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Abstract—Existing power modelling research focuses on the
model rather than the process for developing models. An auto-
mated power modelling process that can be deployed on different
processors for developing power models with high accuracy is
developed. For this, (i) an automated hardware performance
counter selection method that selects counters best correlated to
power on both ARM and Intel processors, (ii) a noise filter based
on clustering that can reduce the mean error in power models,
and (iii) a two stage power model that surmounts challenges in
using existing power models across multiple architectures are
proposed and developed. The key results are: (i) the automated
hardware performance counter selection method achieves compa-
rable selection to the manual method reported in the literature,
(ii) the noise filter reduces the mean error in power models by
up to 55%, and (iii) the two stage power model can predict
dynamic power with less than 8% error on both ARM and Intel
processors, which is an improvement over classic models.

Index Terms—power modelling, cross architecture, hardware
counters, noise filtering.

I. INTRODUCTION

Power monitoring has become a significant task for data-
centre management since power consumption affects the cost
of electricity and stability of server farms [1]. Although
direct power measurement obtained by physical meters or
model-based interfaces has been widely supported [2], it
is not feasible for measuring power of individual hard-
ware/software components. Fine-grained power measurement
plays a significant role in runtime energy/performance man-
agement/optimisation [3] and energy-aware billing in data cen-
ters [4]. For instance, both the model-based energy interface of
the Intel Sandy Bridge server1 and the physical power meter
of ARM Odroid-XU3 board2 can measure the power of the
entire processor rather than of individual computing cores or
the executing programs.

A large proportion of power models rely on multiple
hardware activities of the processor represented by hardware
performance counters (or hardware counters) for estimating
power [2], [5]. However, the hardware counters necessary
to build an accurate power model may substantially differ
across processors due to the differences in the instruction
set, pipeline, cache architecture and on-chip interconnect. The
hardware counters are usually selected manually on the basis
of experimental knowledge of the processor [3], [6]. Typically,
all possible hardware counters that can be obtained from a

1http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

2http://www.hardkernel.com

processor are extensively explored using a cumbersome trial
and error approach after which a suitable few are selected [7].
Such an approach does not easily scale for various processor
architectures since a different set of hardware counters will be
required to model power for each processor.

Currently, there is little research that develops automated
methods for selecting hardware counters to capture proces-
sor power over multiple processor architectures. Automated
methods are required for easily building power models for a
collection of heterogeneous processors as seen in traditional
data centers that host multiple generations of server proces-
sors, or in emerging distributed computing environments like
fog/edge computing [8] and mobile cloud computing (in these
environments, an application may be distributed across differ-
ent form factor processors, such as Intel Xeon processors [9],
and low power processors, for example, ARM [7]). Moreover,
automated methods can be used to build power models for new
processors with architectures that are currently not known.

This paper focuses on automating the power modelling
process for different processor architectures. It is a power
modelling process we propose that is cross architectural rather
than any specific power model. The research contributions are:

• The design and implementation of an automated hardware
counter selection method to simplify the selection pro-
cess without sacrificing the accuracy of the power model.
Preliminary exploration of the hardware counter selection
method has presented previously [10].

• The development of a clustering based noise filtering
technique. The technique identifies and appropriately deals
with noise from power related data obtained from multiple
heterogeneous processors so as to improve the accuracy of
power models that rely on the data.

• The proposal of a novel power model, referred to as the
Two Stage Power Model which takes advantage of both
Linear Regression and Support Vector Machines.

The remainder of this paper is organised as follows. Sec-
tion II presents the notation and hardware platform employed.
Section III proposes a method for selecting hardware counters.
Section IV develops a technique for filtering noise. Section V
evaluates the selection method and filtering technique. Sec-
tion VI proposes a novel two stage power model and is
evaluated against classic power models. Section VII presents
related research. Section VIII concludes this paper.
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TABLE I: 16 MPI and OpenMP benchmarks used

Benchmark Description MPI/OpenMP
BLS Buffon-Laplace Simulation [11] MPI
MCS Monte-Carlo Simulation [12] MPI
POI Solve Poisson Equation in 2D MPI

RING Ring Communication [13] MPI
WAV Solve Wave Equation MPI
SRCH Searches integers in [A,B] for a J so

that F (J) = C
MPI

FFT Fast Fourier Transform [14] OpenMP
SGEFA Solve Linear System Ax = B [15] OpenMP

ZIG Obtains an exponentially distributed sin-
gle precision real value [16]

OpenMP

MD Molecular Dynamics Simulation [17] OpenMP
PRM Generate Prime Numbers Both

QUAD Approximates an integral using a quadra-
ture rule

Both

CSAT Exhaustive search for solutions of the
circuit satisfiability problem [18]

Both

II. DEFINITIONS

In this section, we consider the mathematical notation and
the hardware platform employed in this work.

Notation: We define classic power models that are used for
estimating dynamic power of processors and the concept of
vectors and vector groups used in this paper.

1) Classic Power Models: Consider a processor power
model in which the estimated power, P , is the sum of the
idle power of the processor (static), and the power required
for various activities of the processor (dynamic). Thus,

P = Pstatic + Pdynamic (1)

In this paper, power modelling is explored in the context
of dynamic power (a function of the volume of hardware
activities on the processor). Hardware activity on processors,
such as ARM and Intel, can usually be obtained from a
catalogue of hardware performance counters (or hardware
counters). Consider n hardware counters that can be obtained
from a processor during the time interval ti, denoted as ei1 ,
ei2 , · · · , ein , and Pidynamic

is dynamic power. We consider
the following three classic power models.

a. Linear Regression Power Model (LRPM): In this model,
dynamic power is defined as

Pdynamic =

n∑
i=1

ciei (2)

where ci is the coefficient of the ith hardware counter.
b. Neural Network Power Model (NNPM): Compared to the

LRPM which only captures linear relationships, NNPM can
model both linear and non-linear relationships. A fully con-
nected feed-forward NN using hardware counters is employed.

c. Support Vector Machine Power Model (SVMPM): This
model captures both linear and non-linear relationships be-
tween dynamic power and the hardware counters using kernel
tricks. A set of hyperplanes are fitted using the training data.
Then these hyperplanes are used to estimate the dynamic
power for given hardware counters.

The ideal configuration of input parameters for both NNPM
and SVMPM was chosen by extensively exploring the space.
The configuration chosen for these models are those parame-
ters that provide an accurate estimate of dynamic power.

2) Vectors: We define a vector as
Vi = {Pidynamic

, ei1 , ei2 , · · · , ein}, where the measured
dynamic power during any given time interval corresponds to
the set of hardware counter values obtained in the interval.
Each vector is normalised to bring values of all variables
in the same range between 0 and 1. The normalised vector
of Vi is represented as V̂i = {P̂idynamic

, êi1 , êi2 , · · · , êin},
where P̂idynamic

= Pidynamic
, êi1 =

ei1−min(e1)

max(e1)−min(e1)
, · · · ,

êin =
ein−min(en)

max(en)−min(en)
.

3) Vector Groups: Normalised vectors are clustered into a
set of Vector Groups (VGs). Clustering is performed such that
each VG consists of similar vectors. Two vectors V̂i and V̂j are
defined to be similar if the following conditions are satisfied:

aV ≤
P̂idynamic

P̂jdynamic

≤ bV (3)

and
aV ≤

êik
êjk
≤ bV (4)

where k = 1, 2, · · ·n, and aV and bV are user-defined bounds
to determine similarity. For a given aV , bV is as follows:

bV =
1

aV
(5)

The clustering algorithm will be presented in Section IV.
Platform: Distributed computing environments such as

those employed in Fog/Edge computing make use of both
the cloud data center and edge nodes. Typically, data center
servers, for example Amazon cloud servers, make use of Intel
Xeon processors3, which are designed for high-performance
computing. On the other hand edge nodes make use of low
power processors, such as ARM4. Next generation power
models will need to work for emerging distributed computing
environments and therefore, both an Intel Xeon processor rep-
resenting servers used in data centers and an ARM processor
representing smaller form factor Edge nodes are used.

The first processor is the Intel Xeon Sandy Bridge server
comprising two Intel Xeon E5-2650 processors with 8 cores on
each processor, 32KB/32KB I/D-Cache per core, 2MB shared
L2 cache per 8 cores and 20MB shared L3 cache per package
and running CentOS 6.5. We measure power consumption of
the power lane which supports the multi-core processor and
the on-chip caches (L1/L2/L3) by directly reading the on-chip
energy counter through Intel’s RAPL interface.

The second processor is the ODROID-XU+E5 board which
has one ARM Big.LITTLE architecture Exynos 5 Octa pro-
cessor. There are four Cortex-A15 cores and four Cortex-
A7 cores, 32KB/32KB I/D-Cache per core, NEONv2 floating

3https://aws.amazon.com/ec2/instance-types/
4http://www.arm.com/products/iot-solutions/mbed-iot-device-platform
5http://www.hardkernel.com
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point support per core, VFPv4 support per core, one PowerVR
SGX 544 MP3 GPU, and 2 GBytes of LPDDR3 DRAM. A 2
MByte L2 cache is shared between all Cortex-A15 cores and
a 512 KByte L2 cache is shared between all Cortex-A7 cores.
The ODROID board provides power meters to measure the
power of different components, including the Cortex-A7 and
Cortex-A15 cores. We use the power meter, which measures
the power of the Cortex-A15 cores, including their L1 caches
and shared L2 cache. The system runs Ubuntu 14.04 LTS.

The hardware counters are obtained from a real-time profil-
ing framework, namely Performance API (PAPI)6 [19]. Power
is obtained from the on-chip power sensor on ARM and
from the RAPL interface on Intel. We employ 16 scientific
benchmarks (source code was available from a public repos-
itory7) as shown in Table I. On ARM, we used the Cortex-
A15 cores at their maximum frequency of 2.0GHz to execute
the benchmarks. The Cortex-A7 cores at their maximum
frequency of 1.4 GHz are used to obtain vectors (which include
measured power and hardware counters). Similarly, on Intel,
we used one processor at its maximum frequency of 2.0GHz
to execute the benchmarks and the second processor at its
maximum frequency of 2.0GHz to obtain vectors.

The vectors are obtained using a Start-Stop (SS) sampling
method, which is widely reported in the literature [6], [20],
[21]. In this method, vectors are continuously sampled during
the execution of benchmarks approximately every 1 second.
The hardware counters of each vector are calculated as ei =
eei−ebi

t , where ebi and eei are values of the ith hardware
counter obtained at the beginning and the end of each sampling
interval, respectively. t is the length of the sampling interval
and it is approximately 1 second.

Power is measured from the ARM and Intel processors
differently (hardware counters are obtained using PAPI on
both platforms). On ARM, power consumed in the sampling
interval is calculated as P = Pb+Pe

2 , where Pb and Pe are
values of power read from the on-chip power sensor at the
beginning and the end of each sampling interval, respectively.
On Intel, power consumed in the sampling interval is obtained
as P = Ee−Eb

t , where Eb and Ee are values of energy read
from the RAPL interface at the beginning and the end of each
sampling interval, respectively. Unlike the ARM platform,
only energy values can be obtained on the Intel platform.

III. HARDWARE COUNTER SELECTION (HCS) METHOD

A generic and automated Hardware Counter Selection
(HCS) method that can be employed on multiple processors is
presented. The method selects a set of six hardware counters
(a maximum of only six hardware counters can be obtained
simultaneously using PAPI on the ARM and Intel processors
used in this research; additional hardware counters can be
obtained using multiplexing, but introduces overhead and is
not used) from those available that best correlates to power
for a given processor. The method utilises a Random Forest

6http://icl.cs.utk.edu/papi/
7http://people.sc.fsu.edu/∼jburkardt/cpp\ src/cpp\ src.html

Algorithm 1 Hardware Counter Selection (HCS) Method
1: procedure SELECT COUNTERS(all vectors, n, ntree)
2: counters selected← list ()
3: for i = 1 to M do . The entire dataset is partitioned into

M subsets
4: part vectors← extract (all vectors, i,M) . Extract

the ith subsets from overall M subsets
5: rfes← randomForest(part vectors, ntree)
6: counters importance[i]← rfes.importance

7: Find n hardware counters with largest average value of
importance.

8: Return n events with largest average importance value

(RF) algorithm that maps the hardware counters to power.
RF is chosen due to its accuracy in regression [22]. While
an RF based power model will not be feasible for on-line
power monitoring due to its high computing complexity, it
quantifies the relative importance of each hardware counter to
power during the model fitting process. Hence, we leverage
this characteristic of RF algorithms to build the automatic
hardware counter selection method that works off-line. The
selection method may need to be executed only once (or a
limited number of times) for a processor to determine which
hardware counters best correlate to power.

The HCS method is designed to generate a list of hardware
counters that are most relevant to power estimation as shown
in Algorithm 1. The key design principle is that the HCS
method should be suitable for all applications and the hardware
counters selected by the approach should be independent of
applications. The dataset is partitioned and hardware counters
for each subset are obtained to minimise dependence on the
dataset. The inputs to the HCS method are:

1) all vectors is the set of all vectors (and all hardware
counters available on a processor) obtained from executing
the benchmarks. The PAPI multiplexing function8 is used.

2) n is the number of hardware counters to be selected.
In our case, we use six, which is the maximum number of
counters obtained simultaneously from PAPI.

3) ntree is the number of trees that are used to build the ran-
dom forest model. This parameter is empirically determined.

The algorithm firstly partitions all vectors into a set of
subsets (i.e. M subsets) (Lines 3-4). During each iteration of
the for loop (line3) for each subset i that is extracted from the
overall M subsets (line 4), a Random Forest model is used to
map hardware counters to power (Line 5). The importance
of each hardware counter for a given partition is obtained
and stored in the counters importance (Line 6). Finally, n
hardware counters with largest average importance values are
found (Line 7) and returned (Line 8).

If all vectors are used without partitioning, then the se-
lected counters will depend on the entire dataset, which is not
ideal for a general HCS method. We generate a set of subsets
by partitioning all vectors. Then the importance of hardware
counters for each subset is obtained. We select hardware

8Multiplexing has large overheads and is therefore only employed in the
HCS method and not for building the power model
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(a) process becomes idle (b) process changes state

Fig. 1: Type I noise vectors during the sampling time interval

(a) power of process decreases (b) power of process increases

Fig. 2: Type II noise vectors during the sampling time interval

counters that have the largest average importance values. Such
a method results in a dataset independent method.

IV. NOISE FILTERING (NF) TECHNIQUE

A second problem when designing a hardware counter-
based power model is related to filtering noisy data since
it affects the accuracy of estimation. Noisy data in power
modelling can be an artefact of measurement employed for ob-
taining (sampling) vectors (Section II) or due to the instability
of physical sensors/interfaces. Hence, we design and develop
a noise filter that is suitable for multiple processors. A method
to identify noisy vectors and an appropriate mechanism to deal
with noise are considered in the proposed filter.

A. Types of Noise

On both the ARM and Intel processors the Start-Stop
(SS) sampling method for a given time interval (1 second)
considered in Section II is used. However, on the ARM
processor we read power values from the sensors, but on Intel
processor we obtain energy values through the RAPL interface.
Reading power values on ARM poses two problems resulting
in noisy data (refer Figure 1 and Figure 2).

The first problem is highlighted in Figure 1 when a process
completes execution or an idle process resumes execution in
the sampling interval. The sampling interval for obtaining
power is 1 second and the power sensor is read at the beginning
and end of the interval. Consider that at the beginning of the
time interval the power sensor provided a reading of X Watts
(X W) and at the end of the time interval provided 0 W or vice
versa. Then the SS sampling method would record the power
value for this time interval as X/2 W (mean of 0 W and
X W). However, it is possible that power has changed during
this time interval such that the mean power is not X/2 W (this
change is illustrated as i, ii or iii when power values change

at 250 ms, 500 ms or 750 ms respectively in the figure) for
the time interval. Conventional SS method cannot capture this
change and results in power values that do not correspond to
the hardware counters. We refer to this as Type I noisy data.

The second problem, highlighted in Figure 2, is when the
power consumption behaviour of a process changes such that
it consumes less or more power in the sampling interval.
Consider that at the beginning of the time interval the power
sensor provided X W and at the end of the interval provided
Y W or vice versa. Then the SS sampling method records
power for this time interval as (X+Y )/2 W. However, power
consumed by the process could have changed during this time
interval as illustrated by i, ii or iii when power values change at
250 ms, 500 ms or 750 ms, respectively, in the figure. Again
the conventional SS method cannot capture this change and
results in power values that do not correspond to the hardware
counters. We refer to this as Type II noisy data.

Both Type I and Type II noise are caused when the power
consumption behavior of a program changes during the sam-
pling interval. Type I can be considered as a specific case of
Type II. However, how they are identified and dealt with in the
proposed technique are different as presented in Section IV.
The power referred to in Figure 1 is dynamic power and may
be zero when the processor is idle.

Due to the instability of power sensors and associated
interfaces, a small set of vectors may have measured power
values significantly different from their actual power con-
sumption. Hardware counters that correspond to the utilisation
of processors are widely accepted for predicting dynamic
power of a processor. However, if two vectors have similar
hardware counter values but significantly different measured
power values, at least one of the power values has to be treated
as an anomaly. We refer to this as Type III noisy data.

Type I and Type II noise are inherent to methods that
measure power (not energy). Hence, they only appear in the
dataset profiled from the ARM processor where an on-chip
power sensor is used rather than Intel on which energy is
measured during a sampling interval using RAPL. Type III
noise, which may be due to instability of power sensors, is
found in datasets from both ARM and Intel.

B. Noise Filter

The filter we propose targets the above three types of noise
by identifying them and appropriately dealing with them. Our
technique for addressing Type I and Type II noise is by
modifying the power value in a vector, which is considered
in this section. For Type III noise we simply remove the
anomalous vectors from the data. The Noise Filter (NF)
technique comprises the following six steps:

Step 1 - Clustering vectors: In the first step, all vectors are
clustered into Vector Groups according to power and hardware
counters on the basis of Equation 3 and Equation 4 (described
in Section II) using Algorithm 2. For each vector, V̂i, if there
is a VG such that all vectors in this VG are similar to V̂i, then
V̂i will be added to the VG (Lines 4-5). Otherwise, a new VG
is created and V̂i is added into the new VG (Line 6-8).
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Algorithm 2 Clustering algorithm
1: procedure CLUSTERING ALGORITHM(all vectors)
2: n← sizeof (all vectors)
3: for i = 0 to n do
4: if ∃V Gp whose vectors are all similar with all vectors[i]

then
5: Add all vectors[i] to V Gp

6: else
7: Create a new VG: V Gq

8: Add all vectors[i] to V Gq

Fig. 3: Neighbouring vectors, V̂i−1 and V̂i+1 of V̂i

Step 2 - Identifying normal vectors: Vectors from the
sampling data that are not noisy are referred to as normal
vectors. For a given sample of data if consecutive vectors are
clustered in to the same VG, then there is less probability that
these vectors contain noisy power values. Therefore, they are
considered to be normal vectors. Additionally, all vectors in
this VG are considered to be normal.

Step 3 - Identifying and modifying Type I noise vectors:
Consider three consecutive vectors, V̂i−1, V̂i and V̂i+1 as
shown in Figure 3. We define V̂i−1 and V̂i+1 as neighbour
vectors of V̂i, denoted as V̂nr. V̂i is identified as a Type I
noise vector, if the following three conditions are met:
i. if at least one of the neighbour vectors is a normal vector,

ii. the dynamic power P̂idynamic
≈ P̂nrdynamic

2

iii. the ratios of the hardware counter of V̂i and the normal
neighbour vector are similar, but are not equal (approx.) to 0.5

êi1
ênr1

≈ êi2
ênr2

≈ · · · ≈ êin
ênrn

6= 0.5

If V̂i is a Type I noise vector, then it is modified as

P̂idynamic
= P̂nrdynamic

× êi1
ênr1

(6)

The êi1
ênr1

ratio corrects the measured power of Vi and makes
it a normal vector.

Step 4 - Identifying and modifying Type II noise vectors:
Consider three consecutive vectors, V̂i−1, V̂i and V̂i+1 as
shown in Figure 3. V̂i is identified as a Type II noise vector,
if the following three conditions are met:
i. both V̂i−1 and V̂i+1 are normal vectors,

ii. the dynamic power P̂idynamic
≈ P̂i−1dynamic

+P̂i+1dynamic

2

iii. the hardware counters êi1−êi+11

êi−11
−êi+11

≈ êi2−êi+12

êi−12
−êi+12

≈
· · · êin−êi+1n

êi−1n−êi+1n
6= 0.5

If V̂i is Type II noise vector, then it is modified as

P̂idynamic
= r × P̂i−1dynamic

+ (1− r)× P̂i+1dynamic
(7)

where r =
êi1−êi+11

êi−11
−êi+11

, P̂i−1dynamic
and P̂i+1dynamic

are

dynamic power of the neighbour vectors of V̂i, êi−11 and êi+11

are normalised values of ê1 of the neighbour vectors.
Type I noise occurs when the behavior of a program changes

from execution to idle or from idle to execution. The dynamic
power consumption changes from one value (X) to 0 or
vice versa. To identify this noise, two vectors, namely a
given vector and one of its neighbouring vectors need to be
considered. Type II noise occurs when a program changes
from one phase to another. The dynamic power consumption
changes from one value (X) to a different value (Y ) or
vice versa. To identify this noise, three vectors, namely a
given vector and two of its neighbouring vectors need to be
considered. An additional vector is required to identify Type
II because, unlike Type I, one of the power values is not zero.

Step 5 - Re-clustering vectors: In Step 1, we used both hard-
ware counters and dynamic power for clustering. However, in
this step, we only use hardware counters for clustering with
the intention of identifying vectors with anomalies in power
values. Algorithm 2 can be employed by simply excluding
measured dynamic power from the input vectors.

Step 6 - Identifying and Removing Type III noise vector:
A vector V̂i is identified as a Type III noise vector if its
power value is significantly different from the power of normal
vectors identified in Step 2 that are grouped into the same VG
as V̂i by the clustering process in Step 5. Type III noise vectors
are simply removed from the data.

V. EVALUATING THE HCS METHOD AND
THE NF TECHNIQUE

In this section, we evaluate the hardware counter selection
method of Section III and the noise filtering technique of
Section IV. The HCS method is evaluated by comparing
the power estimation accuracy of classic power models, such
as Linear Regression Power Models (LRPMs) presented in
Section II, when using hardware counters obtained from our
selection method against a baseline using hardware counters
reported in the literature. The NF technique is evaluated by
comparing the prediction error of the LRPM with and without
using the noise filter we propose. LRPMs are chosen for this
evaluation since they are popularly used [2], [3], [5].

For evaluating both the HCS method and the NF technique
we use a rigorous training and testing strategy on the LRPM.
All vectors obtained from profiling the execution of the bench-
marks are equally partitioned into four parts. Then we use a
combination of three parts to train the LRPM. The trained
model is used to test: (i) vectors from the three parts used to
train the model (75% of the vectors). We refer to these vectors
as ‘Known’ vectors because they are known to the model
through the training process, and (ii) vectors from the fourth
part which were not used for training (25% of the vectors). We
refer to these vectors as ‘Unknown’ vectors. A preprocessing
step was included, such that no unknown vectors are similar
to the known vectors. The training and testing strategy is
repeated four times for different combinations of partitioned
vectors. We note that the evaluation based on unknown vectors
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TABLE II: Hardware counters from the baseline and selected
by the HCS method for different ntree values on ARM

Hardware Counters
Baseline HCS (ntree=1) HCS (ntree=2-512)

PAPI_TOT_CYC PAPI_TOT_CYC PAPI_TOT_CYC
PAPI_TOT_INS PAPI_TOT_INS PAPI_TOT_INS
PAPI_L1_DCA PAPI_L1_DCA PAPI_L1_DCA
PAPI_L1_ICA PAPI_L1_ICA PAPI_L1_ICA
PAPI_L2_TCM PAPI_L2_TCM PAPI_L2_TCM
PAPI_TLB_IM - -

- PAPI_L2_DCA -
- - PAPI_L1_ICM

presents the accuracy of power models when they are used to
estimate power of vectors that are not the same or similar in
the training data. Given that a large number of applications
are emerging on modern processors it is impossible to obtain
a training dataset that contains representative vectors from
all applications. Therefore, an ideal power model must be
designed to work well for unknown vectors.

We evaluate both the HCS method and NF technique
using Linear Regression (LRPM), Support Vector Machine
(SVMPM) and Neural Network (NNPM) power models pre-
sented in Section II. However, since the results obtained are
similar we present results that are based only on LRPM.

A. Evaluating the HCS method

The HCS method is evaluated by investigating the quality
of the hardware counters selected by the HCS method. It was
empirically found that the HCS method is not sensitive to
ntree (this aligns with findings of previous research [23],
[24]). Furthermore, considering the computation overhead due
to employing larger values of ntree, we use ntree = 2 and
ntree = 16 on ARM and Intel, respectively (the values of
ntree are empirically obtained).

Table II and Table III present the hardware counters (a
description of all hardware counters is shown in Table IV) that
we use as a baseline and those selected by the HCS method
for ARM and Intel, respectively. The baseline is determined
by reviewing existing research [7], [21], [25], [26] and by
considering the characteristics of our experimental platform
and hardware counter profiling tool PAPI. Although the pro-
cessors employed are different, the general characteristics of
the application and the hardware counters are the same. We
selected six hardware counters because of the limit on the
maximum number of counters that can be simultaneously
obtained.

On the ARM and Intel processors we note that the hardware
counters obtained from the HCS method are quite similar to
those from the baseline (on ARM only one hardware counter is
different and on Intel only two hardware counters differ). We
infer from this that given different hardware processors our se-
lection method can automatically obtain appropriate hardware
counters that capture dynamic power. It is also observed that
the hardware counters for the ARM and Intel processors are
different (4 out of the 6 hardware counters differ). The HCS

method we propose selects processor dependent hardware
counters suitable for developing power models.

To further evaluate the HCS method, we compare the
accuracy of LRPMs using the hardware counters selected by
HCS and those proposed by the literature, respectively.

Figure 4 shows the cumulative distribution of Error for
LRPMs when used to estimate the power of Unknown vectors.
The x axis shows the Error and the y axis shows the
percentage of vectors with error less than each value on x. In
the best case, the HCS method on both processors performs
better for Unknown vectors than the baseline. For example,
for the ARM processor the HCS method based LRPM can
accurately estimate the power of 58.1% of Unknown vectors
with Error no more than 10% which is nearly a 12%
improvement compared to the baseline based LRPM. The HCS
method even in the worst case provides nearly similar accuracy
to the baseline.

In summary, the automated method for simplifying the
selection of hardware counters does not sacrifice the accuracy
of power models. Existing research employs a manual and
exhaustive exploration technique of all hardware counters. The
proposed approach minimises human intervention and obtains
similar accuracy when compared to the hand tweaked baseline.

B. Evaluating the NF Technique

The NF technique is evaluated by considering the quality of
filtering and the effect on the user-defined bounds. To evaluate
the NF technique we first tested the LRPM using the hardware
counters selected by the HCS method without using a noise
filter. Then we tested the same model by using vectors that
were filtered by our NF technique. This was performed on
both ARM and Intel processors for both known and unknown
vectors. Table V highlights the key results captured as mean
error and standard deviation from this evaluation. It is inferred
that on ARM the mean error percentage when using the
NF filter is reduced by more than half. On Intel the error
percentage is reduced by nearly a third when using the NF
filter. Thus the model is more stable in its prediction given that
the standard deviation significantly reduces in both cases. The
key result is that the NF technique reduces overall estimation
error. It was empirically observed that the technique is not
sensitive to the user-defined bounds (Section II).

VI. DESIGN OF A TWO STAGE POWER MODEL

In this section, we first explore three classic power models
to understand their accuracy. This exploration motivates the
need for a new power model that can work across multiple
processors with low prediction errors. Thus, we design, de-
velop and validate a Two Stage Power Model (TSPM).

A. Motivation

We evaluate three classic models (Linear Regression Power
Model (LRPM), Neural Network Power Model (NNPM),
and Support Vector Machine Power Model (SVMPM)) by
measuring accuracy in predicting power in terms of estimation
error Error (defined in Section V).
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TABLE III: Hardware counters from the baseline and selected by the HCS method on Intel

Hardware Counters
Baseline HCS (ntree=1) HCS (ntree=2) HCS (ntree=4) HCS (ntree=8) HCS (ntree=16-512)

PAPI_TOT_CYC PAPI_TOT_CYC PAPI_TOT_CYC PAPI_TOT_CYC PAPI_TOT_CYC PAPI_TOT_CYC
PAPI_TOT_INS PAPI_TOT_INS PAPI_TOT_INS PAPI_TOT_INS PAPI_TOT_INS PAPI_TOT_INS
PAPI_LD_INS - - - PAPI_LD_INS PAPI_LD_INS
PAPI_SR_INS PAPI_SR_INS - - - PAPI_SR_INS
PAPI_FP_OPS - - - - -
PAPI_L3_TCA - - - - -

- PAPI_REF_CYC PAPI_REF_CYC PAPI_REF_CYC PAPI_REF_CYC PAPI_REF_CYC
- PAPI_L3_TCM PAPI_L3_TCM PAPI_L3_TCM PAPI_L3_TCM PAPI_L3_TCM
- - - PAPI_BR_TKN - -
- PAPI_BR_NTK - - - -
- - PAPI_L3_DCR PAPI_L3_DCR PAPI_L3_DCR -
- - PAPI_BR_UCN - - -
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Fig. 4: Accuracy of LRPM for unknown vectors using hardware counters from the literature (baseline) and the HCS method

The HCS method was used to select the hardware counters
as shown in Table II and Table III. The NF technique was
then used to filter noise from the sampled vectors. The three
classic power models were tested for accuracy. The training
and testing strategy considered in Section V was used.

Figure 6 shows the mean error of the classic power mod-
els for predicting dynamic power when testing Known and
Unknown vectors on ARM and Intel processors. On both
processors SVMPM is more accurate for predicting dynamic
power of Known vectors. This indicates that SVMPM fits the
training data well. Compared to SVMPM, LRPM relatively
under fits the data and results in lower accuracy. However, for
Unknown vectors LRPM is more accurate. This is surprising,
but is because more sophisticated models, such as SVMPM
and NNPM, may over fit the data leading to lower accuracy
for Unknown vectors than a simpler model (LRPM).

The key observation is that there is no off-the-shelf power
model that achieves accuracy of the best performing power
model for known and unknown vectors. For example, SVMPM
has the lowest error for predicting known vectors, but has
higher error than the LRPM for predicting unknown vectors.
This poses a problem in real-time power estimation - if an
unknown vector is sampled because it was not used in training
the model, then the model will produce inaccurate estimations.
Moreover, it is time consuming to identify whether a vector

is known or unknown. To make use of SVMPM for known
vectors or LRPM for unknown vectors requires an additional
method for identifying an incoming vector. However, this will
make the model impractical for real-time use. Therefore, there
is motivation for designing a new power model that can reduce
the effect of over-fitted models to predict unknown vectors
with higher accuracy than classic power models, but at the
same time achieve low error rates for known vectors.

B. Design
A novel power model, referred to as the Two Stage Power

Model (TSPM) which takes advantage of the low variance of a
simple model, the LR based power model, and of the low bias
of sophisticated models, such as the SVM based difference
model, is proposed. TSPM has two stages. In the first, linear
regression is used to estimate a basic power value of an
incoming vector. In the second, a Support Vector Machine
refines the basic value to improve estimation accuracy. TSPM
operates in two phases: training and prediction.

1) Training of TSPM: Algorithm 3 describes the training
process of TSPM. First, an LRPM is developed using a train-
ing dataset consisting of profiled vectors (hardware counters
and corresponding measured dynamic power) (Line 2). Then
a difference based training dataset is constructed (Lines 3-
8) by replacing the measured power of each vector in the
original training set with the difference between the measured
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TABLE IV: Hardware counters and descriptions

Hardware Counters Description
PAPI_BR_CN Conditional branch instructions
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_TKN Conditional branch instruction taken
PAPI_BR_UCN Unconditional branch instructions
PAPI_FP_INS Floating point instructions
PAPI_FP_OPS Floating point operations
PAPI_L1_DCA Level 1 data cache accesses
PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_ICA Level 1 instruction cache accesses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2_DCA Level 2 data cache accesses
PAPI_L2_DCH Level 2 data cache hits
PAPI_L2_DCM Level 2 data cache misses
PAPI_L2_TCM Level 2 cache misses
PAPI_L3_DCA Level 3 data cache accesses
PAPI_L3_DCR Level 3 data cache reads
PAPI_L3_TCA Level 3 cache accesses
PAPI_L3_TCM Level 3 cache misses
PAPI_LD_INS Load instructions
PAPI_REF_CYC Reference clock cycles
PAPI_SP_OPS Optimized floating point operations
PAPI_SR_INS Store instructions
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TOT_CYC Total cycles
PAPI_TOT_INS Instructions completed

TABLE V: Mean error and standard deviation of vectors with
and without using the NF technique

Mean Error (%) Standard Deviation
Known Vectors - ARM
Noisy data (no filter) 25 2.2
Data filtered by NF Technique 11.1 0.38
Unknown Vectors - ARM
Noisy data (no filter) 26.4 2.2
Data filtered by NF Technique 11.1 0.41
Known Vectors - Intel
Noisy data (no filter) 12.6 1.2
Data filtered by NF Technique 8.6 0.18
Unknown Vectors - Intel
Noisy data (no filter) 13.5 0.86
Data filtered by NF Technique 10.6 0.18

power and the prediction value estimated by the LRPM (Line
8). Finally, using the difference training set, a SVM based
difference model is built (Line 9).

2) Prediction of TSPM: Algorithm 4 describes the predic-
tion process of TSPM. For an incoming vector, both LRPM
and SVMDM obtained from Algorithm 3 are used for predict-
ing. The LRPM is used to predict the basic power value (Line
2) and the SVMDM is used to estimate the difference between
the measured power and the estimated power of LRPM (Line
3). We adopt a strategy to offset the basic power value with
the difference, such that the final predicted power is obtained
by summing the basic power and the difference (Line 4).

C. Comparing TSPM and Classic Power Models

In this section, the accuracy of the proposed TSPM against
classic power models is evaluated. The vectors and the
training-testing strategy presented in Section V are used.

(a) ARM

(b) Intel

Fig. 5: Percentage of noise vectors before filtering
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Fig. 6: Accuracy of classic power models for known and
unknown vectors

Figure 7 shows the prediction accuracy of TSPM compared
to classic power models for unknown vectors on ARM and
Intel. TSPM obtains accuracy similar to the best classic model
(LRPM). Nearly 60% of unknown vectors can be predicted
with error less than 10% using TSPM and LRPM.

Table VI summarises the evaluation of TSPM against the
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Fig. 7: Prediction accuracy of different models for Unknown vectors

Algorithm 3 Training process of TSPM
1: procedure TRAIN MODEL(training vectors)
2: LRPM ← build model (LR, training vectors)
3: difference vectors← training vectors
4: n← sizeof (training vectors)
5: for i = 0 to n− 1 do
6: basic value← predict (LRPM, training vectors[i])
7: difference← training vectors[i, 1]− basic value
8: difference vectors[i, 1]← difference

9: SVMDM ← build model (SVM, difference vectors)
10: Return LRPM,SVMDM

Algorithm 4 Prediction process of TSPM
1: procedure PREDICT POWER(test vector,LRPM ,SVMDM )
2: basic value← predict (LRPM, test vector)
3: difference← predict (SVMPM, test vector)
4: power ← basic value+ difference
5: Return power

classic power models. There is no single classic power model
that performs well on both known and unknown vectors.
However, TSPM has a lower mean error rate for predicting
all vectors, including known and unknown vectors when
compared to all three classic models. The key result is that it is
not possible to use different models for known and unknown
vectors since it is time consuming to identify whether a vector
is a known/unknown in real-time. The TSPM model can be
employed to address this problem since it has better accuracy
(7.9% and 7.6% error on ARM and Intel) for all vectors when
compared to the classic models. It is also noted that TSPM
works across processor architectures.

We measured the computation time of LRPM and SVMDM.
For an incoming vector, the wall clock time taken for esti-
mating the basic value using LRPM is approximately equal
to 1.1ms and time for estimating the difference value using
SVMDM is approximately 0.95ms. The total time taken for
estimating power of each vector using TSPM is approximately
equal to 2.05ms. Compared to the mean sampling time interval
(1 second), the overhead of TSPM is negligible.

TABLE VI: Percentage mean error of different power models

TSPM LRPM SVMPM NNPM

Known ARM 6.6 11.1 6 7.1
Intel 6.3 8.6 5.8 7.5

Unknown ARM 11.9 11.1 15 14.8
Intel 11.5 10.6 16.3 17.4

All ARM 7.9 11.1 8.3 9.0
Intel 7.6 9.1 8.4 10.0

VII. RELATED WORK

Research in power modelling has led to (i) instruction-level,
(ii) coarse-grain utilisation, and (iii) hardware counter-based
models. These models are typically platform dependent and
work across homogeneous processors in data centers.

Instruction-level models are based on estimating power at
the software level [27]. Typically, the number of instructions
is used to estimate the overall power of an application that
is executed. The power of an application is estimated by
aggregating the power of all individual instructions and inter-
instruction effects [28]. This requires extensive knowledge of
the entire instruction set. It is cumbersome to obtain power
of each instruction and the overhead of all instruction pairs,
thereby rendering these models impractical for real use.

Coarse-grained utilisation-based power models estimate
power as a function of utilisation of individual components of a
system, such as CPU and memory. The relation between CPU
utilisation and power of single-core and dual-core processors
using a quadratic function and a linear function, respectively
is known [29]. Other research estimates energy as the product
of the overall energy of the core and the core utilisation of a
task [4]. Although these models are easy to implement, they
are not accurate since power depends not only on utilisation,
but also on the type of operation. For example, floating point
operations require more power than integer operations.

Hardware counter-based power models may be viewed as
fine-grained utilisation models. The overall system power is
the sum of power of sub-components. Each sub-component’s
power is modelled as a function of hardware counters, but
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the question is which counters to use. For example, research
demonstrates: (a) the development of a power proxy by select-
ing 50 activity counts from hundreds of candidates [2], (b) the
definition of 22 physical power sub-units for an Intel processor
and the use of 24 event metrics for modelling all sub-
units [30], and (c) the definition of 8 power components for an
Intel processor and the selection of 15 hardware counters to
determine the activity of these components [3]. These models
are relatively simpler than instruction-level models, but are
also more accurate than coarse-grained utilisation models.

VIII. CONCLUSIONS

This paper proposed power modelling techniques focused
on automation, simplicity and high accuracy. To achieve this,
an automated hardware counter selection method that selects
hardware counters relevant to power for both ARM and Intel
processors is developed. In current research this is manual and
extensively explores all hardware counters obtained from a
processor. This is not feasible as more diverse processors are
added to the computing ecosystem. The accuracy of power
estimation is improved by up to 15% by using the automated
selection method. Secondly, a noise filter based on clustering
that can reduce the mean error in the power modelling data
by up to 55% was developed. Finally, a two stage power
model that surmounts the challenges in using existing power
models across multiple architectures was designed. It was
demonstrated that this model predicts dynamic power with less
than 8% error on both ARM and Intel processors, which is an
improvement over classic power models.

In the future, we aim to improve the accuracy by developing:
(i) benchmarking techniques that capture a program’s power
consumption, and (ii) time-series based dynamic calibration to
improve the estimation accuracy for Unknown vectors.
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