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Abstract—We present a framework for performance optimiza-
tion in serverless edge-cloud platforms using dynamic task place-
ment. We focus on applications for smart edge devices, for exam-
ple, smart cameras or speakers, that need to perform processing
tasks on input data in real to near-real time. Our framework
allows the user to specify cost and latency requirements for each
application task, and for each input, it determines whether to
execute the task on the edge device or in the cloud. Further, for
cloud executions, the framework identifies the container resource
configuration needed to satisfy the performance goals. We have
evaluated our framework in simulation using measurements
collected from serverless applications in AWS Lambda and AWS
Greengrass. In addition, we have implemented a prototype of our
framework that runs in these same platforms. In experiments
with our prototype, our models can predict average end-to-end
latency with less than 6% error, and we obtain almost three
orders of magnitude reduction in end-to-end latency compared
to edge-only execution.

I. INTRODUCTION

In the past several years, there has been increased usage of
intelligent applications on end-user devices, including voice-
activated virtual assistants, smart-home security cameras, aug-
mented reality in mobile phones, and so on. In many of these
applications, the bulk of data processing is performed in a
cloud data center. The increase in the number of such applica-
tions, as well as in the number devices, has led to a surge in the
amount of data generated at the periphery of communication
networks [23]. This surge presents challenges to the cloud-
based computational approach, as applications must compete
for limited network resources [28]. The situation is further
complicated by the fact that many intelligent applications are
latency sensitive, and thus require near real-time access to
computational resources.

Edge computing proposes to address these challenges by
leveraging the computational power in close proximity to
data sources, sometimes in the end user devices themselves.
These edge devices can perform data processing like filtering,
aggregation, or inference. The results, typically much smaller
in size, may then be forwarded to the cloud for further
processing and decision-making. This approach reduces both
data processing latency and bandwidth usage [26], [28].

To achieve this latency reduction requires that edge devices
execute compute tasks in near-real time. Depending on the
type of application or workload, this may not be possible on
resource-constrained edge devices. In such cases, it may be
necessary to offload the computation to a higher-resourced

compute node in the cloud. The problem is then to determine
which tasks should be executed on the edge device and which
should be executed in the cloud, so as to meet developer-
specified performance criteria such as latency or cost.

We study this task placement problem in the context of
serverless computing, more specifically, the Function-as-a-
Service paradigm, an increasingly popular model for both
cloud and edge platforms [21], [4], [8]. In this paradigm, the
developer writes stateless functions that can be triggered by
various events. Each function executes in its own container.
The developer specifies the container resource allocations, and
the containers in the cloud are orchestrated and provisioned
by the cloud provider. The function performance depends on
the input and application characteristics, the network transfer
from the edge device to the cloud, the container resources,
and the time to store the function results. Several cloud
platforms also provide frameworks for function execution on
edge devices [1], [22].

We propose a framework that dynamically determines where
to execute serverless functions so as to optimize developer-
specified performance criteria. Our framework targets intelli-
gent applications that consist of a single serverless function
that executes a data processing task on an input, for example,
image recognition on a single frame (image) from a camera.
Our framework processes a sequence of inputs, and for each
input, it dispatches the task to a function in the appropriate
container, from among the edge container and a set of con-
tainers in the cloud with various resource allocations.

Our framework addresses two optimization problems: (1)
minimize latency subject to a cost constraint and (2) minimize
cost subject to a latency constraint, where the latency is
measured in terms of the time from the ingestion of the input to
the storage of the results in the cloud. To perform this dynamic
task placement, our framework predicts the application latency
and cost for the various container configurations and input
characteristics. Thus, a key contribution of our work is the
development of accurate, data-driven performance models for
each component in the edge and cloud execution pipelines.
These models encompass network transfer time, container
startup time, function execution duration, and storage latency.

The specific contributions of this work are as follows:
(1) we present application-specific performance models for
serverless applications in an edge-cloud computing platform
- these models are trained and evaluated using data collected
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from applications running in the Amazon Web Services (AWS)
serverless environment; (2) we propose a dynamic task place-
ment framework, using these models, that optimizes for
developer-specified metrics such as latency or cost; (3) we
provide extensive evaluations of our framework using real-
world data from applications running in AWS; and (4) we
present a prototype implementation of our framework and its
evaluation results. In our experiments in AWS, our prototype
predicts end-to-end latency with less than 6% error. In this
study, we use AWS Greengrass for edge computing and AWS
Lambda for the the cloud platform, but our framework can be
generalized to other serverless platforms.

The rest of the paper is organized as follows. Sec. II pro-
vides details about the system architecture and our benchmark
serverless applications. In Sec. III, we describe our framework
architecture and objectives. Sec. IV presents the performance
models and gives details of their training and evaluation. In
Sec. V, we give the details our framework implementation,
and in Sec. VI, we present evaluation results from both data-
driven realistic simulations and a live prototype. In Sec. VII
we discuss related work, and we conclude in Sec. VIII.

II. ARCHITECTURE AND APPLICATIONS

A serverless edge-cloud architecture consists of an edge
device with access to input data. The device is connected via a
network to a cloud data center that has both compute and stor-
age capability. Industry frameworks support two approaches or
pipelines to execute an application in this architecture, a cloud
pipeline, where the data processing task executes in the cloud
data center and an edge pipeline, where the task executes on
the edge device itself. We briefly describe each pipeline below,
as well as the factors that impact its end-to-end latency and
execution cost. We then describe the benchmark applications
that we use to validate our models and framework.
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(a) Cloud pipeline in AWS Lambda.
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(b) Edge pipeline in AWS Greengrass.

Fig. 1: AWS serverless application pipelines.

A. Serverless Computing Pipelines

1) Cloud Pipeline: In the cloud pipeline, the edge device
uploads the input data to a cloud storage service. This upload
triggers the execution of the stateless function that performs
the data processing task. The function writes the result of this

task to cloud storage. An example of this pipeline for AWS
Lambda is shown in Fig. 1a. Here, the edge device uploads
input data to an AWS S3 bucket, triggering an AWS lambda
function that stores the result in another S3 bucket.

In commercial serverless platforms, each function instance
runs in its own container. Further, some platforms allow
developers to configure the container resources, e.g., mem-
ory and CPU, during application deployment. This resource
configuration, in turn, impacts the function performance when
executed in that container. For the purposes of this work, we
adopt the container configuration options offered by AWS. The
developer specifies the memory allocation for the container,
ranging from 256 MB to 3008 MB. AWS assigns CPU power
to the container proportionally to the allocated memory.

To scale serverless applications, serverless platforms create
containers as needed. When a function is triggered, if a
container is available (not currently executing a function), the
function executes in the existing container. Otherwise, a new
container is created for that function execution. If a container
is idle for some extended period, it is destroyed. If a new
container needs to be created before executing a function, this
is called a cold start. A cold start imposes a non-trivial time
penalty to initialize the container and load any libraries before
the function execution begins. If a function is assigned to an
existing container, this is a warm start, and the startup time
can be up to an order of magnitude lower than a cold start.

a) Pipeline performance: We measure the performance
of the cloud pipeline in terms of the end-to-end latency for
processing a single input. This measurement begins when the
input is ingested by the application on the edge device and
ends when the result is saved in cloud storage (the second S3
bucket in Fig. 1a). The latency, for an input k and memory
configuration m, consists of the following components:
• upld(k): The time to transfer the input from the edge device

to cloud storage. This consists of the network transfer time
and any write overhead to the first S3 bucket.

• start(m): The time to start the cloud container for function
execution. The time depends on the container memory m,
but not the input k and varies for a cold start or warm start.

• comp(k,m): The compute time in the function.
• store(k): The time to save the output to cloud storage.

The end-to-end latency is therefore:

Tc(k) = upld(k) + start(m) + comp(k,m) + store(k). (1)

b) Pipeline cost: In serverless cloud platforms, the cost
is typically based on the function execution time. In this work,
we use the AWS pricing model. AWS bills users for the
duration for which code executes on AWS systems, rounded up
to the nearest 100 ms. The price is proportional to the amount
of memory allocated to the container at $1.667 × 10−06 per
GB-s execution [2]. Further, there is a fixed charge of $0.20 per
1 M lambda function requests. To determine function execution
cost from execution time comp(k,m), we round the execution
time to the nearest ms and then apply the AWS pricing model.
We limit our study to the function execution cost, as this is
the most challenging to model and predict.



2) Edge Pipeline: One can also use an edge pipeline,
where data processing is performed within a function on the
edge device itself. Upon function completion, only the results,
usually much smaller in size, are sent to the cloud for storage.
Similar to the cloud platform, the developer has a facility to
constrain the memory limit of the lambda function, but here
the upper limit is dictated by the available resource in the edge
device. Thus, we assume a single memory configuration for
the edge device container.

In Fig. 1b, we show an example of an edge pipeline using
the AWS Greengrass edge computing framework. Similar
pipelines can be created in other edge computing platforms,
e.g. Azure IoT Edge. In Greengrass, a lambda function exe-
cutes inside the Greengrass run-time on an edge device, and
the function results are subsequently sent to the AWS IoT
Core service in the cloud. The IoT Core service forwards the
results to a developer-specified endpoint, for example, S3 or
DynamoDB.

Greengrass offers two execution models for lambda func-
tions, a stateless function and a ‘long-lived’ function [1]. The
stateless model is similar to the model used in the AWS
Lambda platform, in that multiple functions may execute on an
edge device in parallel. In the long-lived model, the function
runs continuously on the edge device; it can write to and read
from device storage and this storage persists for the lifetime
of the function. We use the long-lived function model for
several reasons. First, we consider resource-constrained edge
devices that may not have the power to execute functions in
parallel, depending on the application. Second, co-location of
multiple functions contending for limited hardware resources
may cause unpredictable behavior. This unpredictability limits
the ability to optimize task placement.

a) Pipeline performance: We measure the performance
of the edge pipeline in terms of the end-to-end latency for
processing a single input. The latency for an input k consists
of the following components:
• comp(k): The compute time on the edge device.
• iotup(k): The time to send the results from the edge device

to the cloud IoT Core, including the network transfer time
and the framework-induced overhead.

• store(k): The delay between when the results are received
in the cloud IoT Core service and when they are available
in the cloud storage.

The end-to-end latency for the edge pipeline is:

Te(k) = comp(k) + iotup(k) + store(k). (2)

b) Pipeline cost: For the edge pipeline, we again con-
sider the AWS pricing model. Lambda function execution
inside AWS Greengrass is free, but there exists a fixed yearly
device registration fee of $1.49 - $2.05 based on the region.
The cost is fixed per active edge device per month and is
independent of the number of function executions. Thus, we
consider the amortized function execution cost at the edge to
be zero. Our cost analysis excludes storage and network costs,
as processed data sent by edge devices is small and costs are
easy to predict with respect to request volume.

B. Applications
We implement three representative applications, motivated

by real-world use cases. All are implemented in Python.
Image Resizing (IR): An image file is taken as input, and

the function reduces the dimensions of the image to a 128×128
pixel thumbnail and sends the thumbnail to the cloud. This
reduction can be done to save bandwidth or storage cost, or to
regularize the image for use in a deep learning application.
This application mimics a scenario where a traffic camera
takes a stream of pictures to identify traffic congestion. For
the input workload, we use a set of images from the Image of
Groups [12] database.

Face Detection (FD): Here, the application, given an input
image, finds the number of faces present. The application
mimics a smart camera that detects faces in a captured frame,
for either security purposes, for example. For face detection,
we use the dlib [18] library, and for simplicity, we store only
the number of faces detected in the frame. We use images from
the Images of Groups database for our input workload.

Speech-To-Text (STT): An audio file containing speech is
provided as input, and the application transcribes the speech
into text. This emulates the functionality of a smart speaker
where the user issues commands that are translated to text and
then used as input in a search or activity. For the transcription,
we use CMU’s pocketsphinx [6] library. For our input
workload, we use audio files from the Tatoeba Corpus [29].

We note that different applications may have different input
rates from the data source. While input commands to a smart
speaker may be sparse, a traffic camera may produce a fixed
number of images per minute. To simulate this behavior, the
applications ingest input files from a local directory on the
edge device at a fixed rate. For IR and FD, we implement a
faster input rate of four files or images per second, and for
STT, we use slower rate of one audio file every ten seconds.
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Fig. 2: Dynamic task placement framework.

III. FRAMEWORK

For applications such as those in Sec. II-B, it is necessary
to execute tasks in container configurations with appropriate
resources to meet performance criteria. Hence, we introduce
a framework that dynamically selects the cloud or the edge
pipeline to execute the application tasks (functions) based on
the workload characteristics and latency or cost requirements.



A. Framework Architecture

Fig. 2 depicts our framework architecture. We consider a
single edge device that ingests an input workload. The edge
device runs a single lambda function. There are also N lambda
functions configured in the cloud with N distinct memory
configurations. Let Φ = {λm1

, λm2
, · · ·λmN

} be the set of
N cloud container configuration options, where container type
λm is configured with m MB of memory.

The framework functionality resides in the lambda function
on the edge. It ingests input workload from the Data Source.
The data then flows to the Decision Engine. The Decision En-
gine first calls the Predictor; given an input, Predictor predicts
the end-to-end latencies and costs for executing the application
for each configuration in Φ, as well as for executing the data
processing task in the edge device. Due to the differences in
cold start and warm start times, the Predictor must predict
both whether an available container exists for a given cloud
configuration, and what the performance of the function will
be in that configuration.

The Decision Engine, then, based on the objective
(Sec. III-B) and the predicted latencies and costs, either places
the task at the edge or selects a λm in cloud to offload the task.
If the edge is selected, the job is sent to the Executor, which
contains a FIFO task queue. It executes tasks one at a time
and sends the results to the cloud. We note that the Executor
in Fig. 2 corresponds to the lambda function in Fig. 1b. With
some abuse of terminology, we refer to the Executor as λedge.
If a cloud configuration is selected, the Uploader uploads the
input file to the corresponding S3 bucket in the cloud. The rest
of the standard cloud pipeline then continues as in Fig. 1a. We
configure the edge function execution to be non-blocking, so
that the Decision Engine processes each input without waiting
for the completion of the previous task.

B. Optimization Objectives

Our framework provides two options for task placement
policy. We detail these policies below.

a) Cost minimization subject to deadline constraints:
The objective is to minimize the execution cost, subject to
developer-specified end-to-end latency deadline δ per task. The
framework achieves this goal by, for each task k, selecting the
least expensive configuration that satisfies the deadline. This
formulation targets applications with strict latency require-
ments, for example, an application that uses a smart camera to
monitor a secure site and send alerts on detection of occupants
for further analysis. Note that for this problem to have a
feasible solution, there must be at least one configuration that
can process any input within the given deadline.

b) Latency minimization subject to cost constraints:
Here, the objective is to minimize the end-to-end latency
while keeping the cost of each task execution under some
budget Cmax. For example, a store may use a smart camera to
recognize customers and text them coupons. In this case, the
application providers may have a strict budget, and while low
latency is desirable, it is not necessary. If we consider only a

single input k, the goal is then to select a configuration that
solves the problem:

minimize T (k)

subject to C(k) ≤ Cmax ,
(3)

where T (k) and C(k) are the latency and cost for task k,
respectively.

It is possible that single function execution may not use up
the entire budget Cmax, i.e., a sequence of tasks may leave
budget surplus that could have been used to reduce latency.
So, instead, we consider the constraint that for any sequence
of K tasks, we have

∑K
k=1 C(k) ≤ KCmax. We implement

this constraint using the following optimization problem:

minimize T (k)

subject to C(k) ≤ Cmax + α× surplus(k)
(4)

where surplus(k) is the accumulated sum of unused budget,
surplus(k) =

∑k−1
i=1 (Cmax−C(i)), and α ∈ [0, 1] is a scaling

factor that determines how much of the surplus can be used
for task k. Since the cost of executing the task at the edge is
zero, it is always possible to find a task placement that satisfies
the cost constraint. Thus, the surplus is never negative.

IV. PERFORMANCE MODELS

To solve the task placement problems described in Sec. III-B
requires accurate methods for predicting the end-to-end latency
T (k) for any input k. From this predicted latency, we can
also compute the predicted cost C(k). To predict the latency,
we create data-driven performance models for each latency
component described in Sec. II-A. Due to the heterogeneity
of application characteristics, we create application-specific
performance models, trained using sample input data. In this
section, we describe our performance models and model
training, and we give results on the model accuracy.

A. Cloud Performance Model

We segregate the end-to-end latency Tc(k) for job k con-
figuration λm into four parts, as described in Eqn. (1).
• Upload time: We model the upload time as a linear function

of the input data size:

upld(k) = θ1 + θ2 × size(k),

θ1 and θ2 are determined via regression over training data.
• Lambda startup time: The startup time varies depending

on whether it is a cold start startc(m), or a warm start
startw(m). Based on training data, we observe that each of
these startup times follows a normal distribution, which we
model by taking the mean of the training data.

• Compute time: We observe that the compute time is a
non-linear function of size(k) and the container memory
configuration m. After experimenting with several regres-
sion methods, we identified Gradient Boosted Regression
Trees [11] to be the most accurate.

• Storage time: The sizes of the function outputs are both
small and very similar across applications. Further, because



AWS S3 quantizes the file availability timestamp to seconds,
we are only able to measure the storage time with coarse
granularity. Thus, our training data exhibits no correlation
between the input and the storage time. We, therefore, model
the storage time as a quantized normal random variable, and
we model store(k) by taking the mean over the training set.

• Container idle time: To predict whether invoking a function
will cause a warm start or a cold start, we also need to
model the container idle time, i.e., how long containers
stay warm in AWS infrastructure before their resources are
reclaimed due to inactivity. We observe that this idle time is
independent of any input or application characteristics and
model this by a single value Tidl. We perform experiments,
similar to the approach taken in [32], and use a binary search
to find Tidl. Our findings corroborate with this previously
measured value of Tidl ≈ 27 minutes.

B. Edge Performance Model

For edge pipelines, we also model the components of
Eqn. (2) separately.
• Compute time: We model the compute time as a linear

function of the input file size:

comp(k) = φ0 + φ1 × size(k).

We determine the parameters φ0 and φ1 using regression
over the training data.

• IoT Core upload time: As previously mentioned, the size
of function results are small and similar across inputs and
applications. Thus, we attribute any variability in recorded
times to framework and network overhead. We model this
upload time as a normal random variable, and we estimate
iotup(k) by the mean over the time measurements of the
training data.

• Storage time: We adopt a similar approach to the storage
time for cloud pipeline, and estimate store(k) using the
mean over the measurements from the training data.

C. Model Training and Evaluation

To generate the measurements for training and evaluation,
we execute the applications described in Sec. II-B using the
pipelines shown in Fig. 1a and Fig. 1b. For all experiments,
for the cloud pipelines, we use 19 AWS Lambda function
memory configurations between 640 MB and 3008 MB. For
the edge device, we use a Raspberry Pi 3B running Greengrass
core version 1.7.0. The edge device container is provisioned
with 512 MB RAM and set to run indefinitely. The image and
audio file directory and the directory for storing metrics are
mounted into the Greengrass execution environment as ‘Local
Resources’. The edge device is connected to the internet via a
wireless router using the 2.4 GHz spectrum. A dedicated Stra-
tum 1 NTP time server, TM2000A [30] is used to synchronize
the time of the Raspberry Pi to AWS servers.

1) Cloud pipeline data collection: To train the components
of the cloud latency model, we first collect measurements
of the upld(k), startc(m), startw(m), comp(k,m), and
store(k) by running the pipeline using only warm starts. We

ensure there is an available container by first executing the
function on a dummy input. We then upload each input file to
the specified S3 bucket. This upload triggers the execution of
the lambda function. We wait for a time interval in between up-
loads to ensure the previous function execution has completed.
For each input, we measure each mentioned time component
following a method similar to our previous work [8].

To measure the cold start time startc(m) for separate
values of m, we use a method similar to that in [19]. For each
container configuration, we measure 100 cold start latencies.
The cold start latency does not appear to be correlated to the
container memory size for the three applications.

TABLE I: Mean latencies (ms) used for training examples.

Cloud Pipeline Edge Pipeline
Warm Start Cold Start Store IoT Upload Store

IR 162 741 549 n/a 579
FD 163 1500 584 25 583
STT 145 1404 533 27 579

2) Edge pipeline data collection: For each input workload,
we measure the components in Eqn. (2): comp(k), iotup(k),
store(k). We set up the edge device running AWS Greengrass
to ingest input files from a directory. Results are then sent to
AWS IoT on the cloud, where a ‘Rule’ redirects the results to
an S3 bucket. We note that for the IR application, we directly
transmit the resized image to S3 due to Greengrass’ limitations
on data upload type. Hence, we measure the storage time
store(k) as the time between when a file is sent from the edge
device to when it is available in S3, and we do not include
iotup(k) in the end-to-end latency.

3) Model Training and Evaluation: For the IR and FD
applications, we collect measurements for each configuration
for 1400 input images. For the STT application, we collect
measurements for 3400 input auto files for each configuration.
We use the common 80:20 train:test split to train our models.
For the regression techniques, we use a grid search for model
tuning and chose the best performing estimator by using 3-fold
cross-validation. In the FD and IR applications, we quantify
size by the total number of pixels in the image, as image
manipulation depends on the matrix of the image pixel values.
In STT, size is measured in bytes. We use the gradient boosting
regressor in the scikit-learn package for regression
analysis of comp(k,m) and upld(k) respectively, for each
application and ridge regression for modeling comp(k).

Table II shows the MAPE of the end-to-end latency over
their respective test sets for the edge pipelines and cloud
pipelines with warm start. The error is less than 16% for most
of the applications. This suggests our models can predict the
end-to-end latency relatively accurately. The one exception is
the IR cloud pipeline, with MAPE of 25.3%.

In general, more variability in performance leads to higher
MAPE values. Fig. 3 depicts the end-to-end latency predicted
by our model for the cloud pipeline for the FD and STT
applications, with a 1536 MB warm start configuration. The
figure also shows the measurements from the test data. We can
see that even for a single lambda function configuration and



TABLE II: Mean Absolute Percentage Error in the end-to-end
latency of the cloud and edge pipelines.

IR FD STT
Cloud 25.38 13.24 14.56
Edge 2.15 3.78 15.70
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Fig. 3: Performance of end-to-end model on test data set for
1536 MB cloud lambda memory configuration (warm starts).
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Fig. 4: Performance of edge end-to-end model on test dataset
for edge pipelines.

similar input file sizes, there is a notable variance in end-to-
end latency, which presents challenges for generating accurate
predictions. Fig. 4 depicts the end-to-end latency prediction
and the test data measurements for FD and STT in the edge
pipelines. We note that the edge pipelines exhibit far less
variation, and thus it is possible to predict the performance
of these pipelines more accurately.

V. FRAMEWORK IMPLEMENTATION

In this section, we elaborate on implementation details of
the framework, specifically, the Predictor and the Decision
Engine, and how they use the prediction models in Sec. IV to
solve the optimization problems.

A. Predictor

Recall that the job of the Predictor is to predict the cost
and end-to-end latency for a given input for every container
configuration. Given the end-to-end latency prediction models
of executions with cold and warm starts and the container idle
time model, to predict the end-to-end latency, the Predictor
must determine whether a function execution will lead to
a cold start or a warm start. Since AWS does not expose
any API for obtaining this information during execution,
the Predictor maintains an offline data structure, the active
container information list (CIL) that estimates which container
configurations are warm in the AWS cloud. For each λm, the
CIL stores a list of active containers, and for each container,

Algorithm 1 Minimize latency subject to cost constraint.
1: function MINLATENCY (Inputs, Φ, Cmax, α)
2: surplus = 0
3: for input k do
4: (times , costs) := PREDICTOR.PREDICT(input k)
5: M := {λj | λj ∈ Φ ∪ {λedge} and
6: costs(λj) ≤ Cmax + α× surplus}
7: config ← λj ∈M with minimum latency
8: Use config for function execution
9: surplus+ = Cmax − costs(config)

10: PREDICTOR.UPDATECIL(times(config), cost(config))
11: end for
12: end function

it keeps track of (1) whether the container is ‘idle’ or ‘busy’
executing a function, (2) the completion time of latest function
executed within that container, and (3) the estimated time the
container will be destroyed, obtained using (2) and Tidl.

The Predictor exposes two methods to the Decision Engine:
predict, that takes the input file as input and returns
predictions of the end-to-end latencies and costs for λm ∈ Φ
and for λedge. To generate these predictions, for each λm ∈ Φ,
the Predictor queries the CIL to determine if there exists an
‘idle’ container for that λm. If so, the Predictor generates the
end-to-end latency using the model in Sec. IV-A with a warm
start time. In case there are no containers or all containers
are ‘busy’ for λm, then the Predictor generates the cold start
end-to-end latency. The Predictor uses the model in Sec. IV-B
to predict the end-to-end latency for λedge. The costs for each
configuration are then computed as described in Sec. II-A.

Once the Decision Engine has selected the configuration for
the input, it invokes the updateCIL method on the Predictor,
passing in the chosen configuration. The Predictor then updates
the CIL, adding a new container if the lambda function
execution results in a cold start, and updating the container
status and function completion time, based on the estimated
comp(k,m) or comp(k). If there are multiple ‘idle’ containers
for the selected configuration, we assume the function is
assigned to the one with the most recent function completion
time. This assumption is based on our empirical observations
of AWS Lambda. In each call of updateCIL, the Predictor
also checks for and removes dead containers from the CIL,
based on estimated container lifetime information.

B. Decision Engine

The algorithm used by the Decision Engine for minimizing
latency is described in Alg. 1. The algorithm for minimizing
cost is similar. The Decision Engine obtains predictions from
the Predictor. In both algorithms, for each input, the frame-
work first uses Predictor.Predict to find the end-to-end
latencies and costs for edge and cloud lambda functions. If
the objective is to minimize cost, the Decision Engine firsts
create the list of configurations M that satisfies the latency
constraint δ. For each cloud configuration, the Decision Engine
checks whether the predicted latency from the Predictor is less
than δ, and if so, adds the configuration to M. For λedge the
Decision Engine checks whether the predicted latency (from
the Predictor) plus the predicted time in the Executor’s FIFO



queue (based on the predicted latency for any earlier tasks in
the queue as well as any executing task) is less than δ. If so,
λedge is added to M. The Decision Engine then selects the
configuration with the minimum predicted cost from M. If
M = ∅, there is no configuration that satisfies the deadline,
so to save cost, the task is added to the Executor queue.

If the objective is to minimize latency, the Decision Engine
first creates the set of configurations M that satisfies the
cost constraint, from the list of predictions returned by the
Predictor. It then selects the configuration with minimum
predicted end-to-end latency from this set, where latencies are
determined as described in the previous paragraph (lines 5-
7 of Alg. 1). The Decision Engine then updates the surplus
based on the predicted cost. At the end of both algorithms, the
Decision Engine calls Predictor.updateCIL to update
the CIL with container information.

VI. EXPERIMENTS

We first present an evaluation of our framework using
simulation-based experiments, with measurements collected in
AWS Lambda and Greengrass. We then show results from a
live experiment with our framework prototype.

A. Simulation-Based Experiments

For our experiments, we consider the same set of 19 cloud
container configurations and the same edge configuration as
used for the model training in Sec. IV.

We first collect warm latency measurements for a new set
of input data for each application in each container config-
urations, both cloud and edge, using the process described
in Sec. IV-C. We use 600 input files for each application.
Since it difficult to collect a large number of cold start latency
measurements, we instead simulate the cold start time by
randomly selecting samples from the best-fit distribution on
cold-start values from our training data. Similarly, we simulate
Tidl by randomly selecting samples from a normal distribution
fitted on our observed measurements of container lifetime.

We implement an event-driven simulation framework, which
contains complete implementations of the Predictor and the
Decision Engine. The Predictor uses the trained models de-
scribed in Sec. IV-C3. We feed input into the framework at
intervals generated with a Poisson process, with arrival interval
rate of four files per second for IR and FD and one file
every ten seconds for STT. The Decision Engine selects a
configuration based on the predicted end-to-end latency and
cost. We then simulate execution using the actual end-to-end
latency and actual costs from the measured data.

We initially perform all experiments using the training data
to identify configuration sets. We observe that with a candidate
set of all possible configurations, only a few configurations
are ever selected. We thus create sets that contain only the
configurations the framework selected for the training data.
Every configuration set contains λedge by default; we only
state the elements of λm explicitly for brevity.

We present results of our simulations for both optimization
problems for the three applications.

TABLE III: Simulation: minimizing cost subject to deadline
constraint. All configuration sets also include λedge.

(a) IR: δ = 2.7s, Avg. actual end-to-end latency ≈ 1.37s.

Configuration Set Total Actual
Cost ($)

Cost Prediction
Error %

% Deadlines
Violated

Average
Violation (ms)

640,1024,1152 0.00155841 8.54 0.83 1.38
640,1024,1408 0.00156019 5.88 1 1.73
640,896,1152,1280 0.00156681 8.57 1.17 3.12
640,768,1152 0.00157790 9.68 0.83 5.67

(b) FD: δ = 4.5s, Avg. actual end-to-end latency ≈ 2.43s.

Configuration Set Total Actual
Cost ($)

Cost Prediction
Error %

% Deadlines
Violated

Average
Violation (ms)

1280,1408,1664 0.01470774 0.26 0.33 3.7
1152,1408,1664 0.01475062 0.49 0.33 3.27
1152,1536,1792 0.01483715 2.85 0.5 1.72
1280,1408,1536,1792 0.01483860 3.38 0.67 4.25

(c) STT: δ = 5.5s, Avg. actual end-to-end latency ≈ 3.35s.

Configuration Set Total Actual
Cost ($)

Cost Prediction
Error %

% Deadlines
Violated

Average
Violation (ms)

768,1152,1280,1664 0.019970506 2.49 6.17 49.6
640,768,1280,
1664,1792 0.020009885 1.75 7.83 71.94

640,768,896,
1280,1664 0.020022751 1.91 7.67 66.49

640,896,1152,1664 0.020223292 3.33 6 58.40

TABLE IV: Simulation: minimizing latency subject to cost
constraint. All configuration sets also include λedge.

(a) IR: Cmax = $5.33442× 10−06, α = 0.02.

Configurations Avg. Actual
Time/Task (s)

Latency Prediction
Error %

% Constraints
Violated

% Budget
Used

1408,1664,2944 1.30 9.72 2.33 84.8
1536,1664,2048,2944 1.314 7.90 2.17 88.6
1280,1536,1664,2944 1.315 7.99 2.17 88.7
1280,1408,1536,2944 1.329 10.73 1.83 84.8

(b) FD: Cmax = $2.96997× 10−05, α = 0.02.

Configurations Avg. Actual
Time/Task (s)

Latency Prediction
Error %

% Constraints
Violated

% Budget
Used

1536,1664,2048 2.1218 0.34 2.5 90.8
1664,1920,2048 2.122 1.14 2 92.3
1280,1664,2048 2.126 0.3 2.17 90.7
1536,1664,1920 2.151 1.22 1.33 90.3

(c) STT: Cmax = $3.0747× 10−05, α = 0.03.

Configurations Avg. Actual
Time/Task (s)

Latency Prediction
Error %

% Constraints
Violated

% Budget
Used

1152,1280,1664 3.492 0.47 15.5 99.4
1664 3.494 0.86 13.33 99.2
1024,1280,1664 3.504 0.50 14 99.3
1024,1152,1280,1664 3.561 0.85 15.17 99.3

1) Cost Minimization: We first evaluate our solution for
cost minimization subject to a per-function-execution deadline.
We select the deadline δ for each application based on the
training data, ensuring that each configuration set contains a
feasible configuration for every input in the training set.

In Table III, we present the performance of different con-
figuration sets in increasing order of total actual cost for each
application, along with the percentage error between the actual
and predicted total cost. The total costs are computed over
all 600 inputs. We measure cost prediction error % as the
absolute percentage error between the total actual cost and
total predicted cost. We also show the percentage of inputs
where actual end-to-end latency violated the deadline.

We observe that the configuration sets {640MB, 1024MB,
1152MB}, {1280MB,1408MB,1664MB}, and {768MB,
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(a) Image Resizing.
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(b) Face Detection.
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(c) Speech-To-Text.

Fig. 5: Total execution cost (right Y axis) in $ vs. δ (in seconds) for best performing configuration of different applications in
minimizing total cost. The bar chart (left Y axis) represents number of edge executions out of 600.
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(a) IR: Cmax = 5.334× 10−05$.
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(b) FD: Cmax = 2.97× 10−05$.
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(c) STT: Cmax = 3.074× 10−05$.

Fig. 6: Average end-to-end latency (right Y axis) vs. α for best performing configuration of different applications in minimizing
end-to-end latency. The bar chart (left Y axis) represents total budget $ remaining at the end of execution.

1152MB, 1280MB, 1664MB} achieve the smallest total
actual cost in the IR, FD, and STT applications, respectively.
We also observe that a smaller cost prediction error leads
to better performance in terms of the total cost. In general,
smaller function execution times are prone to higher cost
prediction error. AWS quantizes billed amount in multiples
of 100ms, e.g., 98 ms compute time would be rounded to
100ms, whereas a 101ms compute time will be rounded to
200ms, and so a small error in the execution time prediction
may result in a larger error in cost prediction when the
magnitude of execution time is low. We also see that fewer
deadline violations are correlated with better performance in
terms of minimizing total cost.

In Fig. 5, we plot the predicted and actual total costs versus
the deadline δ for the best configuration (in bold) in Table III
for each application. For all three applications, our predicted
cost closely mirrors the actual cost. We observe that for IR, the
number of edge executions does not appear to be correlated
with the deadline. This is because for IR, in general, the edge
pipeline execution is faster than the cloud pipeline execution.
We also observe that for FD, as the deadline increases, the
number of edge executions decreases, and accordingly, the cost
increases. This is because, with a larger deadline, tasks are
assigned to the edge, causing the edge to be busy, which in
turn, leads to more tasks being assigned to the cloud. STT
exhibits a more expected behavior; as the deadline increases,
more tasks are executed at the edge. This is in part due to the

slower input rate for STT, which increases the availability of
the edge for task execution.

We observe that the absolute error between predicted and
actual total cost for the best performing configurations of FD
and STT are less than 3%. Also, all other configurations for
FD and STT performs well, with less than 4% absolute total
cost prediction error. Finally, we observe that warm start vs.
cold start prediction mismatches can influence the total cost
prediction error. A slower input rate reduces the chances of
mis-predicting cold and warm starts; STT has 0% absolute
error between estimated and actual cold and warm starts, while
for FD it is 2.5%.

2) Latency Minimization: We next evaluate our framework
in solving the problem of minimizing latency subject to a task
cost constraint. We use the formulation in Eqn. (4), which
allows surplus budget to be spent on subsequent tasks. For
each application, we select Cmax and α from experiments on
the training data set. We select Cmax and α to be small enough
so that for some inputs, it is necessary to use λedge. Similar
to the previous experiments, we select configuration sets that
consist of configurations that the framework selected when
processing the training data.

We measure latency prediction percentage error as the
absolute percentage error between actual and predicted average
end-to-end latency at the end of the simulation. Further, we
measure the percentage of constraints violated as the percent-
age of tasks where the actual cost of execution violated the



corresponding cost constraint. The percentage of budget used
is computed as the total actual cost for processing the input
workload divided by the total budget for the input workload,
Cmax × number of inputs.

In Table IV, we present the results for different configu-
ration sets in increasing order of average end-to-end latency.
The table also shows the latency prediction error, percentage
of function executions that violated the cost constraints, and
the percentage of total budget used. We observe that config-
urations {1408MB, 1664MB, 2944MB}, {1536MB,1664MB,
2048MB}, and {1152MB,1280MB,1664MB} achieve the min-
imum end-to-end latency for the IR, FD and STT applications,
respectively. We also observe that these configurations have
low latency prediction error (except IR due to its high vari-
ance). Further, even though the cost constraints were violated
for some inputs, the total cost of execution of the entire input
workload was always under the total budget.

In Fig. 6, we plot the actual and predicted average end-to-
end latency for various values of α with Cmax fixed. We use
the best configuration set per application, shown in bold in
Table IV. We observe that the actual average latency obtained
from the framework execution closely follows the predicted
average latency, with less than 2% absolute error for FD and
STT and less than 11% error for IR.

We observe that in all applications, with increasing α
the average end-to-end latency decreases. By increasing α,
more surplus budget is available per task, and thus, more
cloud configurations can satisfy the cost constraint. These
cloud configurations typically have shorter executions times.
We further observe that for FD, the total remaining budget
does not vary much with α, and in both IR and STT, the
budget remaining decreases with increased α. With a smaller
Cmax, a larger value of α may lead to budget violations. For
example, in STT, we observe that for the best configuration
{1152MB,1280MB,1664MB}, as we increase α above 0.04,
the total budget remaining becomes negative, which means the
total actual cost went over the total budget. Also, for α = 0, we
observe very high average end-to-end latencies: IR = 10.5 s,
FD = 452.2 s, and STT = 12.64 s. This is due to the fact
many tasks are run on the edge, as the cost constraint restricts
cloud executions. As a result, the waiting periods in the edge
queue leads to an increase the average execution time.

B. Live Evaluation

To demonstrate the effectiveness of our framework in a real-
world application, we have implemented a prototype of our
framework. We evaluate this prototype in AWS Greengrass
and Lambda using the FD application, with the same 600 input
files used in the simulations. The framework is configured to
minimize end-to-end latency subject to a cost constraint. We
use the edge configuration described in Sec. IV-C. For the
cloud, we use the best configuration set from the simulations,
{1536MB, 1664MB, 2048MB}.

We measure the accuracy between the predicted and actual
latency. Further, we measure how many times the framework
violates the budget and the percentage of the budget remaining

at the end of workload. We also measure the number of
times we mis-predict ‘cold’ or ‘warm’ starts. We perform the
experiment four times and show the average results.

TABLE V: Average results over four runs of the FD appli-
cation with configuration set {1536MB, 1664MB, 2048MB},
Cmax = 2.96697× 10−05, and α = 0.02.

Avg. Actual
End-To-End
Latency

Latency
Prediction
Error

Violations
of cost
budget

% Budget
Used

Warm-Cold
Mismatches

1.71 s 5.65 % 8 / 600
= 1.33 % 86 % 5 / 600

= 0.83 %

We present the results in Table V. Our latency prediction
error is 5.65%. While this is larger than the 0.34% prediction
error observed in simulations, the prediction accuracy is still
quite high. Also, we find that the total actual cost is under the
total budget, with ≈ 86% of the total budget used. The warm
start/cold start prediction error is also low, at 5 mis-predictions
out of 600 inputs. These results suggest that our framework
works well in practice. Finally, we note that when the same
input workload is processed only using the edge pipeline, the
average end-to-end latency is 2404 s due to queuing and is
impractical compared to 1.71 s with cloud offload.

VII. RELATED WORK

Various approaches for task placement and computation
offloading have been proposed in the context of mobile cloud
computing in recent years using static program analysis and
annotations [7], [5], [27], as well as data flow graph-based
dynamic partitioning [24]. In these works, tasks are offloaded
from mobile devices to either VMs in the cloud or to remote
servers. The approaches in [7], [5] formulate the offloading
problem as an ILP, whereas [27], [24] depend on carefully
designed greedy heuristics. More recently, offloading of neural
network computation has been explored [16], [15]. In these
works, deep neural network layers are partitioned across edge
devices and cloud servers and executed collaboratively to
satisfy latency, accuracy, and energy-saving objectives.

Cloud performance optimization in context of VMs has
been studied extensively through VM allocation [31], VM
performance characterization [3], and autoscaling [20], [25].
In contrast, we use serverless functions as the cloud offload
destination. This imposes many behavioral constraints, for
example, serverless is a stateless and event-based computation
model, while VMs or servers are long-lived and stateful.

Several recent works have studied performance characteris-
tics of serverless systems across different industry platforms.
The authors in [21] proposed their own serverless platform and
compared its execution performance with industry platforms.
Extensive studies has been done on scalability of platforms,
function latency, infrastructure retention, infrastructure pro-
visioning [19], [32], [10], impact of language runtime on
function performance [14], and latency of edge serverless plat-
forms [8]. [13] uses serverless functions to handle incoming
workloads for the duration it takes to allocate sufficient VMs to
minimize SLA violations. The work [17] tackles the problem



of executing jobs in microservices under a SLA constraint
from a platform provider’s perspective by maximizing the
utilization of provider hardware. In contrast, we study methods
to reduce cost or end-to-end latency from a client’s perspective
in an edge-cloud system.

Finally, the authors in Costless [9] also present an algorithm
that uses serverless functions for computational offloading
from the edge. Their work however focuses on efficient
partitioning of a chain of functions comprising an application,
where some functions execute on the edge and some in the
cloud, to reduce execution cost. In contrast, we focus on data-
driven predictive offload decision making, characterizing the
effect of warm and cold starts, and lastly, on performance
maximization with multiple objectives using different types of
real-world applications.

VIII. CONCLUSION

We have presented a performance optimization framework
for serverless applications in an edge-cloud platform. As part
of this framework, we have developed models for accurately
predicting end-to-end latencies and cost for functions running
in the cloud or the edge. We provide a simulation-based eval-
uation of our framework on three representative applications.
The best configurations achieved less than .3% absolute cost
prediction error when minimizing total cost and less than .4%
absolute latency prediction error when minimizing average
latency. We also present results of live experiments, run in
AWS, using the face detection application. Our evaluation
shows that our framework can predict end-to-end latency with
less than 6% error and obtain almost three orders of magnitude
average end-to-end latency minimization compared to a naive
edge execution. In future work, we will expand our prediction
methods to explicitly incorporate the high variance sometimes
observed in serverless platforms.
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