
OptCon: An Adaptable SLA-Aware Consistency
Tuning Framework for Quorum-based Stores

Subhajit Sidhanta∗, Wojciech Golab†, Supratik Mukhopadhyay∗ and Saikat Basu∗
∗Louisiana State University, Baton Rouge, Louisiana, USA, Email: {ssidha1, supratik, saikat}@csc.lsu.edu

†University of Waterloo, Waterloo, Ontario, Canada, Email: wgolab@uwaterloo.ca

Abstract—Users of distributed datastores that employ
quorum-based replication are burdened with the choice of a
suitable client-centric consistency setting for each storage oper-
ation. The above matching choice is difficult to reason about as
it requires deliberating about the tradeoff between the latency
and staleness, i.e., how stale (old) the result is. The latency
and staleness for a given operation depend on the client-centric
consistency setting applied, as well as dynamic parameters such as
the current workload and network condition. We present OptCon,
a novel machine learning-based predictive framework, that can
automate the choice of client-centric consistency setting under
user-specified latency and staleness thresholds given in the service
level agreement (SLA). Under a given SLA, OptCon predicts
a client-centric consistency setting that is matching, i.e., it is
weak enough to satisfy the latency threshold, while being strong
enough to satisfy the staleness threshold. While manually tuned
consistency settings remain fixed unless explicitly reconfigured,
OptCon tunes consistency settings on a per-operation basis with
respect to changing workload and network state. Using decision
tree learning, OptCon yields 0.14 cross validation error in pre-
dicting matching consistency settings under latency and staleness
thresholds given in the SLA. We demonstrate experimentally that
OptCon is at least as effective as any manually chosen consistency
settings in adapting to the SLA thresholds for different use
cases. We also demonstrate that OptCon adapts to variations
in workload, whereas a given manually chosen fixed consistency
setting satisfies the SLA only for a characteristic workload.

I. INTRODUCTION

Many quorum-based distributed data stores [22, 28, 8],
allow the developers to explicitly declare the desired client-
centric consistency setting (i.e., consistency observed from the
viewpoint of the client application) for an operation. Such
systems accept the client-centric consistency settings for an
operation in the form of a runtime argument, typically referred
to as the consistency level. The performance of the system,
with respect to a given operation, is affected by the choice of
the consistency level applied [35].

From the viewpoint of the user, the most important per-
formance parameters affected by the consistency level applied
are the latency and client-observed consistency anomalies, i.e.,
anomalies in the result of an operation observed from the
client application, such as stale reads. Consistency anomalies
are measured in terms of the client-centric staleness [36],
i.e., how stale (old) is the version of the data item (observed
from the client application) with respect to the most recent
version. According to the consistency level applied, the system
waits for coordination among a specific number of replicas
containing copies (i.e., versions) of the data item accessed by
the given operation [22]. If the system waits for coordination
among a smaller number of replicas, the chance of getting a

stale result (i.e., an older version) increases. Also, the latency
for the given operation depends on the waiting time for the
above coordination; hence, in turn, depends on the consistency
level applied. For example, a weak consistency level for a read
operation in Cassandra [22], like READ ONE, requires only
one of the replicas to coordinate successfully, resulting in low
latency and high chances of a stale read. Hence, while choosing
the consistency level, developers must consider how this choice
affects the latency and staleness for a given operation.

The chosen consistency level must be matching with re-
spect to the latency and staleness thresholds specified in the
given service level agreement (SLA), i.e., it must be weak
enough to satisfy the latency threshold, while being strong
enough to satisfy the staleness threshold. Consider a typical use
case at Netflix [10] where a user browses recommended movie
titles. Such use cases require real-time response [19]. Hence
the SLA typically comprises low latency and higher stale-
ness thresholds. For the given SLA, workload, and network
state, the matching choice is a weak read-write consistency
level (like ONE/ANY in Cassandra). If the developer applies
stronger consistency level, the resulting high latency might
violate the SLA.

With the current state-of-the-art [35], the developers have
to manually determine a matching consistency level for a given
operation at development time. Reasoning about the above
choice is difficult because of: 1) the large number of possible
SLAs, 2) unpredictable factors like changing network state and
varying workload that impact the latency and staleness, and 3)
the absence of a well-formed mathematical relation connecting
the above parameters [2]. This makes automated consistency
tuning under latency and staleness thresholds in the SLA a
highly desirable feature for quorum-based datastores.

We present OptCon 1, a novel framework that automatically
determines a matching consistency level for a given operation
under a given SLA. Due to the absence of a closed-form
mathematical model capturing the impact of the consistency
level, current workload, and network state, on the observed
latency and staleness, OptCon applies machine learning [15]
to train a model for predicting a matching consistency level
under the given SLA, workload, and network state. For the
Netflix use case, taking into account the read-heavy workload,
the current network state, and the SLA thresholds, OptCon
predicts a weak consistency level. The contributions of this
paper are:

1The project is partially supported by Army Research Office (ARO)
under Grant W911NF1010495. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the ARO or the United States Government.

1

ar
X

iv
:1

60
3.

07
93

8v
1

 [
cs

.D
C

]
 2

5
M

ar
 2

01
6

• We introduce OptCon, a novel machine learning-
based framework, that can automatically predict a
matching consistency level that satisfies the latency
and staleness thresholds specified in a given SLA,
i.e., the predicted consistency level is weak enough
to satisfy the latency threshold, and strong enough
to satisfy the staleness threshold. Using decision tree
learning, OptCon yields a cross validation error of
0.14 in predicting a matching consistency level under
the given SLA.

• Experimental results demonstrate that OptCon is at
least as effective as any manually chosen consistency
level in adapting to the different latency and staleness
thresholds in SLAs. Furthermore, we also demonstrate
experimentally that OptCon surpasses any manually
chosen fixed consistency level in adapting to a varying
workload, i.e., OptCon satisfies the SLA thresholds for
variations in the workload, whereas a manually chosen
consistency level satisfies the SLA for only a subset
of workload types.

II. MOTIVATION

A. Choice of the SLA Parameters

Following prior research by Terry et al. [35], we include
latency and staleness in the SLA for operations on quorum-
based stores. The choice of consistency level directly affects
the latency for a given operation on a quorum-based datastore
[22]. While Terry et al. [35] use categorical attributes for
specifying the desired consistency (such as read-my-write,
eventual, etc.) in the SLA, we use a more fine-grained SLA,
that accepts threshold values for the client-centric staleness
[16]. Golab et al. [16] demonstrate that both the proportion
and severity of stale results increases from stronger to weaker
consistency levels. The use of a client-centric staleness metric
in the SLA enables the developer to specify, on a per-operation
basis, the exact degree of staleness of results, that a given client
application can tolerate.

Following Terry et al. [35], we do not include throughput
in the SLA. But it is still desirable to have throughput [9] as
a secondary optimization criterion, once the SLA thresholds
are satisfied. Depending on the SLA, a set of consistency
levels can be matching with respect to the latency and staleness
thresholds given in the SLA. Consider a real-time application
(such as an online shopping cart) that demands moderately
low latency and tolerates relatively higher staleness in the
SLA. In such cases, any weaker consistency level (like ONE
or ANY in Cassandra can yield latency and staleness values
within the given SLA thresholds. In such cases of multiple
matching consistency levels, OptCon chooses the one that
maximizes throughput. Also, we do not consider parameters
like keyspace size, replication factor, and certain other server-
centric parameters in our model, since our focus is optimizing
client-centric performance [16].

B. Motivation for Automated Consistency Tuning

The large number of possible use cases [9], each com-
prising different SLA thresholds for latency and staleness,
makes manual determination of a matching consistency level

a complex process. The latency and staleness are also af-
fected [2] by the following independent variables (parameters):
1) the packet count parameter, i.e., the number of packets
transmitted during a given operation, represents the network
state [22], and 2) the read proportion (i.e., proportion of
reads in the workload) and thread count, that represent the
workload characteristics. Manually reasoning about all of these
parameters combined together is difficult, even for a skilled
and experienced developer. Further, unpredictable variations
in workload, network congestion, and node failures may ren-
der a particular consistency level, manually pre-configured at
development time, infeasible at runtime [26, 35].

III. CHALLENGES IN AUTOMATING CONSISTENCY
TUNING

Currently, there is no closed-form mathematical model
[2] that represents the effect of the consistency level on the
observed staleness and latency, with respect to the independent
variables. Bailis et al. [2] base their work upon the simplifying
assumption that writes do not execute concurrently with other
operations. Hence, it is not clear from [2] how to compute
the latency and staleness from a real workload. Pileus and
Tuba [35, 1] are the only systems that provide fine-grained
consistency tuning using SLAs. But, instead of predicting,
these systems perform actual trials on the system, and select
the consistency level corresponding to the SLA row that pro-
duces minimum resultant utility, based on the trial outcomes.
The trial-based technique can produce unreliable results due
to the unpredictable parameters like network conditions and
workload that affect the observed latency and staleness. Thus,
predictions based on the outcomes of the trial phase may
be unsuitable in the actual running time of the operation.
Sivaramakrishnan et al. [33] use a static analysis approach
to determine the weakest consistency level that satisfies the
correctness conditions declared in the contract. They do not
consider the tradeoff between staleness and latency, and cannot
dynamically adapt to varying workload and network state.

IV. DESIGN OF OPTCON

A. Design Overview

In the absence of a closed-form mathematical model
relating the consistency level to the observed latency and
staleness, OptCon leverages machine learning-based prediction
techniques [15], following the footsteps of prior research
[21, 38, 32]. OptCon is the first work that trains on historic
data, and learns a model M relating the consistency level and
the input parameters (i.e., the workload and network state)
to the observed latency and staleness. The model M can
predict a matching consistency level with respect to the given
SLA thresholds for latency and staleness, under the current
workload and network state. A matching consistency level is
weak enough to satisfy the latency threshold, and simultane-
ously strong enough to satisfy the staleness threshold. Our
definition of matching consistency level is a modified version
of the correct consistency level in QUELA [33]. For multiple
consistency levels satisfying the given SLA thresholds, OptCon
predicts the consistency level that maximizes the throughput.

In contrast to program verification-based static (compile
time) approaches [33], OptCon provides on the fly predictions

2

based on dynamic (runtime) values of the input parameters,
i.e., the current workload and the network state (Section II-B).
Thus, OptCon tunes the datastore according to any dynamic
variations in the workload and any given SLA. Furthermore,
unlike the state-of-the-art trial-based techniques that base de-
cisions on the values of the parameters obtained during the
trial phase [35, 1], OptCon provides reliable predictions (see
Section V-G and V-H), taking into consideration the actual
runtime values of the input parameters.

Average Latency Staleness
≤100ms ≤5ms
≤50ms ≤10ms
≤25ms ≤15ms

TABLE I: Example subSLAs

Like Terry et al. [35], users provide latency and staleness
thresholds to OptCon in form of an SLA, illustrated in Table
I. Each SLA consists of rows of subSLAs, where each subSLA
row, in turn, comprises two columns containing the thresholds
for latency and staleness, respectively. Instead of categorical
attributes [35], OptCon uses threshold values for staleness [16]
in the subSLAs. Unlike Terry et al., subSLAs in OptCon do
not have a utility column. Also, subSLAs are not necessary
ordered. If the thresholds for a particular subSLA are violated,
OptCon marks the operation as failed with respect to the given
subSLA. The handling of such failure cases will depend on the
application logic, and is not part of the scope of this paper.

Instead of modifying the source code of distributed data-
stores, OptCon is designed as a wrapper over existing dis-
tributed storage systems. We have implemented and tested
OptCon on Cassandra, which follows the Dynamo [13] model.
Among the Dynamo-style systems, while Cassandra organises
the data in the form of column families, Voldemort [34] and
Riak [28] are strictly key-value stores. Also, Cassandra and
Riak are designed to enable faster writes, whereas Voldemort
enables faster reads. But the principles governing the internal
synchronization mechanisms are similar for all these systems.
Hence the consistency level choices affect the observed latency
and staleness in a similar fashion for all these systems. Thus,
OptCon can potentially be integrated with any Dynamo-style
system.

B. Architecture

Fig. 1: The architecture of OptCon: rectangles denote modules
and the folded rectangle denotes dataset.

OptCon (refer to Figure 1) consists of the following mod-
ules: 1) The Logger module records the independent variables
(Section II-B), the observed latency, and staleness, obtained
using experiments performed on the datastore with benchmark
workloads. It collates these parameters into a training data

corpus, which acts as the training dataset. 2) The Learner
module learns the model M (refer Section V-C) from the
training dataset, and predicts a matching consistency level that
maximizes the throughput. 3) The Client module calls the other
modules, and executes the given operation on the datastore.

During the training phase, the Client module runs a simula-
tion workload on the given quorum-based datastore. The Client
calls the Logger module (Figure 1) to collect the independent
variables (parameters) and the observed parameters for the
operation from the JMX interface [22], and appends these
parameters into the training data. The Client then calls the
Learner module, which trains the model M from the training
data applying machine learning techniques. During the predic-
tion phase, the Client calls the Learner, with runtime arguments
comprising the subSLA thresholds and the current values of
the independent variables. The subSLA (and also the SLA)
can be varied on a per-operation basis. The Learner predicts
a matching consistency level from the learnt model M. The
Client performs the given operation on the datastore with the
predicted consistency level.

C. Design of the Logger Module

1) Model Parameters Collected by the Logger: For the
reasons explained in Section II-A, the latency L, i.e., time
delay for the operation, and client-centric staleness S, are
considered as the model parameters that need to satisfy a
given SLA. The throughput T is considered as a secondary
optimization criterion. As discussed in Section II-A, server
centric parameters, like replication factor and keyspace size,
are not considered. Following the reasoning in Section II-B,
the independent variables (parameters) for learning the model
M are: 1) the read proportion (RW) in the operation, 2) the
thread count (Tc), i.e., the number of user threads spawned
by the client, 3) the packet count (P), i.e., the number
of network packets transmitted during the operation, and 4)
the consistency level C, provided as a categorical attribute
containing attribute values specific to the given datastore.

Most operations on quorum based stores are not instan-
taneous, but are executed over certain time intervals [16].
Following [2], the Logger uses the average latency over a
time interval of one minute for measuring L. The Logger
computes S in terms of the Γ metric of Golab et al. [16].
As demonstrated in the above work, Γ is preferred over other
client-centric staleness measures for its proven sensitivity to
workload parameters and consistency level. Section V-E es-
tablishes the significance of the above parameters with respect
to the OptCon model. Section V-F demonstrates the accuracy
of the model comprising the that the above parameters.

2) Computation of Γ as the Metric for Client-centric Stale-
ness: The metric Γ is based upon Lamport’s atomicity property
[24], which states that operations appear to take effect in some
total order that reflects their “happens before” relation in the
following sense: if operation A finishes before operation B
starts then the effect of A must be visible before the effect of
B. We say that a trace of operations recorded by the logger is
Γ-atomic if it is atomic in Lamport’s sense, or becomes atomic
after each operation in the trace is transformed by decreasing
its starting time by Γ/2 time units, and increasing its finish time
by Γ/2 time units. In this context the start and finish times are

3

shifted in a mathematical sense for the purpose of analyzing
a trace, and do not imply injection of artificial delays; the
behavior of the storage system is unaffected.

The per-key Γ score quantifies the degree of client-centric
staleness incurred by operations applied to a particular key.
We considered average per-key Γ, but settled for percentile
per-key Γ since it takes into account the skewed nature of the
workloads.

D. Design of the Learner Module

In OptCon, building the model M from training examples
(Figure 1) is a one-time process, i.e., the same model can be
reused for predicting consistency levels for all operations. Even
with node failures, the model may not need to be regenerated
since the training data remain unchanged, only the failed
predictions, resulting due to node failure, need to be rerun.
However, the model will need to be retrained in certain cases
where the behavior of the system with respect to the latency
and staleness changes, such as when a storage system receives
a software upgrade.

1) Overview of Possible Learning Techniques: We provide
a brief overview of the possible Learning techniques and
their applicability to OptCon. We describe the implementation
details, including the various configuration parameters, of each
learning algorithm in Section V-D. Performance analysis and
insights gathered from each technique are given in Section
V-F2. We consider Logistic regression and Bayesian learning
as they can help visualize the significance of the model param-
eters and the dependency relations among these parameters,
and thus can provide intuition to the developer for developing
complex and more accurate models [15]. We also consider
Decision Tree, Random Forest, and Artificial Neural Networks
(ANN), since they can produce more accurate predictions,
being directly computed from the data. We consider these
approaches in the order of their performance given in Table
III, in terms of various model selection metrics. We leave
the choice of a suitable learning technique to the developer,
rendering flexibility to the framework. Based on our evaluation
of the learning algorithms, developers can choose the learning
technique that best suits the respective application domain and
use case.

With logistic regression approach, we fit two logit (i.e.,
logistic) functions for the two dependent variables L and S as
follows: logit (π (L)) = β0 + β1C + β2RW + β3P + β4Tc
and logit (π (S)) = β4 + β5C + β6RW + β7P + β8Tc,
where C is the applied consistency level, L is the observed
latency, S is the observed staleness, RW is the proportion
of reads, P is number of packets transmitted, and Tc is the
number of threads during an operation. βi are the coefficients
estimated by iterative least square estimation, and π is the
likelihood function. Using ordinary least square estimation,
we iteratively minimize a loss function given by the differ-
ence of the observed and estimated values, with respect to
the training dataset. For eliminating overfitting, we perform
L1 regularization with the Lasso method. Next we consider
decision tree learning algorithm because of its simplicity,
speed, and accuracy. The given problem can be viewed as a
classification problem, which classifies the training dataset into
classes based on whether the observed latency and staleness

(corresponding to each row) fall within the given SLA thresh-
olds. In fact, the problem statement, i.e., choosing a matching
consistency level, can be viewed as a classification problem.
The modelling technique using Decision Tree comprises the
following phases: 1) Labelling: On the fly computations for
maximizing T (i.e., the secondary optimization criteria) in the
prediction phase would introduce considerable overhead. Since
the latency is considered before T is maximized, the additional
overhead may result in violation of the latency threshold in
the SLA. Hence, OptCon performs the computations for T
in the labelling phase itself. Using exhaustive search, we
label each row in the training dataset with the highest T
corresponding to a given values of RW , Tc and P , such
that the SLA parameters L and S are within the given SLA
thresholds. 2) Training: Next we apply decision tree learning
for training a model M from the labelled dataset. Use of
error pruning techniques mitigates issues of overfitting [15].
Next, we consider the random forest algorithm that applies
ensemble learning to bootstrap multiple weak decision tree
learners to generate a strong classifier. It iteratively chooses
random samples with replacement from the training dataset,
and trains a decision tree on each of the samples. We take the
average of the predictions from each decision tree to obtain the
final prediction with respect to a test dataset. For the Bayesian
approach, we make the following simplifying assumptions
to make our problem suitable for Bayesian learning: A1) a
prior logistic distribution exists for each of RW , Tc, P , and
C (see Section IV), A2) the posterior distributions for L,
and S are conditionally dependent on the joint distribution
of 〈RW, Tc, P, C〉, and A3) the target features L and
S are conditionally independent. With these approximations,
we plug-in the resultant dependency graph from the Logistic
Regression approach as input to the Bayesian learner. Despite
these assumptions and approximations, the Bayesian technique
can provide intuition to the developers, that can be used to
build a more accurate model. Next, we consider Artificial
Neural Networks (ANN) for learning a model M. Though
the training phase for ANN is not a factor (since training
occurs once), the overhead for the prediction phase is still
considerably high (Section V-C) due to model complexity.

V. IMPLEMENTATION AND EVALUATION

A. Experimental Setup

Following [16], we have run our experiments on a testbed
of 20 Amazon Ec2 small instances, located in the same Ec2
region, running Ubuntu 13.10, loaded with Cassandra with a
replication factor of 5. Our models are learnt from a training
dataset comprising 23040 rows, and a testing dataset of 2560
rows, generated by running varying YCSB [11] workloads.
We have used the NTP (Network Time Protocol) protocol
implementation from ntp.org to bring down the maximum
clock skew to 5 ms.

B. Latency and Staleness Ranges Used in the subSLAs

Studies [14] suggest that the latency for standard web
applications falls in the range of 75-140 ms. The Pileus system
[35], which includes latency in subSLAs as well, uses values
between 200 to 1000 ms as the latency threshold. Further
reducing the lower bound to favor availability, we choose any
value between 101 and 150ms as a candidate for the threshold

4

of latency in OptCon. Following the observations from the
Riak deployment at Yammer [17], Bailis et al. [2] uses a
range of 1.85-13.6 ms for the staleness bounds, given as the
t-visibility values. Hence, following [2], we choose a value
within the above range as the staleness threshold. Rounding
the bounding values for the ranges given above, our subSLAs
use values in the ranges 101-150 ms and 1-13 ms as thresholds
for L and S, respectively.

C. OptCon Framework Overhead

Training the model being a one-time process, the latency
overhead due to the training phase is negligible during an
operation. However, there is still considerable overhead due to
the prediction phase, especially with a large training dataset.
The prediction phase spans from the call to the Learner module
till the predicted consistency level is returned by the Learner
module. The average, variance and standard deviation of the
overhead are 1 ms, 0.25, and 0.37, respectively, with decision
tree learning. The average overhead with different learning
techniques is given in Table III.

D. Implementation of the Modules: Logger and Learner

OptCon is developed as a Java-based wrap-
per over Cassandra v2.1.0. The source code
can be found in the github repositories: https:
//github.com/ssidhanta/YCSBpatchpredictconsistency/,
https://github.com/ssidhanta/TrainingModelGenerator/, and
https://github.com/ssidhanta/HectorCient/. The Logger
module is implemented as an extension over the YCSB
0.1.4 [11] framework. It runs as a daemon on top of the
datastore, listening for the parameters using the built-in
JMX Interface. Logistic Regression, SVM, and Neural
Network implementations of the Learning module use Matlab
2013b’s statistical toolbox. Decision Tree and Random Forest
are implemented using Java APIs from Weka, an open
source machine learning suite. The Bayesian approach uses
Infer.net, an open source machine learning toolbox under the
.NET framework. We summarize the important configuration
parameters in the Learner implementations. Logistic regression
uses a minimization function with additional regularization
weights, multiplied by a tunable L1 norm term Λ. We set α =
0.05 and Λ = 25. Decision tree uses a confidence threshold of
0.25 for pruning, and uses random data shuffling with seed =
1. Random forest bootstraps 100 decision trees, and introduces
low correlation among the individual trees by selecting a
random subset of the features at each split boundary of the
component trees. The Bayesian method uses a precision of
0.1. The ANN is implemented as a two-layer perceptron, with
default weights = 0 and the default bias = 0.

E. Dimensionality Reduction: Significance of the Model Pa-
rameters

We apply dimensionality reduction [15] to determine the
features (parameters) that are relevant to the problem, and
have low correlation among themselves. We use the following
techniques to detect any redundant feature that can be omitted
without losing information. Rank features obtains the most
significant features by computing different criterion functions.
It is applied as a filtering (or a preprocessing) step before
the training phase. On the other hand, sequential feature

Parameter Rank Features
Technique

Sequential Attribute
Selection Technique

Misclassification
Error For Random Forest

C 4.81 1 0.22
RW 0.9 1 1.11

P 2.78 1 0.24

TABLE II: Significance of the Model Parameters: As per
descending order of Rank Features and Sequential Attribute
Selection, and ascending order of Misclassification error

selection is a wrapper technique, that sequentially selects the
features until there is no substantial improvement (given by the
deviance of the fitted models) in the predictive power for an
included feature. For the random forest model, we evaluate the
significance of the features in the ensemble of component trees
using the misclassification error. Table II presents the results
of the above techniques on the model parameters C, RW ,
and P . Sequential feature selection outputs 1 for all the model
parameters, indicating that all the parameters are significant.
Rank features ranks the relative significance of the features
in the order C, P , and RW . Misclassification error ranks the
features in the order RW , P , and C. The order of the relative
significance is different with each dimensionality reduction
technique; the developer must choose the suitable ranking
approach based on the learning technique. For example, the
misclassification error criterion is to be used for the random
forest technique.

F. Comparison of the Predictive Power of the Learning Tech-
niques Using Model Selection Metrics

1) The Model Selection Metrics Used: Cross validation
error (CV error) [15] is the most common and widely used
model selection metric. It represents the accuracy of the model
with respect to an unseen test dataset, which is different from
the original dataset used to train the model. Using 10-fold cross
validation, we partition the dataset into 10 subsamples, and run
10 rounds of validation. In each round a different subsample is
used as the test dataset, while we train the model with the rest
of the dataset. We compute the average of the mean squared
error values for all validation rounds to obtain the mean CV
error (Table III). We also use the Akaike Information Criterion
(AIC) [7] which quantifies the quality of the generated model
in terms of the information loss during the training phase.
For obtaining AIC, we first compute the likelihood of each
observed outcomes in the test dataset with respect to the
model. We compute the maximum log likelihood L, i.e., the
maximum of natural logarithms over the likelihood of each of
the observed outcomes. AICC [7] (Table III) further improves
upon AIC, penalizing overfitting with a correction term for
finite sample size n. Thus AICC = 2k − 2 lnL + 2k(k+1)

n−k−1 ,
where k is the number of model parameters. Apart from AICC,
we also compute the Bayesian Information Criterion (BIC) [7]
that uses the Bayesian prior probability estimates to penalize
overfitting. Thus, BIC = 2k lnN−2 lnL, where the additional
parameter N for the sample size enables BIC to assign a
greater penalty on the sample size than AICC. At smaller
sample size, BIC puts lower penalty on the free parameters
than AICC, whereas the penalty is higher for larger sample
size (because it uses k lnN instead of k). Normally, the BIC
and AICC scores (Table III) are used together to compare
the models, AICC detects the problem of overfitting and BIC

5

https://github.com/ssidhanta/YCSBpatchpredictconsistency/
https://github.com/ssidhanta/YCSBpatchpredictconsistency/
https://github.com/ssidhanta/TrainingModelGenerator/
https://github.com/ssidhanta/HectorCient/

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with OptCon
Latency with OptCon

(a) Operations With Consistency Levels Predicted
by OptCon satisfy the subSLA in 100% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ALL READ/ALL WRITE
Latency with ALL READ/ALL WRITE

(b) Operations With READ ALL/WRITE ALL
satisfy the subSLA in 70% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ALL READ/QUORUM WRITE
Latency with ALL READ/QUORUM WRITE

(c) Operations With READ ALL/WRITE QUO-
RUM satisfy the subSLA in 75% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Latency with QUORUM READ/QUORUM WRITE

(d) Operations With READ QUORUM/WRITE
QUORUM satisfy the subSLA in 75% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with QUORUM READ/ALL WRITE
Latency with QUORUM READ/ALL WRITE

(e) Operations With READ QUORUM/WRITE
ALL satisfy the subSLA in 35% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ALL READ/ANY WRITE
Latency with ALL READ/ANY WRITE

(f) Operations With READ ALL/WRITE ANY
satisfy the subSLA in 30% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ALL READ/ONE WRITE
Latency with ALL READ/ONE WRITE

(g) Operations With READ ALL/WRITE ONE
satisfy the subSLA in 30% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with QUORUM READ/ANY WRITE
Latency with QUORUM READ/ANY WRITE

(h) Operations With READ QUORUM/WRITE
ANY satisfy the subSLA in 40% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with QUORUM READ/ONE WRITE
Latency with QUORUM READ/ONE WRITE

(i) Operations With READ QUORUM/WRITE
ONE satisfy the subSLA in 40% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ONE READ/ANY WRITE
Latency with ONE READ/ANY WRITE

(j) Operations With READ ONE/WRITE ANY
satisfy the subSLA in 45% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ONE READ/QUORUM WRITE
Latency with ONE READ/QUORUM WRITE

(k) Operations With READ ONE/WRITE QUO-
RUM satisfy the subSLA in 33% cases

 0

 50

 100

 150

 200

 0

 2

 4

 6

 8

 10

 12

 14

La
ten

cy
in

mi
llis

eco
nd

s

Sta
len

ess
 in

 m
illi

sec
on

ds

ReadProportion					0.1								 0.3				 		 0.5 							 0.7 					 0.9 								

Staleness with ONE READ/ALL WRITE
Latency with ONE READ/ALL WRITE

(l) Operations With READ ONE/WRITE ALL
satisfy the subSLA in 48% cases

Fig. 2: Adaptability of OptCon to Varying Workload (Read Proportion): Operations done with OptCon vs operations done with
manually chosen consistency levels, under the subSLA SLA-1 (Latency:250ms Staleness: 5ms)

6

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss in
 ms

latency in ms

predicted consistency

(a) Operations With Consistency Levels Predicted by
OptCon under subSLA-1: Latency:250ms Staleness:
5ms

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

predicted consistency

(b) Operations With Consistency Levels Predicted
by OptCon under subSLA-2: Latency:100ms Stal-
eness: 10ms

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

predicted consistency

(c) Operations With Consistency Levels Predicted
by OptCon under subSLA-3: Latency:20ms Stale-
ness: 20ms

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read all/write all

(d) Operations With READ ALL/WRITE ALL

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read all/write quorum

(e) Operations With READ ALL/WRITE QUO-
RUM

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read/write quorum

(f) Operations With READ QUORUM/WRITE
QUORUM

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read quorum/write all

(g) Operations With READ QUORUM/WRITE
ALL

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read all/write any

(h) Operations With READ ALL/WRITE ANY

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read all/write one

(i) Operations With READ ALL/WRITE ONE

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read one/write all

(j) Operations With READ ONE/WRITE ALL

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read quorum/write one

(k) Operations With READ QUORUM/WRITE
ONE

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read quorum/write any

(l) Operations With READ QUORUM/WRITE
ANY

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

read one/write quorum

(m) Operations With READ ONE/WRITE QUO-
RUM

 0

 5

 10

 15

 20

 0 100 200 300 400 500

stal
ene

ss i
n m

s

latency in ms

write any/read one

(n) Operations With READ ONE/WRITE ANY

Consistency Level M Value
subSLA-1
WRITE ANY/READ ONE 68
READ/WRITE QUORUM 41
Predicted Consistency 85
subSLA-2
READ QUORUM/WRITE ALL 70
Predicted Consistency 92
subSLA-3
READ ALL/WRITE QUORUM 0
Predicted Consistency 100

(o) Chart Showing M-statistic values

Fig. 3: Adaptability of OptCon to Different subSLAs: Operations done with OptCon vs operations done with manually chosen
consistency levels

7

indicates underfitting. Another criterion for the choice of the
algorithm is the average prediction overhead (refer Section
V-C), which is given in the last column of Table III.

Approach Cross Validation Error AICC BIC Overhead (ms)
Decision Tree 0.14 10.73 51.44 1

Bayesian Learning 0.57 12.85 53.57 1.2
Logistic Regression 1.98 16.32 57.07 0.7

Random Forest 0.14 9.51 50.24 1.3
Neural Network 0.059 12.85 63.54 1.5

TABLE III: Model Selection Results: As per descending order
of AICC and BIC, and ascending order of CV and Overhead

2) Insights: Evaluation of Learning Techniques With Re-
spect to the Metrics: Table III gives the CV error, the AICC
score, the BIC score, and the average prediction overhead, for
each of the learning algorithms that OptCon has used. The
above table can guide the developers in making an informed
choice regarding the correct learning technique to use. The
following analysis with respect to the Table III can act as
lessons learnt for future practitioners and researchers looking
to apply learning techniques to solve similar problems. Our
problem can be directly cast as classification of the given
training data into classes labelled (Section IV-D) by the
consistency levels. Hence, Decision Tree yields high accuracy
and speed (Table III). We observed near random predictions
with Linear regression (hence we omitted the results), because:
1) our problem is more of a classification problem, as already
explained, and 2) linear regression requires the assumption
of a linear model. Logistic regression fairs worst among the
approaches as indicated by the values of the metrics. This is
because it also treats the problem as a regression problem,
whereas ours is a nonlinear classification problem. But it is
still useful, since it yields a simple relation which expresses
the effect of the parameters RW , Tc, and P , on L and
S for an operation, under different consistency levels. Also,
it can be used to determine the strength of the relationship
among the parameters. Thus it can act as a basis for complex
modelling algorithms. Random forest further eliminates errors
due to overfitting and noisy data by: 1) bootstrapping multiple
learners, and 2) using randomized feature selection. Hence, it
produces the best accuracy. However, the prediction overhead
due to model complexity, might increase the latency overhead
beyond the thresholds of real-time subSLA. Similarly, though
ANN yields high accuracy (Table III), the additional overhead
due to the model complexity (it produces the most complex
model) may overshoot the threshold for real-time use cases.
Bayesian method requires several approximating assumptions
which result in high error scores.

Decision Tree Bayesian Learning Logistic Regression Random Forest ANN
0.62 0.46 0.27 0.52 0.49

TABLE IV: Evaluation of the Accuracy-Speed Tradeoff

3) Selection of Algorithm Based on Tradeoff Between Ac-
curacy And Speed: We define a measure Perf for selecting the
learning technique that provides an optimal tradeoff between
the accuracy and speed (Table III). We assign the overhead of
the slowest learning technique (as per Table III) as the baseline
overhead Obase . Since ANN has the maximum overhead (1.5
ms) as per Table III, Obase = 1.5. The speedup Speedup

obtained with a chosen learning algorithm relative to the
slowest algorithm is estimated from the observed relative
decrease in overhead for the chosen algorithm with respect to
the baseline Obase (i.e., for the slowest algorithm, Speedup=
0). Thus, Speedup = Obase−O

Obase
, where O is the overhead of

the chosen technique. We denote the prediction error for a
given learning technique as E. We assign the error for the
least accurate algorithm, as per Table III, as the baseline Ebase .
Logistic regression has the maximum CV error (1.98 as per
Table III). Hence, Ebase = 1.98. The value of E and Ebase

depends on the choice of the error measure. The developer
can either use the CV error, or both AICC and BIC taken
together. In the latter case, E is given as the maximum between
the AICC and BIC for the chosen algorithm, and Ebase is
given as the maximum between the AICC and BIC for the
least accurate algorithm. We compute the relative increase in
accuracy (ARel) obtained with a chosen learning algorithm
with respect to the least accurate algorithm. ARel is estimated
from the proportion of observed decrease in error for the
chosen algorithm with respect to the baseline Ebase . Thus,
ARel = Ebase−E

Ebase
. Finally, the measure Perf is computed as

Perf = wSpeedup × Speedup + wA × ARel , where wSpeedup

and wA are the weights (real numbers in the closed interval
[0, 1], such that wSpeedup+wA = 1) assigned by the developers
to quantify the relative importance of speed and accuracy,
respectively, for selecting a learning technique. The developer
can assign a larger weight to accuracy (i.e., wA > wSpeedup),
if accuracy is more important than speedup (and vice versa)
according to the use case. The developer chooses the learning
algorithm that produces the maximum value of Perf , with
a given choice of error measure. We provide the values of
Perf for various learning algorithms in Table IV, with CV
Error as the error measure, and equal weights assigned to
accuracy and speedup (i.e., wA = wSpeedup = 0.5). The value
of Perf is maximum for the decision tree algorithm, implying
that it produces an optimal tradeoff of accuracy and speed
according to our choice of error measure, and the assigned
values for the weights wA and wSpeedup . In most cases, the
difference in overhead between algorithms is negligibly small,
hence the Speedup is not a criterion of significance for most
cases. Thus, generally developers would assign weights wA =
1 and wSpeedup = 0, choosing the algorithm with the highest
accuracy.

G. Adaptability of OptCon to Varying Workload

We demonstrate the adaptability of OptCon to a varying
workload, by tuning the read proportion (i.e., proportion of
reads) parameter (RW) in the YCSB benchmark workloads
(Figure 2(a)). As per Table IV, we choose the Decision tree
implementation of the Learner module. We compare operations
performed with OptCon, with those performed with manually
chosen consistency levels. In the Figures 2(a) through 2(l),
read proportion is plotted along the x axis, the observed
latency along the primary y axis, and the staleness along the
secondary y axis. We demonstrate that, for a specific read
proportion, only a subset of all possible read-write consistency
levels is optimal, i.e., satisfies latency and staleness thresholds
in a given subSLA. Varying the read proportion (RW) in
the workload from 0.1 to 1, we observe that a manually
chosen read-write consistency level is optimal for only a
fraction of the total number of cases, under the subSLA SLA-

8

1 (Table I). OptCon demonstrates its adaptability to varying
read proportion, applying the optimal consistency level for
each read proportion, thus satisfying the subSLA in 100%
cases. OptCon can adapt to changing read proportion due
to the presence of the parameter RW as a feature in the
prediction model M. As shown by the results in [16], the
frequency of stale results (i.e., higher Γ scores) increases with
increasing read proportion in the workload. Hence with higher
read proportion in the right-half of the x axis, stronger read
consistency levels are required to return less stale results. Also,
since the proportion of writes is less, the penalty for the write
latency overhead is less. Hence stronger write consistency
levels, that result in high write latency, are acceptable. Thus
for higher read proportions, combinations of strong read-write
consistency levels, i.e., ALL/QUORUM, succeed in lowering
staleness values to acceptable bounds (right-half of the Figures
2(b), 2(c), 2(d), and 2(e)). Strong consistency levels achieve
a maximum success rate of 75% in satisfying the subSLA,
with READ ALL/QUORUM WRITE (Figure 2(c)) and READ
QUORUM/WRITE ALL (Figure 2(d). Taking into account
the clock skew, the staleness is effectively 0 in these cases.
For the same reasons, for higher read proportions, weak read
consistency levels result in failure to achieve stringent staleness
thresholds, as demonstrated by the points in the right-half of
Figures 2(f) through 2(l). With lower read proportions in the
left-half of the x axes, the frequency of stale read results are
smaller [16]. In this case, weaker manually chosen read-write
consistency levels, i.e., ONE/ANY (left-half of Figures 2(f)
through 2(l)) are sufficient for returning consistent results.
For lower read proportions, stronger consistency levels, i.e.,
ALL or QUORUM, are unnecessary, only resulting in high
latency overhead. With weak consistency levels, we observe
a maximum success rate of only <= 55% in satisfying
the subSLA (left-half of Figures 2(b) through 2(e)), with
READ ONE/WRITE ALL (Figure 2(l)). Thus, manually cho-
sen consistency levels show a maximum success rate of 75%
in satisfying the subSLA, in contrast with a 100% success
rate demonstrated by OptCon (Figure 2(a)). Thus, OptCon is
more effective than any manually chosen consistency level in
adapting to workload variations.

H. Adaptability of OptCon to Different subSLAs

For a given subSLA, only a subset of all possible manually
chosen consistency levels is optimal, i.e., satisfies the subSLA
thresholds. Consistency levels predicted by OptCon are always
matching, i.e., it always chooses from the above optimal set of
consistency levels for the given subSLA. We have integrated
OptCon (using Decision tree learning as per Table IV) with the
RUBBoS [29] benchmark, that can simulate concurrent access,
and interleaving user access. Figures 3(a) through 3(n) plot the
observed staleness along the y axis, and latency along the x
axis, under subSLAs SLA-1, SLA-2 and SLA-3, respectively
(Table I). Figures 3(a) through 3(c) demonstrate experiments
performed with OptCon. Figures 3(d) through 3(j) correspond
to experiments done with manually chosen consistency levels.
We demonstrate a few extreme cases of occasional heavy
network traffic in real world applications with artificially
introduced network delays (refer to the few boundary cases
with arbitrarily high latency in Figures 3(a), 3(b), and 3(c),
that violate the respective subSLAs). These boundary cases
were simulated using the traffic shaping feature of Traffic

Control [18], a linux-based tool for configuring network traffic,
that controls the transmission rate by lowering the network
bandwidth. SLA-1 (Table I) represents systems demanding
stronger consistency. Manually chosen weak read-write con-
sistency level, i.e, ANY/ONE, fails to satisfy the stringent
staleness bound of SLA-1 (Figures 3(k) through 3(m)) On
the other hand, strong consistency levels (i.e., ALL) (Figures
3(d) through 3(g)) satisfy SLA-1. OptCon satisfies SLA-1 by
applying the respective optimal consistency levels (i.e., ALL in
this case) for SLA-1 (Figure 3(a)). For lower latency bound in
SLA-3 (Table I), the manually chosen strong consistency levels
(ALL/QUORUM) unnecessarily produce latencies beyond the
acceptable threshold (Figures 3(d) through 3(g)). However,
weaker consistency levels (i.e., ONE/ANY) prove to be op-
timal (Figures 3(k) through 3(j)). Again, OptCon succeeds
by choosing the respective optimal consistency levels (i.e.,
ONE/ANY in this case) for SLA-3 (Figure 3(c)). Similarly
with SLA-2, a subset of manually chosen fixed consistency
levels (Figures 3(h), 3(i), and 3(j)) produce optimal results,
whereas OptCon successfully achieves SLA-2 in Figure 3(b)
for all operations. We evaluate OptCon by a measure M , which
measures the adaptability of the system with the subSLA.
Following [35], M (Table 3(o)) computes the percentage of
cases which did not violate the subSLA. For all the given
subSLAs, the M values for operations performed with OptCon,
given in the Figures 3(a), 3(b), and 3(c), exceed the M for
operations using fixed consistency levels. Thus, OptCon is at
least as effective as any optimal consistency level for the given
subSLA. Moreover, OptCon produces matching choices where
fixed consistency levels fail.

VI. RELATED WORK

Wada et al. [37] and Bermbach et al. [3] analyze and quan-
tify consistency from a system-centric perspective that focuses
on the convergence time of the replication protocol. Bailis et
al. [2] and Rahman et al. [30] instead consider a client-centric
perspective of consistency, in which a consistency anomaly
occurs only if differences in state among replicas lead to a
client application actually observing a stale read. In practice
eventual consistency is preferred over strong consistency in
scenarios where the system must maintain availability during
network partitions [4, 36], or when the application is latency-
sensitive and able to tolerate occasional inconsistencies [6].
The state machine replication paradigm achieves the strongest
possible form of consistency by physically serializing opera-
tions [23]. Lamport’s Paxos protocol is a quorum-based fault-
tolerant protocol for state machine replication [25]. Mencius
improves upon Paxos by ensuring better scalability and higher
throughput under high client load using a rotating coordinator
scheme [27]. Using variations of Paxos, a number of systems
[31, 5, 20, 12] claim to provide scalability and fault-tolerance.
Relatively few systems [39, 35, 1, 33] provide mechanisms
for fine-grained control over consistency. Li et al. [26] applies
static analysis for automated consistency tuning for relational
databases.

VII. CONCLUSIONS

OptCon automates client-centric consistency-latency tuning
in quorum-replicated stores, based on staleness and latency
thresholds in the SLAs. OptCon can adapt to variations in the

9

workload, and is at least as effective as any manually chosen
consistency setting in satisfying a given SLA. OptCon provides
insights for applying machine learning to similar problems.

REFERENCES

[1] M. S. Ardekani and D. B. Terry. A self-configurable geo-replicated
cloud storage system. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 367–381, Broomfield, CO,
Oct. 2014. USENIX Association.

[2] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Sto-
ica. Probabilistically bounded staleness for practical partial quorums.
Proc. VLDB Endow., 5(8):776–787, Apr. 2012.

[3] D. Bermbach and S. Tai. Eventual consistency: How soon is eventual?
An evaluation of Amazon S3’s consistency behavior. In Proc. Workshop
on Middleware for Service Oriented Computing (MW4SOC), 2011.

[4] K. Birman and R. Friedman. Trading Consistency for Availability
in Distributed Systems. Cornell University. Department of Computer
Science, 1996.

[5] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li.
Paxos replicated state machines as the basis of a high-performance data
store. In Proc. of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 11–11, Berkeley, CA, USA,
2011. USENIX Association.

[6] E. A. Brewer. Towards robust distributed systems (Invited Talk). In
Proc. of the 19th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 2000.

[7] K. P. Burnham and D. R. Anderson. Model selection and multimodel
inference: a practical information-theoretic approach. Springer Science
& Business Media, 2002.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u.
Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-
Nett, S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage:
A highly available cloud storage service with strong consistency. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 143–157, New York, NY, USA, 2011. ACM.

[9] P. Cassandra. Apache cassandra use cases. http://planetcassandra.org/
apache-cassandra-use-cases/, 2015.

[10] A. Cockcroft and D. Sheahan. Benchmarking cassandra scalability on
AWS - over a million writes per second. http://techblog.netflix.com/
2011/11/, 2011.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,
New York, NY, USA, 2010. ACM.

[12] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed
database. In Proc. of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 251–264, Berkeley, CA,
USA, 2012. USENIX Association.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, Oct. 2007.

[14] T. Everts. Web Performance Today. http://www.webperformancetoday.
com/2012/04/02/, 2012.

[15] P. Flach. Machine Learning: The Art and Science of Algorithms That
Make Sense of Data. Cambridge University Press, New York, NY, USA,
2012.

[16] W. M. Golab, M. R. Rahman, A. AuYoung, K. Keeton, J. J. Wylie, and
I. Gupta. Client-centric benchmarking of eventual consistency for cloud
storage systems. In ICDCS, page 28, 2014.

[17] C. Hale and R. Kennedy. Using Riak at Yammer. http://dl.dropbox.com/
u/2744222/2011-03-22 Riak-At-Yammer.pdf, 2011.

[18] B. Hubert, T. Graf, G. Maxwell, R. Van Mook, M. Van Oosterhout,
P. B. Schroeder, J. Spaans, and P. Larroy. Linux Advanced Routing &
Traffic Control HOWTO. Linux Advanced Routing & Traffic Control,
http://lartc.org/, Apr. 2004.

[19] A. Jain. Using cassandra for real-time analytics: Part 1. http://blog.
markedup.com/2013/03/cassandra-real-time-analytics/, 2011.

[20] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:
multi-data center consistency. In Proc. of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 113–126, New
York, NY, USA, 2013. ACM.

[21] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Cicada:
Introducing Predictive Guarantees for Cloud Networks. In HotCloud,
,, June 2014.

[22] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[23] L. Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558, 1978.

[24] L. Lamport. On interprocess communication. Distributed Computing,
1(2):77–85, 1986.

[25] L. Lamport. Paxos made simple, fast, and byzantine. In OPODIS, pages
7–9, 2002.

[26] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and V. Vafeiadis.
Automating the choice of consistency levels in replicated systems. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
281–292, Philadelphia, PA, June 2014. USENIX Association.

[27] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building efficient
replicated state machines for WANs. In Proc. of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08,
pages 369–384, Berkeley, CA, USA, 2008. USENIX Association.

[28] C. Meiklejohn. Riak PG: Distributed process groups on dynamo-style
distributed storage. In Proc. of the Twelfth ACM SIGPLAN Workshop
on Erlang, Erlang ’13, pages 27–32, New York, NY, USA, 2013. ACM.

[29] Objectweb Consortium. RUBBoS:B̃ulletin Board Benchmark. http://
jmob.ow2.org/rubbos.html, 2007.

[30] M. R. Rahman, W. , A. AuYoung, K. Keeton, and J. J. Wylie. Toward a
principled framework for benchmarking consistency. In Proc. of the
Eighth USENIX Conference on Hot Topics in System Dependability,
HotDep’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX Association.

[31] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build a scalable,
consistent, and highly available datastore. PVLDB, 4(4):243, 2011.

[32] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan. Timecard:
Controlling user-perceived delays in server-based mobile applications.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 85–100, New York, NY, USA,
2013. ACM.

[33] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative program-
ming over eventually consistent data stores. SIGPLAN Not., 50(6):413–
424, June 2015.

[34] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah.
Serving large-scale batch computed data with project Voldemort. In
Proc. of the 10th USENIX Conference on File and Storage Technologies
(FAST), 2012.

[35] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh. Consistency-based service level agreements for
cloud storage. In Proc. of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 309–324, New York,
NY, USA, 2013. ACM.

[36] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proc. ACM Symposium on
Operating Systems Principles (SOSP), pages 172–182, 1995.

[37] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the consumers’
perspective. In Proc. Conference on Innovative Data Systems Research
(CIDR), pages 134–143, 2011.

[38] K. Winstein and H. Balakrishnan. Tcp ex machina: Computer-generated
congestion control. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 123–134, New York,
NY, USA, 2013. ACM.

[39] H. Yu and A. Vahdat. Building replicated internet services using TACT:
A toolkit for tunable availability and consistency tradeoffs. In WECWIS,
pages 75–84, 2000.

10

http://planetcassandra.org/apache-cassandra-use-cases/
http://planetcassandra.org/apache-cassandra-use-cases/
http://techblog.netflix.com/2011/11/
http://techblog.netflix.com/2011/11/
http://www.webperformancetoday.com/2012/04/02/
http://www.webperformancetoday.com/2012/04/02/
http://dl.dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://dl.dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://blog.markedup.com/2013/03/cassandra-real-time-analytics/
http://blog.markedup.com/2013/03/cassandra-real-time-analytics/
http://jmob.ow2.org/rubbos.html
http://jmob.ow2.org/rubbos.html

