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Abstract—Failure is inevitable in scientific computing. As sci-
entific applications and facilities increase their scales over the last
decades, finding the root cause of a failure can be very complex
or at times nearly impossible. Different scientific computing
customers have varying availability demands as well as a diverse
willingness to pay for availability. In contrast to existing solutions
that try to provide higher and higher availability in scientific
grids, we propose a model called Task Replication for User-
defined Availability (Trua). Trua provides flexible, user-defined,
availability in scientific grids, allowing customers to express their
desire for availability to computational providers. Trua differs
from existing task replication approaches in two folds. First,
it relies on the historic failure information collected from the
virtual layer of the scientific grids. The reliability model for the
failures can be represented with a bimodal Johnson distribution
which is different from any existing distributions. Second, it
adopts an anomaly detector to filter out anomalous failures; it
additionally adopts novel selection algorithms to mitigate the
effects of temporary and spatial correlations of the failures
without knowing the root cause of the failures. We apply the
Trua on real-world traces collected from the Open Science Grid
(OSG). Our results show that the Trua can successfully meet
user-defined availability demands.

Index Terms—Task replication, failure, availability, scientific
grids, anomaly, bathtub curve, valley, system utilization, lifetime
distribution.

I. INTRODUCTION

Understanding and overcoming failures in computing sys-
tems have always been an arduous challenge. As geo-
distributed cyber-infrastructure emerges for the last decades,
these failures face tremendous growth in both scale and
complexity. As a result, failure analysis in such systems has
become extremely complicated due to the deployment of
hundreds of thousands of machines with complex interactions.

Many researchers have studied failure along with its sources
and consequences in large-scale computing infrastructures
[1][2]. Failure in such systems can have major negative
consequences such as propagated service disruptions [3],
considerable energy waste [4], and significant delay of job
completion [5]. Although scientific computing providers have
used many effective techniques to increase the reliability
of their infrastructures, to date, failures are still frequent.
In addition, failures in scientific computing systems are not
isolated events. Many studies have discovered temporal and
spatial correlations among system failures [6][7].

Large scientific computing providers offer multiple levels of
Quality-of-Service (QoS) to deal with workload heterogeneity
[8]. Task availability is one of the most important QoS in
scientific computing. A priority-based scheduling policy is
commonly used to guarantee that service requests submitted
to the different QoS levels achieve the desired availability.
If needed, resources servicing lower priority requests can be
preempted to allow the service of higher priority ones. In this
context, tasks running during resource contention periods may
be preempted by higher priority tasks, which results in task
failure. In preemption-allowed scientific grid systems, preemp-
tions can cause more than 40% of tasks failed [9], which makes
the task failures as the norm instead of exceptions.

In order to meet user-defined availability, task replication is
a commonly used mechanism in scientific grids. Replication
is based on an assumption that the probability of a single
resource failure is much higher than that of simultaneous
failures of multiple resources. It avoids task re-computation by
starting several copies of the same task on different resources.
With redundant copies of a job, a grid system can continue to
provide service in spite of the failure of some grid resources.

In [10], the authors presented a distributed fault-tolerant
scheduling algorithm that couples task scheduling with task
replication. Their algorithm is static because it depends on
using a fixed number of replicas for each task. One of the
main disadvantages of static replication is excessively utilizing
resources in grids. To overcome this, adaptive replication
was proposed [11][12][13][14]. In general, adaptive replica-
tion proactively creates a fault-tolerant scheduling system by
estimating the fault rate on different sites. The number of
replicas is dynamic and is determined according to the fault
rate of resources scheduled for tasks. Compared with static
replication, adaptive replication can save up to 60% of resource
utilization when a grid system runs heavy workload [12].

One important domain that the existing research is still
missing is the virtualization technique that has been broadly
adopted into modern scientific grids. A common reliability
model used in adaptive replication is a Weibull distribu-
tion [15], which is validated in hardware-based grid systems
[16][17][18]. However, in virtualized scientific grids [19][20],
reliability model might not be able to be estimated by a
Weibull distribution [21]. For example, the failure rate gener-
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ated from a Weibull distribution is monotonically decreasing
as the machine prolongs its lifetime [14]. However, in modern
scientific grids such as the OSG, a pilot (similar to a virtual
machine in cloud computing) is originated with a deadline
which complies with the estimated runtime of the task which
is scheduled to run on the pilot. The task will be immediately
killed after the pilot passes its deadline, which means the
pilot is saturated at the maximum failure rate as it passes
the deadline. In other words, the failure rate is impossible to
infinitely decrease. In addition to the reliability model, the spa-
tial correlation of failures in the system can also be changed.
A virtual layer introduced in the scientific grid underpins the
heterogeneous hardware with homogeneous pilots and expose
a universal interface to the users. Physically localized failures
are not necessary to generate task failures in the virtual layer.

In this paper, we investigate the task failures in the OSG
which is one of the state-of-the-art scientific grids. This
paper has two contributions to the community of scientific
computing:
• We found the reliability model of a pilot lifetime in the

OSG can be represented by a bimodal Johnson distri-
bution, which is different from any existing reliability
models in the field.

• Based on the reliability model, we proposed the Trua.
Trua uses an anomaly detector to filter out anomalous
failures (temporal and spatial correlated failures) in the
system. Trua also uses novel selection algorithms to
deploy the replicas to the adequate pilots in which the
user-defined task availability can be met.

In this paper, we use the term - pilot - to represent a virtual
instance in scientific grids. A task submitted to the grids will
be eventually executed on a pilot. This concept is similar to
running a task on a virtual machine in the cloud environments.
Another important term used in this paper is failure rate. In
reliability engineering, failure rate corresponds to the inverse
of mean time to failure. We comply with this concept for
measuring the lifetime statistics of pilots in Section III-B.
However, in the rest of the paper, we use it to describe task
failures. It corresponds to a complement of task availability.

II. RELATED WORK

Traditional adaptive replication consists of two models -
a failure model and a replication model. Since Litke [14]
provides a general representation of the adaptive replication,
in this paper, we call them together as Litke’s model. Let
us review the formal definition of these two models in this
section.

A. Failure Model

The first model focuses on running a single copy of a task on
a pilot. It aims to quantify a task’s failure probability based on
a pilot lifetime PDF. Without losing any generality, we assume
that a task is going to start its execution at time t0. This also
implies a pilot which carries the task is alive at time t0. The
failure rate of the task, as expressed in Equation 1, is defined
as the probability of failure during the next ∆t time units.

P (t0 < s < t0+∆t|s > t0) = P (t0 < s < t0+∆t)/P (s > t0)
(1)

where s represents the time that the task fails to continue
to run.

We use p(t) to represent the runtime PDF of the pilot job
and fi to represent the failure rate of the task Ti, then the
above equation can be further represented as follows:

fi =

∫ t0+∆t

t0

p(t)/

∫ ∞
t0

p(t) (2)

B. Replication Model

Litke’s model then decides to use replication to protect
a task from failures. The term replica is used to denote an
identical copy of a task. By producing task replicas, the failure
probability for a task can be significantly lowered. We assume
that mi replicas - denoted by Tik, k = 1, ...,mi - of a task Ti
are produced and placed in the grid. The new failure rate for
task Ti becomes:

f ′i =

mi∏
k=1

fik (3)

The above equation corresponds to the probability of the
event “all replicas fail (the original task is also considered as
a replica).” The number of replicas created depends on the fail-
ure probabilities of replicas and the desired availability level
from the application. We denote λ as the desired availability.
Thus, for each task, a sufficient number of replicas should
satisfy the condition:

mi∏
k=1

fik ≤ 1− λ (4)

where λ ∈ (0, 1).
A loss of a single replica should not be considered as a

failure because other replicas might survive to the end. We
consider a task successfully finishes when any of the replicas
finish in the end.

From the OSG perspective, for any user-submitted task,
there are two parameters attached to it: target availability λ
and lease period ∆t. A lease period is the estimated runtime
for a task to run on a pilot. If the required lease period is
larger than the assigned pilot’s lifetime, the task cannot finish
before the pilot terminates and therefore the task will fail.
The OSG needs to look at the pilot pool and select a set
of pilots so that their cumulative availability is greater than
the target availability. More importantly, if we sort all pilots
by their failure rates and select pilots from the most reliable
one, Litke’s model can guarantee that we use the minimum
redundancy to replicate a task for any given availability [14].
In this paper, we evaluate both the random selection and the
sorted selection and use Random and Sorted to represent two
selections respectively.



III. EXPLORATION

This section is to build a case study for Litke’s model. We
monitored the OSG’s pilots for 102 days and collected their
running information such as start time, end time and so on.
We additionally collected 34 days of pilot data for the test
purpose. We first characterize the pilot lifetime PDF. Based
on that, we test the model. The results show that the model
barely achieves the target availability levels due to the large
variance in the pilot lifetime PDF and the deficiency of the
model itself.

A. Lifetime PDF

Figure 1 shows the lifetime PDF on 102-day dataset.
Unlike Litke’s assumption that the lifetime PDF follows
a Weibull distribution, the actual PDF follows a bimodal
Johnson distribution. In our previous work [9], we divided
pilot termination into two categories: expected termination and
unexpected termination and use two Johnson distributions to
fit two PDFs. In order to understand the difference between
expected and unexpected terminations, we need to introduce
some background knowledge. In the OSG, there are two
important parameters pertaining to pilot lifetime - retire time
and kill time. Retire time is considered as a “soft deadline”
for a pilot and kill time is considered as a “hard deadline”.
After passing the retire time, a pilot is still able to run its
carried task until the task is finished. If a carried task cannot be
finished before its carrier pilot reaches the kill time, the pilot
will be intermediately killed by the system resulting in task
failure. Retire time and kill time are configurable in the OSG,
they can be adjusted based on different workloads. During
the time period we collected the data, all pilots’ retire time
and kill time had been configured around 38 hours and 40
hours. In Figure 1, all pilots whose lifetime were less than the
retire time were terminated due to unexpected failures such
as preemptions and network disconnections; the rest of pilots
whose lifetime greater than the retire time were terminated
due to normal pilot life cycle.

Fig. 1. Pilot lifetime PDF

As described in our previous work [9], preemptions are
apt to happen in an early stage. In Figure 1, most of the
pilots whose lifetimes are less than 10 hours are terminated
due to preemptions. Preemptions are dominant in unexpected
terminations and leave other unexpected failure types (network
disconnections, idle shutdown and so on) negligible. We also
call this region as the preempting stage. After the preempting
stage, a pilot enters a stable stage where pilots have less chance
to be terminated. The stable stage lasts until the retire time is
reached and from the moment a pilot enters the retiring stage.

B. Bathtub Curve

We applied Litke’s failure model to the lifetime PDF and
tested on three lease periods - 60, 240, 420 minutes. Figure 2
shows three failure rate curves generated from Figure 1. The
failure rate curves demonstrate three stages in a pilot life cycle:
in the preempting stage, a pilot faces high failure rate; as a
pilot survives preemptions, it goes into the stable stage and
its failure rate keeps decreasing as the age increases; however,
when a pilot approaches the retire time, the failure rate starts
sharply increasing.

Fig. 2. This figure shows failure rate curves based on three lease periods: 60,
120, 240 minutes; this figure also indicates a failure rate can be ambiguously
interpreted into two pilot running ages

According to Litke’s replication model, a task can produce a
large number of replicas if the selected pilots have high failure
rates, which results in wasting resources. On a failure rate
curve, left region before retire time is more attractive to our
design. We call such a truncated region as a bathtub curve and
Figure 3 conceptually summarizes a bathtub curve pertaining
to the OSG pilots.

Fig. 3. A bathtub curve



C. Pitfalls of the Model
We tested Litke’s model on our 102-day pilot dataset.

Since scanning the whole dataset takes too long, we sampled
our dataset every 100 minutes. At each sample, we listed
all available pilots and calculated their ages. With Litke’s
failure model, we can estimate each pilot’s failure rate. After
getting all failure rates, we run Litke’s replication model. We
conducted two algorithms on selecting pilots: random selection
and sorted selection. Both selections accumulate multiple
pilots until their overall failure rate reaches above a target
availability. The difference is that random selection randomly
picks pilots and sorted selection always starts selecting from
the most reliable one.

Figure 4 shows the overall failure rates on different com-
binations of target availability levels and lease periods. Each
combination is represented by a pair (a(n), t(n)) where a(n)
represents the availability levels (0.90, 0.95, 0.99) and t(n)
represents the lease periods (60, 240, 420 minutes). As shown
in the figures, only the test of (0.90, 60) which is represented
by (a1, t1) meets the target availability. For the test of (0.95,
60) which is represented by (a2, t1), random selection meets
the target availability; however, sorted selection fails to keep
the failure rate under 0.05. In general, the model gets closer
to the target availability at a shorter lease period (60 minutes).
As the lease period becomes larger, the model becomes more
inaccurate to select reliable pilots.

Fig. 4. The first three pairs of histograms which set target availability as
0.90 are expected to have failure rate below 0.10; the middle three pairs of
histograms are expected to be below 0.05; the last three pairs are expected to
be below 0.01.

Figure 5 shows the average number of replicas that are
selected for a task. As the sorted algorithm always selects
the most reliable pilots, it uses the minimum redundancy.
Interestingly, if we look at both Figure 5 and Figure 4, the tests
of (0.90, 240), (0.95, 420), (0.99, 60) and (0.99, 240) show
that sorted selection uses less redundancy to achieve higher
availability compared with random selection. This implies
sorting failure rate indeed helps to improve task availability.
Unfortunately, neither of the two algorithms can meet the
target availability levels.

Fig. 5. Redundancy costs of Litke’s model

IV. ANALYSIS

We summarize the reasons that make Litke’s model fail to
select adequate pilots as follows.

A. Ambiguity in a bathtub curve

The Weibull distribution in Litke’s assumption generates
a monotonically increasing failure rate curve. However, a
bimodal Johnson distribution generates a non-monotonical
curve. As two red x-points show in Figure 2, two pilots who
run into different ages can have an equal failure rate. In such
a case, one pilot is still in its early stage and the other is in
the retiring stage. A user might prefer to select the first pilot
because as it continues to run, its failure rate will decrease.
On the other hand, the second pilot’s failure rate will sharply
increase. For this reason, the model might not be able to select
a set of the most reliable pilots.

B. Anomoly in pilot lifetime PDF

Incidents such as power loss or network disconnection can
cause a large number of failures resulting in a sudden rise in
pilot terminations. We call such unexpected pilot terminations
as anomalies. To demonstrate anomalies in the OSG, we
select the first 18 days in the 102-day pilot dataset where
a large number of pilot failures occurred due to network
disconnection. Figure 6a shows the lifetime PDF of the 18-
day data. A red circle indicates a large spike in the lifetime
PDF that is about 7 hours to 8 hours. We extract all pilots
with a lifetime between 7 and 8 hours and examine their
pilot start time and end time. Figure 6c and 6d show start
time distribution of those pilots. Figure 6e and 6f show end-
time distribution of those pilots. These figures show a large
number of pilots start and end around 370 and 380 hours. After
adopting the pilot classifier described in our previous work
[9]. It turns out a large number of network disconnections
happened in the OSG. Figure 6b shows that we detected a
sudden rise of network failures in our pilot dataset.



(a) An anomaly in pilot lifetime PDF (b) Network failure distribution

(c) Pilot start time distribution of the
pilots that have lifetime between 7 and
8 hours

(d) Zoom-in of start time

(e) Pilot end time distribution of the
pilots that have lifetime between 7 and
8 hours

(f) Zoom-in of end time

Fig. 6. Anomaly in the pilot lifetime distribution

C. Variance in pilot lifetime PDF

Another factor that makes the model difficult to select
the most reliable pilots is the variance in the lifetime PDF
caused by non-anomalous preemptions in the OSG. In our
previous work, we found that over 40% of pilots encountered
preemptions. Most of those preemptions happened on a regular
basis and bring the randomness in pilot lifetime PDF overall
time ranges. In addition, the OSG usually disassembles a large
job into multiple tasks in order to execute them in parallel. As
a result, the OSG has to create a bunch of pilots around the
same time to carry those tasks if there are not enough pilots
available in the pilot pool. These newly created pilots have
the same start time and therefore will have the same end time
if preemptions happened to these pilots. We call this effect
as lifetime locality. In Litke’s model with failure rate being
sorted, these pilots are highly likely to be selected together
because they have similar age and therefore similar failure
rate. This pilot behavior has been discussed in more detail in

our previous work [9], in this paper we will propose new pilot
selection algorithms in Section VI to specifically tackle this
effect.

V. ARCHITECTURE OF THE TRUA

Figure 7 shows the workflow of the Trua. It adopts an
anomaly detector to monitor pilot runtime information. If
any suspicious pilot failures arise, the Trua can filter out the
infected pilots. Following an anomaly check, a pilot lifetime
distribution can be generated from the collected information
and consequently multiple bathtub curves, each of which
pertains to a lease period, can be derived from the lifetime
distribution. Finally, depending on target availability, the Trua
tunes redundancy assigned for a task and make sure selected
pilot replicas can meet target availability.

Fig. 7. System architecture of Trua

A. Anomaly Detection

In order to detect failure anomalies, we adopt the RRCF
algorithm [22]. We put the pilots that are characterized as
network failures in a time stream. The anomaly detector acts
on the time stream. The output from the anomaly detector
is also a data stream containing anomaly scores produced by
RRCF algorithm. Potential anomalies identified by RRCF have
a higher anomaly score than data that the algorithm considers
non-anomalous. RRCF generates the anomaly score based on
how different the new data is compared to the recent past. If
the anomaly score is above a certain threshold, the detector
considers the recently terminated pilots are anomalous. Figure
8b shows the lifetime PDF after removing anomalies.

The anomalous failures can easily exceed the limits of
any reasonable replication scheme, so we should not replicate
tasks when an anomaly appears. Instead, the OSG should halt
scheduling tasks to any infected cluster sites until the incidents
get resolved. Therefore, we select another input parameter
in our anomaly detector which defines a halting period after
detecting an anomaly. Figure 8b shows the new pilot lifetime
PDF after we applied RRCF with a threshold score set to 250
and a halting period set to 15 minutes.



(a) Before Removing Anomalies (b) After Removing Anomalies

Fig. 8. Effect of anomaly detector

B. Valleys in a Bathtub Curve

Although the anomaly detector can filter out anomalous
preemptions, most of the preemptions in the OSG are non-
anomalous. In order to overcome these failures, we introduce
a concept - valley. Figure 9 shows three valleys in a bathtub
curve. A valley is defined by a target availability (failure rate
is (1 - availability)). A smaller valley covers a shorter lifetime
range. Therefore, the number of pilots that exist in a smaller
valley is less than the number of pilots in a larger valley. More
importantly, all those pilots that exist in a smaller valley are
always a subset of the pilots that exist in a larger valley. With
the definition of the valley, let us look at why we want to
determine valleys in a bathtub curve.

1) Overcome variance in the PDF: Valleys can overcome
the variance in a pilot lifetime PDF. If we can determine
a stable valley that the pilots within the valley have high
reliability, then the pilots can be randomly selected from
the valley. The selected pilots are expected to meet target
availability. Due to lifetime locality, it is commonly seen in the
OSG that a group of pilots start and end together. If any pilot in
a group gets selected, sorted selection in Litke’s model highly
likely selects other pilots in the group as well. If those pilots
face preemptions, the subsequent replicas cannot do any favor
to improve the availability. Random selection in a valley can
definitely overcome this issue. In addition to lowering failure
rate, random selection can also improve system utilization.
Intuitively, the model in Section II can result in load unbalance
in the system by assigning tasks to the most reliable pilots
which might only consist of a small portion of available pilots.

Fig. 9. Valleys in a bathtub curve

2) Keep task redundancy to the minimum: As shown in the
sorted selection of Section II-B, the algorithm immediately
stops as the cumulative failure rate of the most reliable pilots

exceeds the availability requirement. The algorithm can assure
that the system creates the minimum number of task replicas
to meet the target availability.

Valleys can also keep the redundancy to the minimum by
carefully defining valleys by certain availability levels. For
example, if the target availability is 0.99, we can choose any
pilot within the valley region under failure rate 0.01 to achieve
it. However, high-availability valleys contain fewer pilots than
low-availability valleys. As a result, a smaller valley might
not have enough pilots to meet target availability. To address
this problem, we should consider multiple valleys for target
availability. As shown in Figure 9, availability of 0.99 can be
met with one pilot within the valley 0.01, or two pilots within
the valley 0.1 ( 2

√
0.01 = 0.1), or three pilots within the valley

0.22 ( 3
√

0.01 ≈ 0.22), and even more pilots on larger valleys
(not shown in the figure). Compared with the sorted selection,
randomly selecting pilots from valleys should not increase the
task redundancy in the system.

VI. METHODOLOGY

A. Challenges

There are several challenges in practically adopting the idea
of using valleys to our system.

1) Does pilot lifetime distribution change quickly over
time?: The Trua relies on the historical pilot runtime in-
formation to generate the lifetime PDF. If the pilot lifetime
distribution varies frequently over time, the estimated lifetime
PDF and valleys might not be adequate to represent real-time
pilot characteristics.

2) How valleys can be accurately determined?: As shown
in Section III-C, due to the variance in a pilot lifetime, the
failure rate curve cannot 100% accurately estimate the actual
reliability. We need to make sure the estimation error is in a
reasonable range.

B. Generating Lifetime PDF

We use our data collected from the OSG over 102 days.
We split them into three time frames, each of which contains
80,000 pilots. We apply the anomaly detector with the pa-
rameters - score: 250, delay: 60 minutes - to the three time
frames.

Figure 10 shows the PDF fitting curves on the three time
frames. As seen in the figure, the three time frames follow the
same shape. Although anomalies unpredictably happen over
time, once we group enough number of pilots, the pilot lifetime
PDF is relatively stationary to some degree. This observation
confirms the feasibility of using historical pilot information
to estimate the ongoing pilot failure rate. We do not run a
sensitivity analysis on the size of historical pilots that are
eligible to estimate the pilot lifetime PDF. More investigations
might be necessary to identify the minimum time window or
the size of pilots.

C. Determining Valleys on Failure Rate Curves

We use a statistical approach to generate failure curves given
a set of pilots. The procedure works as follows.



Fig. 10. Pilot lifetime PDFs of three time frames

1) Select the granular interval to characterize failure rate:
We select a small size of the time interval. We divide the
pilot lifetime into multiple intervals. For example, the pilot
lifetime is between 0 and 200,000 seconds. If we select the
time interval as 200 minutes (12,000 seconds), there will be
17 intervals in lifetime distribution.

2) Calculate failure rate on individual intervals: Given a
lease period, we test each interval overall dataset (102 days)
and calculate the failure rate according to each interval. For
example, given a lease period of 240 minutes, we first select a
pilot only within the age range between 0 and 200 minutes. We
test the range (0, 200] over 102 days and calculate the average
failure rate for this interval. Then we move the interval to (200,
400] and test the new interval over 102 days and so on. When
we finish estimating the failure rate of all intervals, we plot the
failure curve. Note we only select one replica in each interval
in the aforementioned test. We need to repeat the same test
but select a different number of pilots within each interval in
order to test failure rate curves for different redundancy levels.
We do not need to run the test with a large number of replicas.
We should stop moving to a higher redundancy level once the
valleys determined by existing redundancy levels can cover
the range between 0 and the retire time.

3) Determine valleys on failure rate curves: After generat-
ing multiple failure rate curves on redundancy levels, we draw
horizontal lines at the target availability levels to determine
the valleys. For example, Figure 11 shows the valleys that
are determined by the target availability of 0.95 and the lease
period of 240 minutes. There is no failure rate curve for
Redundancy1 because a single replica cannot meet the target
availability at any intervals.

As shown in Figure 11, when the system tries to replicate
a task to multiple pilots. It should first try to select 2 pilots in
the most reliable valley - v1. If there are less than 2 pilots in
this valley or pilots are not applicable, the system should relax
the valley to v2 and randomly select 3 pilots in the valley. If
v2 is not applicable again, the system moves the valley to v3
and tries to select 4 pilots.

Fig. 11. Valleys on Failure Curves: Valley1(v1) is [1600,2000] minutes and
2 pilots need to be selected to meet the availability which is 0.95; Valley2(v2)
is [200,2200] and 3 pilots need to be selected; Valley3(v3) is [0,2200] and 4
pilots need to be selected.

D. Algorithms

After characterizing the valleys of different availability
levels, we propose two algorithms to select pilots from those
valleys: valley selection and spread selection. We will also
use Valley and Spread in this paper to represent these two
algorithms. Algorithm 1 shows the procedures of two algo-
rithms. The difference between these two algorithms is that
valley selection uses random select n pilots which randomly
select r pilots out of all available pilot within a valley; spread
selection uses spread select n pilots shown in Algorithm 2
which tries to evenly distribute the selected pilots over their
minimum and maximum start times. The motivation behind
spread selection is to mitigate the effect coming from lifetime
locality.

Algorithm 1 Bathtub Replication Algorithm - P is the set of
all available pilots at a given time; V is the valley list (sorted
from the most reliable valley to the most error-prone valley)
associated to a given pair of (availability, lease)

procedure SELECT PILOTS(P , V )
for vi in V do

r ← get valley redundancy(vi)
pi ← get pilots in valley(vi, P )
n← get length(pi)
if n ≥ r then

psi ← random select n pilots(r, pi)
or
psi ← spread select n pilots(r, pi)
return psi

end if
end for
return NoSolution

end procedure

Both algorithms start from the most reliable valley in which



only the minimum number of pilots need to be selected. The
algorithms gradually move to a larger valley and try to select
more pilots if the preceding smaller valley is not able to select
enough pilots. The algorithms return a set of pilots when there
is a valley that can select enough pilots that match the valley’s
redundancy level.

Algorithm 2 spread select n pilots function - r is the number
of pilots we expect to select; p is a set of pilots that exist in a
specific valley; get spread n interval(r, tmin, tmax) returns a
list of intervals that are evenly distributed over the time span
(tmin, tmax] where tmin is the minimum pilot start time and
tmax is the maximum pilot start time

procedure SPREAD SELECT N PILOTS(r, p)
ps = set()
tmin ← get min start time(p)
tmax ← get max start time(p)
lintv ← get spread n interval(r, tmin, tmax)
idx← 0
while len(ps) < r do

vi ← lintv[idx]
pi ← get pilots in valley(vi, p)
if len(pi) > 0 then

p1
i = random select n pilots(1, pi)
ps.insert(p1

i )
p.remove(p1

i )
end if
idx = (idx+ 1)%r

end while
return ps

end procedure

VII. EVALUATION

We apply the valleys of different pairs of availability and
lease periods that are generated from the 102-day pilot dataset
to the test dataset that contains 34-day pilot information. We
measure the performance of our model in three metrics: failure
rate, redundancy and resource utilization and compare the
performance with Litke’s model.

A. Valleys

Table I shows the valleys for nine combinations of avail-
ability levels (0.90, 0.95, 0.99) and lease periods (60, 240,
420 minutes). All valleys are determined based on 102-day
pilot data. R represents how many replicas a task needs to be
replicated on a certain valley. v(n) represents a valley range
that corresponds to a redundancy level. For example, let us
look at the pair of the availability of 0.95 and the lease of
420 minutes. There is no valley region that can achieve the
target availability of 0.95 by selecting one pilot. Therefore,
v1 is labeled as N/A. If we further look at v2, it indicates a
valley range between 1800 and 1950 minutes, which means
by selecting any two pilots whose ages are between 1800 and
1950 minutes, the cumulative failure rate of the selected pilots
is expected to be below 0.05 (the target availability is 0.95). In

Table I, we omit v11 in which none of the availability-lease-
pairs have a valid valley.

B. Failure Rate

Figure 12 shows failure rates of different pairs of target
availability and lease period. As shown in the figure, Random
and Sorted show the results of the same algorithms described
in Section III. Our model, shown as Valley and Spread, can
meet all target availability levels. Interestingly, as a revised
algorithm of Valley, Spread shows lower failure rates than Val-
ley. This proves that evenly distributing start time of selected
pilots is an effective technique to overcome the variance in the
pilot lifetime PDF.

Fig. 12. Failure rate evaluation of different pilot selection algorithms

C. Redundancy

Figure 13 shows the redundancy costs of different avail-
ability levels and lease periods. Unsurprisingly, the Sorted
algorithm uses the minimum number of replicas. Compared
with Random, Valley and Spread can use less redundancy to
achieve higher availability in some test cases especially with
low target availability and short lease period - (0.90, 60), (0.90,
240), (0.90, 420) and (0.95, 60).

Figure 13 also suggests that we should always spread out the
pilots based on their start time because it improves availability
without introducing any redundancy overheads.

D. System Utilization

Figure 14 shows the pilot utilization of different selection
algorithms. In general, Random and Sorted algorithms have
a larger candidate pool compared with Valley and Spread
algorithms. Random and Sorted are able to select all available
pilots; however, Valley and Spread cannot select any pilots if
available pilots are not within any pre-defined valleys. Thus
the first two algorithms have higher system utilization than the
latter two. As shown in Table I, if all pilots are close to the end
of the retire time (> 2100 minutes) and not enough pilots are
in the valleys at a certain time point, the scheduler should not
choose any pilots. As a result, these tasks should be held by



TABLE I
VALLEYS FOR DIFFERENT REDUNDANCY LEVELS

A,L v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v12
.90,60 50,2100 0,2100 N/A N/A N/A N/A N/A N/A N/A N/A N/A
.95,60 100,2100 0,2100 N/A N/A N/A N/A N/A N/A N/A N/A N/A
.99,60 N/A 1250,2000 100,2100 50,2100 N/A N/A 0,2100 N/A N/A N/A N/A
.90,240 450,2100 50,2100 0,2100 N/A N/A N/A N/A N/A N/A N/A N/A
.95,240 2000,2050 550,2100 50,2100 0,2100 N/A N/A N/A N/A N/A N/A N/A
.99,240 N/A N/A 1700,1850 N/A 1300,2100 250,2100 50,2100 N/A 0,2100 N/A N/A
.90,420 N/A 150,1950 50,2000 0,2050 N/A N/A N/A N/A N/A N/A N/A
.95,420 N/A 1800,1950 550,1950 50,2000 N/A 0,2050 N/A N/A N/A N/A N/A
.99,420 N/A N/A N/A 1850,1950 N/A 1400,1950 N/A 1100,2000 350,2000 150,2000 0,2050

R 1 2 3 4 5 6 7 8 9 10 12

Fig. 13. Redundancy costs of different pilot selection algorithms

the scheduler until there are more eligible pilots in the valleys
later. We call such a mechanism as delay scheduling.

Fig. 14. System utilization of different pilot selection algorithms

E. Delay Scheduling - Constraining Redundancy

As shown in Table I, a task might have to be replicated by a
large number of times in certain situations. For example, given
a target availability of 0.99 and a lease period of 420. The last
valley that is able to cover all pilot lifetime from 0 to 2060

needs to select 12 pilots in the valley. Such an aggressive
replication scheme can quickly exhaust the resources in the
system. To overcome the workload burden, we propose an
algorithm - delay scheduling which is able to control the upper
bound of redundancy for a task. The idea is that we can define
an upper bound for the largest valley in which the maximum
number of replicas to replicate a task is acceptable. The
scheduler stops moving to a larger valley after the maximum
allowed valley fails to select enough pilots. The system has
to hold the tasks in the batch queue until there are enough
pilots available in the upper-bounded valley. For example, if
the system put redundancy limit to 6, all valleys after v6 in
Table I are cut off. Let us take the pair of the availability of
0.99 and the lease period of 420 as an example. If there are
not enough pilots that exist between 1400 and 1950 minutes,
the scheduler postpones scheduling any task until it can find
6 pilots with that valley.

(a) Failure Rate

(b) Redundancy (c) System Utilization

Fig. 15. Redundancy and utilization tradeoff of different redundancy upper
bound. The target availability shown in the figures is 0.99.

We tested the redundancy limit of 6, 5, 4. Only the larger
target availability gets affected by the redundancy limit be-



cause the smaller availability does not exceed the limit. Thus,
we only show the pairs of (0.99, 60), (0.99, 240) and (0.99,
420) in Figure 15. As shown in Figure 15a, all three pairs
achieve the target availability of 0.99. The lease of 420 minutes
reaches almost zero failure rate on the redundancy limit 5 and
4 because it uses valleys up to [1850, 1950] minutes. In such
a small pilot age range, most of the pilots are highly reliable.
Figure 15b shows that the redundancy keeps below the limit
as expected.

Despite successfully keeping redundancy within a certain
limit, delay scheduling can lower the system utilization. Let
us look at the lease of 420 minutes. The scheduler only allows
the pilots whose ages are in [1850, 1950]. Compared to the
whole lifetime range [0, 2100], only a small portion of pilots
are able to be selected. Figure 15c shows the system utilization
on redundancy limits. As seen in the figure, only 14.5% of
pilots can go to the candidate pool. If we allow all valleys
shown in Table I to be used in selection, 73.5% of pilots are
able to be selected in the system.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we described a new model - Trua that
dynamically tunes task redundancy based on system failure
rate. Our work showed the existing model fails to estimate
the real-world system failure rate. The techniques in the Trua,
such as anomaly detection and random selection in valleys
can also be applied to other virtualized scientific grids that
suffer temporal and spatial failures. Our work bridges the gap
between theory and practice and provides a statistical approach
to achieve user-defined availability.

In the future, we plan to enhance the Trua to an online
system that allows estimating pilot lifetime and selecting pilots
up to the point that prediction is made. The minimum size of
a time frame that is required to accurately estimate the pilot
lifetime is not analyzed in the paper. Although Section VI-B
proves the pilot lifetime is stationary over a certain period of
time, cross-validation among different time frames would be
helpful to reduce the overfitting effects in the model.
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