640GB

BISICLES

AMR datasets, each one has about 6700 boxes

8GB

16GB

32GB

64GB

512C(32N) / 5125(32N)

1024C(64N) / 10245(64N)

2048C(128N) / 20485(128N)

4096C(256N) / 40965(256N)

~6700B / ~1.2MB

~6700B / ~2.4MB

~6700B / ~4.8MB

~67008 / ~9.7MB

256

5125(32N)

1024S(64N)

20485(128N)

256*25 (1288 32C(4N)/ |256B  64C(8N)/ |512B  128C(16N)/  |1024B 256C(32N)/
6°256 | 32S(4N) 64S(8N) 128S(16N) 256S(32N)
12812 |512B  128C(8N)/ |1024B  256C(16N)/ [2048B 512C(32N)/  |4096B 1024C(64N)/
8256 | 128S(8N) 256S(16N) 512S(32N) 1024S(64N)
64*64* | 20488 512C(32N)/ |4096B  1024C(64N) |8192B  2048C(128N)/ |16384B 4096C(256N)/

4096S(512N)

3232
*256

8192B  2048C(128N)
/2048S(128N)

163848 4096C(256N)
1 4096S(512N)

32768B  8192C(1024N)
18192S(2048N)

65536B 16384C(2048N)

ic uniform datasets

8GB(32768*32768)

16GB(32768*65536)

32GB(65536*65536)

64GB(65536*131072)

512C(32N) / 5125(32N)

1024C(64N) / 10245(64N)

2048C(128N) / 20485(128N)

4096C(256N) / 40965(256N)

8192B / 1MB(256*512)

8192B / 2MB(512*512)

8192B / 4MB(512*1024)

8192B / 8MB(1024*1024)

/8192S(2048N)

Fig. 6. Configuration details for the scalability comparison experiments.
The row header denotes four domain sizes and the column header gives four
partition sizes. The format, $B $C($N) / $S($N), denotes the total number of
boxes(B), the total number of parallel client processes(C), the total number of
client nodes(N), the total number of DataSpaces server or AMRZone dserver
processes(S) and the total number of server nodes(N).

DataSpaces Write —&—  AMRZone Write —li—
DataSpaces Read —¥— AMRZone Read

Box size: 256*256*256, 5 time-step Box size: 128*128+*256, 5 time-step
T T

T 15 T
20 12 +
9l
15 —
5 v ]
2 —
53 3 i
g st . . o : s
T 16G 32G 64G 128G 16G 32G 64G 128G
5 32Proc 64Proc 128Proc 256Proc 128Proc 256Proc 512Proc 1024Proc
3 Box size: 64*64*256, 5 time-step 6 Box size: 32*¥32*256, 5 time-step
= 10 T T T T
3
L2 8 4 5r P
@
® 6l < b 4
o2 . 1 3
B

4 1 2

2 7 1

0 . . ° L .

16G 326 64G 128G 16G 32G6 64G 128G

512Proc 1024Proc 2048Proc 4096Proc  2048Proc 4096Proc 8192Proc 16384Proc

Domain size for one time-step, and
number of client processes on a time-step

Fig. 7. Results of weak scalability comparison experiments between

AMRZone and DataSpaces, over 5 time-steps. AMRZone generally performs
better compared to DataSpaces (22 out of 32 cases). In the best case, it could
achieve about 46% performance improvement, in the worst case there is about
35% performance reduction.

sources are devoted to process a larger domain size), compared
to DataSpaces. Based on these results, we consider on average
our framework’s performance is comparable with DataSpaces.

B. Performance over AMR Data

Experiments in this section are aimed at evaluating the
write/read performance and workload distribution of AMR
boxes at the server space of our framework. First, we use
the 2D AMR datasets generated by BISICLES [11], a large-
scale Antarctic ice sheet modeling code for climate simulation.
Then, to have a baseline for comparison, we also include
experiments over 2D double-precision synthetic uniform data
with similar configurations. The testing programs know the
exact coordinates of boxes. Figure 8 gives the detailed infor-
mation about the experiments over these two datasets.

The BISICLES-generated datasets consist of double-
precision values and are 1GB in size. Each dataset has 5
levels, with a total of about 6,700 boxes. To create larger
datasets for testing performance, different dataset sizes are
created by expanding all boxes of a time-step 8, 16, 32 and
64 times, respectively. Specifically, we expand the size of each
box, the total number of boxes in a time-step doesn’t change.

Fig. 8. Configuration details for two sets of AMRZone experiments, one over
expanded BISICLES AMR datasets, one over synthetic uniform datasets. Row
2, 6 give the dataset size(GB) for one time-step. For the synthetic datasets,
it also gives global dimension size. Row 3, 7 give the total number of client
processes(C), the total number of client nodes(N), the total number of dserver
processes(S) and the total number of server nodes(N) for the corresponding
time-step. Row 4, 8 give the total number of boxes(B) and box sizes(MB)
in the corresponding time-step. For the synthetic datasets, it also gives the
dimension size for a box. In row 2 and 4, the values for BISICLES datasets
are average ones.

So an original 1GB dataset is expanded 8, 16, 32 and 64
times, respectively. During this procedure, we ensure that the
relative position of the boxes to their adjacent levels does not
change. In each experiment, 512, 1024, 2048 and 4096 parallel
processes (based on the client APIs of AMRZone) are used
to write/read 10 time-steps of data (recall, each write/read is
based on one AMR box). On the server side, we consistently
use 1 mserver process with 15 threads and the minimum
number of nodes to host those client and dserver processes.

In each of these AMR data related experiments, the work-
load assignment policy makes each client process have a
similar amount of data to write/read. This means that some
processes may be assigned a few big boxes, while others may
be assigned more boxes of smaller sizes. Although still not
completely balanced, compared to assigning each process a
similar number of boxes, this approach could achieve a more
balanced workload distribution between client processes, thus
improving performance.

It is important to point out that all of these experiments are
not weak scaling. First, regarding the experiments over AMR
data, although on average the per-process workload remains
the same as the time-step domain size and number of processes
increase, the actual workload for each process is not the same
due to the highly irregular sizes of the AMR boxes. In fact,
in one time-step of this BISICLES simulation, the biggest
box size is 17 times larger than the smallest one. Second,
for the experiments over synthetic data, although the actual
overall workload for each process is consistent, the number of
boxes and box size for each process are different among the
experiments. A higher number of processes with bigger size
data chunks could cause noticeably more network transmission
overhead. Thus, when reviewing the results of the two sets of
experiments, it is more appropriate to compare the two sets to
each other, rather than comparing all experiments of a single
set together.

Figure 9 shows the results of the experiments. As expected,
the performance over AMR data is worse than the performance
over the uniform synthetic data. This could be attributed to the
unbalanced workload distribution for client processes when
writing/reading AMR datasets. In the worst case (reading an
8GB dataset), AMR data related tasks demand more than 36%



Write/Read AMR Data ==
Write/Read Uniform Data
Write Performance Read Performance
8 r r — 10 T T

4 75} 4

4t 4 st

S F 4 25 F F i
0 0

8GB 16GB 32GB 64GB 8GB 16GB 32GB 64GB
512Proc  1024Proc  2048Proc  4096Proc 512Proc  1024Proc  2048Proc  4096Proc

(08g)own pea / oM [e10L
o

Domain size for one time-step, and
number of client processes on a time-step

Fig. 9. Results of boxes write/read performance testing for AMRZone over
real AMR datasets, with comparisons on synthetic uniform data, totally 10
time-steps. In the worst case, AMR data related task demands more than 36%
additional execution time, in the best case it is 2% more. In 5 cases (out of
8), AMR data coupled write/read needs less than 10% more time. Note these
are not weak scaling testings.

8GB 5125 | 16GB 10245 | 32GB 20485 | 64GB 40965
Min 154 MB 151 MB 145 MB 132 MB
Max  |173 MB 187 MB 212 MB 300 MB
Avg 157 MB 157 MB 157 MB 157 MB
Median | 157 MB 156 MB 156 MB 153 MB
a1 156 MB 155 MB 153 MB 148 MB
Q3 158 MB 158 MB 159 MB 161 MB
Fig. 10. The statistics for the AMR data workload on dserver processes.

The row header denotes the four domain sizes and total number of dserver
processes respectively. The column header denotes the minimum, maximum,
average, median, first quartile and third quartile for the workload on dservers
for an experiment related to each domain size. Note, for each domain size,
there are 10 time-steps of AMR data written to the server space.

additional execution time. In the best case (writing a 64GB
dataset), they only need about 2% more additional execution
time. There are three cases in which AMR data coupled tasks
take more than 10% additional time: writing/reading an 8GB
dataset (29%, 36%), and writing a 32GB dataset (11%). A
possible explaination for the two 8GB AMR data related cases
taking a noticeably higher percentage of additional time is that,
the box size of the 8GB synthetic data domain is small, making
write/read operations very efficient; therefore, the two perform
comparatively worse. In all other cases (5 out of 8), AMR
data coupled writes/reads require no more than 10% additional
time. Considering the unbalanced AMR boxes distribution on
the client processes (the biggest box size is 17 times larger
than the smallest one), we believe AMRZone’s performance
over real AMR datasets to be comparable with its performance
over uniform mesh, thus satisfactory.

Finally, the statistics for the AMR data workload on the
dservers is shown in Figure 10. When the number of dservers
is relatively small, the workloads are closer to each other; in
contrast, as the number of dservers increases, the gaps between
the workload also increase. This trend is expected because
workload assignment would become more unbalanced for a
higher number of processes. However, the min, avg, median,
Ql, and Q3 are quite similar to each other for all dataset sizes,
which indicates a good overall balance. Considering that, for
the AMR dataset, the biggest box size is 17 times larger than
the smallest one, we believe AMRZone’s workload assignment
policy on the server side produces satisfactory results.

C. Performance of Spatially Constrained Interaction Coupled
with AMR Data

In this section, we evaluate the performance of AMRZone
under a more complicated data sharing scenario: retrieving the
data (or AMR boxes) of specific spatial regions of interest. The
datasets are the same collection of BISICLES’s 1GB time-
steps used in the previous sub-section (Section IV-B). In this
dataset, the regions that are covered by boxes at finer levels
(for instance, level3 and level4) represent spatial areas of more
interest, for example ice sheet grounding lines, calving fronts,
and ice streams [11]. Figure 1 shows the visualization of one
time-step. At the finest level, there are about 4,100 - 4,300
AMR boxes.

In each of the experiments, we expand all the boxes of a
time-step by 0, 2, 4 and 8 times respectively, similar to what is
done in Section IV-B. Moreover, we first write 10 time-steps
of data to the server space, then use 256, 512, 1024 and 2048
parallel processes (based on the client APIs of AMRZone)
to perform spatially constrained data retrievals over the staged
time-steps one by one. The processes could represent potential
data analytics applications. The coordinates of AMR boxes
at the finest level are used by the client processes as the
spatial query condition to perform the data retrieval. The boxes
assignment policy assigns each process a similar number of
spatial regions. On the server side, we consistently use 1
mserver process with 15 threads and a minimum number of
nodes to host those client and dserver processes. Since in
previous experiments, AMR data write performance has been
evaluated, we only record the execution time of data retrieval
in this section.

Before using the coordinates of an AMR box at the finest
level for a spatial query, the coordinates need to be properly
mapped to the domain of the coarsest level, according to the
refinement ratios. Recall that, for AMR data spatial queries,
boxes at all levels are retrieved rather than a single level(III-C),
and more than one box could be refined from a single coarser-
level box. So, the total amount of data retrieved may be
much larger than the actual size of a time-step. At a single
time-step of the 1GB BISICLES datasets, the above designed
experiments would retrieve about 26,000 AMR boxes and
13GB data in total. So, for the time-steps that are expanded 2,
4 and 8 times respectively, the final retrieved amount of data
is about 26GB, 52GB and 104GB.

To have a point of comparison, we also include AMR boxes
read experiments over the BISICLES datasets (here the testing
program knows the exact coordinates of each AMR box). We
expand the boxes in the 1GB BISICLES datasets 13, 26, 52,
104 times, write them to the staging space and retrieve the
boxes (similar to what is performed in IV-B, a read operation
is provided the exact coordinates of a box, and the workload
assignment policy assigns each process similar amount of data
to read). Figure 11 gives detailed information about these
experiments.

It is important to point out that neither of the two sets of
experiments are weak scaling, because the actual workload for



Spatial constrained data retrieval over BISICLES datasets

~13GB ~26GB ~52GB ~104GB

256C(16N) / 256S(16N) | 512C(32N) / 5125(32N) 1024C(64N) / 10245(64N) 2048C(128N) / 20485(128N)

~26,000Boxes / 0.5MB ~26,000Boxes / 1MB ~26,000Boxes / 2MB ~26,000Boxes / 4MB

Boxes retrieval over BISICLES datasets

~13GB ~26GB ~52GB ~104GB

256C(16N) / 256S(16N) | 512C(32N) / 5125(32N) 1024C(64N) / 10245(64N) 2048C(128N) / 20485(128N)

~6,700Boxes / 2MB ~6,700Boxes / 4MB ~6,700Boxes / 8MB ~6,700Boxes / 16MB

Fig. 11. Configuration details for two sets of AMRZone experiments over
expanded BISICLES datasets, one for spatial constrained data retrieval, one
for AMR boxes retrieval. Row 2, 6 give the amount data(GB) retrieved for
a time-step. Row 3, 7 give the total number of client processes(C), the total
number of client nodes(N), the total number of dserver processes(S) and the
total number of server nodes(N) for the corresponding time-step. Row 4, 8
give generally the total number of boxes(Boxes) and box sizes(MB) in the
retrieved data for a time-step. The values in row 2, 4, 6 and 8 are average
ones.

Spatial Constrained AMR Data Retrieval ===
AMR Boxes Read

Data Retrieval Performance
28 T T

24 B
20 B
16 B

12 B

ZﬁrF ]

13GB 26GB 52GB 104GB
256Proc 512Proc  1024Proc  2048Proc

(09g)awi) [eAsli}al ejep [BjoL

The amount of data retrieved for one time-step, and
number of client processes on a time-step

Fig. 12. Results of spatially constrained data retrieval performance testing
for AMRZone over AMR datasests, with comparisons of AMR boxes read,
totally 10 time-steps. Note these are not weak scaling testings.

each process doesn’t remain the same while the dataset size
and number of processes increase. Thus, when reviewing the
results of the two sets of experiments, it is more appropriate
to compare the two sets to each other, rather than comparing
all experiments of a single set together.

Figure 12 shows the results. For the 13GB, 26GB and 52GB
cases, the spatially constrained data retrieval use about 69%,
63%, and 32% less execution time compared to reading the
AMR boxes. For the 104GB cases, spatially constrained data
retrieval takes about 31% more execution time. An important
fact which should be considered before explaining the results
is that, the spatial access retrieves about 4 times more boxes
than the boxes read (as described earlier). However, when the
average box size is relatively small, transmitting an individual
box is so efficient that even 4 times more transmissions
could still be fast. In addition, a relatively smaller number
of processes helps to achieve a more balanced workload
distribution. Therefore, in the first three cases, the spatial
queries have a better performance than reading the finest-level
AMR boxes.

However, with an increasing average box size, 4 times
more data transportations cause significant network overhead.
Worse, more processes lead to a more unbalanced workload
distribution, further compromising performance. In terms of
the amount of data (MB) one process retrieves for one time-

step spatial access, the ratio of maximum and minimum for
the 2048 processes case is 143:37. So for the last case, spatial
access endures a noticeable performance downgrade. However,
considering the above factors, we believe the spatial AMR data
retrieval performance of AMRZone is satisfactory overall.

Finally, it takes about 0.8 seconds for the mserver to build
the polytree based spatial index for the 10 time-step data in
these experiments. In fact, because expanding the boxes does
not impact the box numbers and relative locations at each level
of a time-step, whether the boxes are expanded or not does not
influence the efficiency of the index construction. Considering
the index is built once and read many times, we believe the
result is satisfactory.

V. RELATED WORKS

In-situ and in-transit data analytics are widely used to avoid
the high overhead related to file system I/O. In-transit refers
to the approach of moving data from the compute nodes
on which a simulation is running to a virtual in-memory
space that is constructed by another collection of nodes, and
performing various analytics tasks over the space. In-situ
means the analytics tasks share the same compute resource as
the running simulation. The term “analytics” can denote ac-
tions like writing data to storage, feature extraction, indexing,
compression, transformation, visualization, etc [30]. Towards
supporting these complicated tasks, a significant amount of
researches have been conducted.

Works which do not involve file system I/O usually study
how to efficiently move data among nodes and provide various
functions to facilitate analytics tasks. EVPath [19] enables
framework users to setup dataflows (or paths) among compute
nodes through which fully-typed data (or events) can flow with
assigned operators, filers, or routing logic. GLEAN [7] makes
data movement topologically-aware and provides functional-
ities like data subfiling and compression. DataSpaces [16]
builds a space-filling curve [23] based index over data in
the virtual space, and provides efficient access functions to
enable live data of any spatial region can be written to or read
from the space. These important features of DataSpaces greatly
facilitate runtime data sharing across applications, compared
to manually implementing these complex communication be-
haviors by low level programming standards, such as MPL
Those data sharing scenarios typically consist of multiple
heterogeneous and coupled simulation processes dynamically
exchanging data on-the-fly [16].

Some other related researches are coupled with file system
I/O and usually based on the ones that only focus on in-
memory data management. Besides inheriting EVPath’s data
transportation, extending its functions and enhancing perfor-
mance, FlexPath [13] is integrated into ADIOS [22] as a ‘trans-
port method’. Adopting the data transportation and manipula-
tion methods of EVPath, DataStager [1] provides a phase-
aware congestion avoidance data movement scheduler and
compatible interface with ADIOS. PreDatA [31] is also based
on EVPath and provides a few pluggable data analytics func-
tions, such as sorting, plotting, and reducing/integrating with



ADIOS. The method in [3] combines DataSpaces, ADIOS, and
other in-situ techniques to speed up scientific analysis tasks.
Based on DataSpaces, ActiveSpaces [14] supports defining and
executing data processing routines in the space. SDS [17]
provides efficient scientific data management and query as
services.

All above works are for uniform mesh data. Moreover, only
DataSpaces can build an explicit online data index and provide
a public data access API, which are indispensable features
for supporting runtime data sharing across applications. To
the best of our knowledge, runtime data sharing across AMR
capable applications has not been studied before.

VI. CONCLUSION

In this paper, we first identify three major challenges for
developing a framework to facilitate AMR data sharing across
multiple scientific applications. We then propose a frame-
work, AMRZone, which addresses these challenges. Besides
addressing these issues, AMRZone’s performance and scala-
bility are even comparable with the existing state-of-the-art
framework when tested over uniform mesh.

VII. ACKNOWLEDGMENT

We would like to thank the National Energy Research
Scientific Computing Center and Oak Ridge National Lab-
oratory for providing the computing resources. Oak Ridge
National Laboratory is managed by UTBattelle for the LLC
U.S. D.O.E. under Contract DE-AC05-000R22725. Support
for this work is provided by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
and the U.S. National Science Foundation (Expeditions in
Computing and EAGER programs). Work at the Lawrence
Berkeley National Laboratory is supported by the Director,
Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES
[1

—

H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
Datastager: scalable data staging services for petascale applications.
Cluster Computing, 13(3):277-290, 2010.

[2] R. Bayer. The universal B-Tree for multidimensional Indexing. Mathe-
matisches Institut und Institut fiir Informatik der Technischen Universitit
Miinchen, 1996.

[3] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, et al. Combining in-situ
and in-transit processing to enable extreme-scale scientific analysis. In
SC, pages 1-9. IEEE, 2012.

[4] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of computational Physics, 82(1):64-84, 1989.

[51 M. J. Berger and A. Jameson. Automatic adaptive grid refinement for
the euler equations. AIAA journal, 23(4):561-568, 1985.

[6] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic par-
tial differential equations. Journal of computational Physics, 53(3):484—
512, 1984.

[7]1 H. Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann, J. Leigh,

M. Papka, and K. Harms. Scalable parallel i/o on a blue gene/q

supercomputer using compression, topology-aware data aggregation, and

subfiling. In Parallel, Distributed and Network-Based Processing (PDP),

2014 22nd Euromicro International Conference on, pages 107-111.

IEEE, 2014.

(8]

91

[10]

[11]

[12]

(13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[31]

[32]

R. D. Chamberlain, M. Franklin, C. S. Baw, et al. Gemini: An optical
interconnection network for parallel processing. Parallel and Distributed
Systems, IEEE Transactions on, 13(10):1038-1055, 2002.

P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini,
and B. Van Straalen. Chombo software package for amr applications-
design document, 2000.

Cori at  the lawrence berkeley national
http://www.nersc.gov/users/computational-systems/cori/.
S. L. Cornford, D. F. Martin, D. T. Graves, D. F. Ranken, A. M.
Le Brocq, R. M. Gladstone, A. J. Payne, E. G. Ng, and W. H. Lipscomb.
Adaptive mesh, finite volume modeling of marine ice sheets. Journal
of Computational Physics, 232(1):529-549, 2013.

S. Dasgupta. Learning polytrees. In Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence, pages 134-141.
Morgan Kaufmann Publishers Inc., 1999.

J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki. Flexpath: Type-based
publish/subscribe system for large-scale science analytics. In CCGrid,
pages 246-255. IEEE, 2014.

C. Docan, M. Parashar, J. Cummings, and S. Klasky. Moving the code
to the data-dynamic code deployment using activespaces. In IPDPS,
pages 758-769. IEEE, 2011.

C. Docan, M. Parashar, and S. Klasky. Dart: a substrate for high speed
asynchronous data io. In HPDC, pages 219-220. ACM, 2008.

C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and
coordination framework for coupled simulation workflows. In HPDC,
pages 25-36. ACM, 2010.

B. Dong, S. Byna, and K. Wu. Parallel query evaluation as a scientific
data service. In Cluster Computing (CLUSTER), 2014 IEEE Interna-
tional Conference on, pages 194-202. IEEE, 2014.
Edison at the lawrence  berkeley  national
http://www.nersc.gov/systems/edison-cray-xc30/.

G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan. Event-based
systems: opportunities and challenges at exascale. In Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, page 2. ACM, 2009.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard.
Parallel computing, 22(6):789-828, 1996.

A. Guttman. R-trees: a dynamic index structure for spatial searching,
volume 14. ACM, 1984.

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, et al. Hello adios: the
challenges and lessons of developing leadership class i/o frameworks.
Concurrency and Computation: Practice and Experience, 26(7):1453—
1473, 2014.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. Knowledge and
Data Engineering, IEEE Transactions on, 13(1):124-141, 2001.
G. F. Pfister. An introduction to the infiniband architecture.
Performance Mass Storage and Parallel I/0, 42:617-632, 2001.
H. Sagan. Space-filling curves. Springer Science & Business Media,

laboratory.

laboratory.

High

H. Samet and R. E. Webber. Storing a collection of polygons using
quadtrees. ACM Transactions on Graphics (TOG), 4(3):182-222, 1985.
W. R. Stevens and S. A. Rago. Advanced programming in the UNIX
environment. Addison-Wesley, 2013.

Summit at the oak ridge national laboratory.
https://www.olcf.ornl.gov/summit/.
Titan at the oak ridge national laboratory.

https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/.
F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky,
and N. Podhorszki. In-situ i/o processing: A case for location flexibility.
In Proceedings of the sixth workshop on Parallel Data Storage, pages
37-42. ACM, 2011.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. Predata—
preparatory data analytics on peta-scale machines. In IPDPS, pages
1-12. IEEE, 2010.

X. Zou, K. Wu, D. A. B. II, D. F. Martin, S. Byna, H. Tang, K. Bansal,
T. J. Ligocki, H. Johansen, and N. F. Samatova. Parallel in situ detection
of connected components in adaptive mesh refinement data.



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.





