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Abstract—Modern High Performance Computing (HPC) clus-
ters often comprise a huge amount of computing resources of
different capabilities, making them heterogeneous and difficult
to manage. In addition, they must deal with a wide range of
applications with different requirements. All this poses a great
challenge to the workload managers that assign applications
to resources. There are many new proposals to overcome this
challenge, including some that employ Deep Reinforcement Learn-
ing (DRL) techniques. This paper proposes a novel simulation
framework for the study of workload managers, that has been
conceived to foster the study of workload managers based on
DRL techniques. Its main features include the simulation of het-
erogeneous clusters based on multicore architectures, taking into
account the contention in shared memory access and the energy
consumption. A validation of the accuracy and performance of
the simulator was made, compared with a real environment based
on Slurm. This shows good accuracy of the results, with a relative
error below 5% in makespan and 10% in energy consumption,
and speedups up to 200.

Index Terms—Resource Management, Reinforced Learning,
Scheduling Simulation, Heterogeneous Systems.

I. INTRODUCTION

Efficiently managing the workload of High Performance
Computing (HPC) clusters has always been an arduous chal-
lenge. This task, carried out by a workload manager, requires
a complex decision making process which allocates available
resources to user jobs, honouring job requirements while
optimizing for certain performance and energy consumption
objectives. To further complicate this, there is a scale problem;
in the last decades clusters have shown a high increase in
number of resources, designed to meet the increasing demand
from users. Previous literature offers a rich set of scheduling
algorithms to address this problem, like [27].

Workload management is an instance of the job shop
scheduling problem, which has been proved to be NP-hard for
large amounts of resources [10]. Fortunately, it appears to be
well suited to the application of machine learning techniques,
such as neural networks [15], [32]. These usually require a
training phase that exposes the neural network to a large
number of realisations of a given experiment, called episodes,
allowing it to learn to take the best decision. In the case of
workload management, each of these episodes consists of the
submission of a set of user jobs to the cluster. If a neural
network needs tens of episodes, the time and energy cost of
training becomes prohibitive. One way to overcome this cost
is taking advantage of simulators.

The simulator required to analyse the performance of work-
load managers must necessarily be able to simulate whole
computer clusters. As with any simulator there is a tradeoff
to be met, balancing the need for simulation speed and
the accuracy of the results. Since the training process of
a neural network is so time consuming, the simulator used
must be extremely fast. However, it must not oversimplify the
architectural model of the cluster, or the neural network will
learn to operate an ideal environment, and will not make the
correct decisions in a real cluster.

This article proposes IRMaSim, a cluster simulation frame-
work with the following features. It organises the computing
resources in a hierarchical manner, permitting the correct
representation of multi-core and multi-processor computers.
This allows that each element can have performance and
energy parameters, like clock frequency, memory or energy
consumption, permitting the representation of heterogeneous
clusters. It also enables the implementation of schedulers
that address optimisation of one or more different objectives.
Furthermore, the hierarchy naturally groups elements around
shared resources and the simulator can model contention, like
it occurs with cores sharing the memory channels of the
processor they are in.

As with any simulator, IRMaSim must balance two require-
ments, speed and accuracy. The availability of an extremely
fast simulator is key to allow researchers to make the large
amount of simulations necessary to tune parameters or simu-
late a number of different scenarios. All this is conditioned to
the accuracy of the simulations, as the behaviour of a simulated
workload manager must be equivalent to its real execution.
Therefore this article presents a validation of the simulator
against a real cluster managed with Slurm, showing that the
relative error in performance and energy consumption are at
most 5% and 10%, respectively, while boasting speedups up
to 200.

Being able to simulate heterogeneous clusters is important
because it allows representing a common case nowadays,
where clusters have a wide collection of nodes with different
computing capabilities [4], [5], [12]. In addition, the variety
of the applications has grown, ranging from classic number-
crunching scientific programs [3] to memory-hungry big-data
applications [21]. In this situation, workload managers must
be able to assign applications to the nodes most suited to
their characteristics. Then, a simulator that does not take
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into account these facts will not be a good tool to test
heterogeneity-aware schedulers [25].

The way in which computers are designed presents compute
resources sharing a set of subsystems, like cores or processors
accessing main memory or compute nodes sharing network
or storage. This situations eventually lead to contention in
the access to the shared resources, causing a significant
degradation in the performance of the applications. This fact
must be acknowledged by a workload manager trying optimise
the assignment of user jobs to cluster resources. Therefore a
simulator of this kind must model contention correctly in order
to present a more realistic behaviour of modern clusters.

Traditionally, workload managers are aimed at optimising
performance metrics, like makespan or throughput. However,
energy consumption is becoming a major concern [16], [19]
inspiring the appearance of energy-saving schedulers. But
since the objectives of performance and energy efficiency are
usually opposed, some efforts have been made in the study
of multi-objective schedulers. This reinforces the fact that a
simulator must take energy consumption into account to allow
scheduler designers to evaluate these new objectives.

Finally, given the rise of schedulers taking advantage of
machine learning techniques [15], [32], IRMaSim offers an
API suitable for the design of this kind of schedulers. For
instance, it can allow the utilisation of Deep Reinforcement
Learning (DRL) [26] to select the best policy to satisfy a
specific objective. This is accomplished by an agent making
an observation of an environment, based on which it makes
a decision that alters the environment, and receives a reward
that modifies the way the agent makes the next decision.

To the authors knowledge this is the first simulator that
offers all these features to the workload manager designers.

The main contributions of this paper are the following:
• Extending the Batsim simulator to model multicore ar-

chitectures, taking into account memory contention and
energy consumption.

• Providing an easily extensible framework to research
DRL techniques in the field of workload management.

• Presenting an experimental validation of IRMaSim based
on a traces extracted from a real cluster.

The remainder of the paper is organised as follows. Section
II motivates the need for the IRMaSim simulator. Section III
explains the models that were developed to simulate HPC
clusters, while the machine learning support of the simulator is
presented in Section IV. Section V delves into how the models
and machine learning support were implemented. Then, Sec-
tion VI presents some decisions regarding the validation of
IRMaSim, which is undertaken in Section VII. This is followed
by an account of the related work found in the literature, in
Section VIII, and some concluding thoughts in Section IX.

II. MOTIVATION

IRMaSim is built upon Batsim [8], a simulator for batch
scheduler analysis. It was selected because it can model het-
erogeneous cores, for its easy extensibility and the possibility
of integration with other libraries. However, it models clusters

Fast

Slow

 0  100  200  300  400  500  600

Re
al

 n
od

es

Time (s)

Fast

Slow

 0  100  200  300  400  500  600

Performance difference
due to node speed

Performance penalty due
to memory contention

Si
m

ul
at

ed
 n

od
es

Time (s)

ep.A lu.A

Fig. 1. Real execution and simulation on two nodes of different speed.

through a set of independent computing resources, like cores,
and their associated memory [8]. This approach is very far
from current multicore architectures which usually define a
hierarchical structure that forces cores to share access to given
resources, like memory, or the energy consumption of common
parts of the processor, like the last level cache or the memory
controllers.

These discrepancies have a significant impact in the accu-
racy of Batsim. Figure 1 shows the results of a very simple
experiment, with two quad-core nodes executing a set of jobs.
The figure compares the behaviour of the execution in real
hardware to the corresponding Batsim simulation. The nodes
have different computing speed (Fast, Slow), and the jobs
are 10 executions of ep.A and lu.A, two benchmarks of the
well known suite NPB [2]. The horizontal axis represents
time in seconds, while the vertical axis represents the nodes.
Each horizontal line in the graphs shows when the task was
scheduled and its execution time.

Looking at the executions of the ep.A benchmark, Batsim
correctly models the performance difference of both nodes,
even when there is more than one task running simultaneously
in each node. However, the lu.A benchmark is memory-bound,
which has an impact in the execution time when more than
one job is scheduled to the same node. Since the four cores
in real nodes have to share the memory access bandwidth,
applications suffer a performance penalty compared to running
alone, up to four times. To make matters worse, the penalty is
not consistent in both nodes, as it is worse in the Fast node.
With longer simulations, and with larger clusters, these errors
will accumulate over time and lead to highly inaccurate results.

In summary, Batsim does not adapt well to the current trends
in clusters, as its results differ both in terms of execution time
and energy consumption. And consequently, the simulation of
a scheduler will not show the same behaviour as a real one.

III. ARCHITECTURAL MODELING

These shortcomings of Batsim are addressed in IRMaSim
through a more detailed modeling of the architecture of the
cluster. To this aim, two major improvements were made and
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Fig. 2. Heterogeneous platform example.

described in the following sections. First in the definition of
the platforms, that represent the architecture of the cluster, and
second, in the execution models, that predict the performance
and energy requirements of the running tasks.

A. Platforms and workloads

In the simulator, the cluster with its computational resources
is represented by a platform. The improvement IRMaSim
makes is that these are organised in a hierarchical manner
to model current multicore architectures. Thus allowing the
simulation of the different computational resources, while
naturally including the concept of shared resources.

Figure 2 shows an example of a simple platform that models
a heterogeneous cluster. In turn each node includes one or
more processors and a main memory, and each processor
contains one or more cores that share a memory channel. In
more detail, the components modelled by the simulator are:

• Platform is the root element of the system.
• Nodes group several processors that share a memory

resource. Equivalent to a server with its sockets and
memory modules.

• Processors can have one or more cores that access the
memory of the node through shared memory channels.

• Cores are the minimal computational unit in the system.
It has individual performance and power consumption.

• Memory and channels: every node has an amount of
memory, and each processor in the node has channels
with a given memory bandwidth, that are shared by the
cores.

This allows a scheduler to have the knowledge of how the
computing resources of the cluster are related and therefore
make scheduling decisions accordingly. For instance, it might
attempt to save energy by sharing nodes among tasks or
improve performance by giving whole nodes to each task.

The workload to be simulated is a sequence of jobs that are
read from a trace file. Each job is defined with a number of
parameters, of which the following are worth mentioning:

• subtime: is the time at which the job is submitted to the
queue.

• res: is the number of tasks in the job. Each task is
allocated to one core.

• cpu: real amount of instructions that will be executed by
the job. It is important to note that the workload manager
does not know the real running time of each job when
making decisions, it is only seen by the simulator.

• ipc: is the average number of instructions executed per
cycle.

• mem vol: is the amount data that is sent and received
from the main memory.

From the above, cpu, ipc and mem vol are easily obtainable
through a profiling tool like Likwid [23].

B. Execution and energy models

The objective of the execution model is to correctly predict
the execution time of a task, taking into account the hetero-
geneity of the cluster and the performance impact of memory
sharing. This is done by first calculating the execution time
of the task in a specific node and then applying a slowdown
factor in the case of memory contention:

Texe =
I

IPC · f
Sm (1)

where I and IPC are the number of instructions and
instructions per cycle of a task, respectively; f is the clock
frequency of the node; and Sm is the memory slowdown.
This last factor is a value between 0 and 1, that will be 1 in
the absence of contention and lower values as the contention
increases.

To model the impact of memory contention the method-
ology employed is based on an empirical analysis followed
by a regression study. The first phase consists in determining
how the performance of a task is degraded depending on
its memory access rate and that of other tasks in the same
node, and thus, sharing the memory bandwidth. To model the
behaviour of tasks, a synthetic benchmark has been used [29].
It has a sustained memory access rate throughout its execution
and can be set to different values. This behaviour is suitable
to model scientific tasks, which have an iterative nature and
the ratio of computing operations to memory accesses is fairly
constant.

Figure 3 shows the memory slowdown of a task of interest
running together with another three tasks in a four core
processor. The X axis represents the memory access rate of
the task of interest Ri if it were running alone. Similarly, the
Y axis indicates the sum of the memory access rate Rj

o of
the other three tasks (j = {1, 2, 3}) in the node if each of
them were executing in isolation. The figure shows a plateau
with memory slowdown equal to 1 where the access rates of
the tasks is less than the memory bandwidth of the node. As
the memory requirements of the tasks increase, the memory
slowdown decreases to a minimum. Its important to note
that the decrease, especially in slices with constant X, has
a sigmoid shape. In the figure the minimum value is 0.25 = 1

4
and other experiments with n number of tasks have confirmed
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Fig. 3. Memory slowdown of a task of interest running simultaneously to
three other tasks.

that in general the minimum slowdown is 1
n . It is noticeable

that the performance penalty of the task of interest depends
not only on its access rate, but also that of the all the tasks
sharing the node RT = Ri +

∑n
j=1 R

j
o. Therefore the model

must depend on these three values.
With these observations, the regression analysis was at-

tempted with a number of functions that resembled the sigmoid
shape. The one found to be most adequate was a linear
piecewise function (Eq. 2), composed by two horizontal half
lines joined by an oblique segment. The half lines represent
the maximum and minimum slowdown values, while oblique
segment represents the interval in which the performance
degrades between the previous values.

pwl(Ri, RT , n) =


a RT < c

b(RT − c) + a c ≥ RT > d(Ri, n) + bc− a

d(Ri, n) RT ≥ d(Ri, n) + bc− a

(2)

In Equation 2 the value of a is one, meaning there is no
performance penalty at low memory access rates. The value of
c represents the point at which degradation commences, and b
the rate at which the performance decreases. The latter values
are constant, depending solely on the compute node. Finally,
d is the minimum memory slowdown, but its value strongly
depends on the number of tasks sharing the memory (n) and
the access rate of the task of interest (Ri). Therefore a second
regression analysis was applied on it, yielding the following
expression:

d(Ri, n) =
ss
(

Ri−(da−n)db
dc−n·dd

)
n+ 1

1 + n
(3)

where da, db, dc and dd are constant values depending on
the compute node. These are fixed by the regression algorithm
based on the data obtained in the empirical analysis. Finally,
ss(x) is the 5th order smooth step function (Eq. 4).

ss(x) =


0 x < 0

6x5 + 15x4 − 10x3 0 ≥ x > 1

1 x ≥ 1

(4)

To complement the performance model, another was devel-
oped to estimate the energy consumption of a cluster. In a
multicore architecture the power consumption of a processor
is composed by two values. First, the consumption of the
cores themselves. And second, a fixed amount corresponding
to common circuitry units, like memory controllers or last level
cache. Therefore the first value grows linearly with the number
of active cores, while the second is constant for each processor,
corresponding to the following model:

P (n) = pa · n+ pb (5)

where pb is the power consumption of the common units of
the processor, and pa is the increase of power consumption for
each additional active core. This behaviour can not be modeled
by Batsim because each core is completely independent from
each other.

The values for the model can be obtained through an regres-
sion analysis. First choosing a compute-intensive benchmark,
and performing a set of executions on a multi-core machine,
varying the number of concurrent tasks from one to the number
of cores. The above equation can be fitted to the results of this
experiment, yielding the values of pa and pb.

IV. DEEP REINFORCEMENT LEARNING SUPPORT

The problem of workload management in modern clusters is
one that requires the treatment of large amounts of data, both
coming from the tasks and from the state of the cluster itself.
This leads to a challenging decision making problem where
artificial intelligence techniques may be applied. DRL has been
successfully applied to the problem of workload management
in the past [15].

In order to further test these ideas, a major target of
IRMaSim is allowing the development of DRL scheduling
algorithms, like the one depicted in Figure 4. The interac-
tion between the agent and the environment is structured in
steps. Each starting with the agent receiving the state of
the environment plus a reward, and followed by the agent
issuing an action over the environment. Every action alters
the environment, changing its state and producing the reward
of the following step [26].

A. Agents

The entity in charge of learning and taking scheduling de-
cisions is known as the Agent. These are in fact a combination
of two separate sub-decisions: job selection and resources
allocation. The learning behaviour is based on the gradient-
descent algorithm.

The agent receives scheduling events, that can be a new job
that arrives when the queue is empty, or that some resource
has been released in the platform. Both of these trigger a
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simulation cycle in which the agent carries out the following
steps:

1) The agent makes an observation of the environment and
receives a new reward value, based on the impact of the
previous actions.

2) The observation is fed to the inner model, which may be
based on an artificial neural network or, in simpler cases,
a static mapping between observations and actions. And
this selects an action.

3) The agent learns through an adjustment of the weights
of the neural network, based on a loss function that takes
into account the reward. This brings the agent closer to
optimising the selected objective.

4) The action, which is a scheduling policy, is applied to
the jobs in the queue. Actions produce alterations in the
environment, as a consequence of allocating resources
to jobs. These alterations are not directly observable by
the agent, they will be evaluated in the next step.

IRMaSim allows to easily implement a variety of agents,
and as an example, it includes two common solutions: re-
inforce and actor-critic. Both agents are depicted in Figure
5, where reinforce is the upper portion denoted as actor
network. The input layer receives the observation, which is
then forwarded through the hidden layers, before reaching the
final output layer. The latter is where the output is generated.
Every layer is dense, meaning that each neuron in a layer
receives input from all the neurons present in the previous
layer.

The actor-critic [14] agent extends the actor network with
a similar one, shown in the bottom part of Figure 5. The
critic network is meant to learn a value function that the actor
network can use to update its parameters to improve the perfor-
mance. Both agents are implemented using gradient descent,
that compared to other methods increases the probability of
convergence.

IRMaSim allows choosing from a number of objectives
to optimise. Makespan reduces the time from the arrival of
the first job until the completion of the last job. Energy
consumption minimises the total amount of energy consumed
for the workload. And Energy efficiency minimises the energy
delay product of the workload’s execution. For each of them
a loss function and reward function has been defined and can
be seen in Table I.

Agent Environment

Receive reward
Observe state

Take action

Fig. 4. Reinforcement learning loop
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Fig. 5. Inner model of a Reinforce agent with actor-critic network extension.

TABLE I
OBJECTIVE AND REWARD FUNCTIONS

Cj : time between arrival and completion of a task.
Cr : computing capability of resource.
J : number of jobs in the workload.
R: number of computing active resources.
Pr : total potency consume by a resource during simulation

Objective Function Reward

Makespan min
∑J

j Cj
∑R

r Cr

Energy Consumption min
∑R

r Pr
∑J

j Cj −
∑R

r Pe
∑J

j Cj

Energy Efficiency min
∑R

r Pr
∑J

j C2
j −

∑R
r Pe

∑J
j C2

j

B. Environment

In IRMaSim the environment comprises the platform, rep-
resenting the resources of the cluster, and the workload,
enumerating the tasks that will be executed (Section III-A). In
DRL terms the agent interacts with the environment through
an observation space and an action space.

1) Observation Space: The observation space must convey
the state of the nodes in the platform, as well as the jobs
in the queue. However, real clusters involve thousands of
computing resources, each with several parameters, such as
compute load, power consumption or memory usage. Further-
more, the workload queue can have a high number of jobs,
each with start times, number of instructions and memory
requirements. Sending all this information to the agent is
impractical, therefore a novel observation space has been
implemented in IRMaSim. This tries to provide a compact
and useful information summary:

1) For each node, the fraction of memory capacity avail-
able.

2) For each core, the current computing capability and
power consumption fractions. Also the remaining work-
load of the task in execution, which this is calculated
from the user-provided and current execution times.
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TABLE II
CLASSIC POLICIES EXPOSED THROUGH THE ACTION SPACE

Job Selection Policies
random Any job scheduling
first Job with earliest submit time
shortest Job with shortest user requested time
smallest Job with lowest user requested cores
low mem Job with lowest user requested memory
low mem bw Job with lowest user requested memory band-

width
Resource Selection Policies

random Any resource
high gflops Resource with highest current FLOPS
high core Resource with most available cores
high mem Resource associated to the node with most

memory
high mem bw Resource associated to the processor with

most memory bandwidth
low power Resource with lowest current Watts

3) For each job parameter, time, cores, memory and
mem vol, five statistics are included: the minimum, Q1,
median, Q3 and maximum quantities in the whole job
queue. This gives the agent a holistic view of the queue
state instead of accurately presenting specific part of it.

4) Finally, a variation ratio of the queue size with respect
to the last observation.

Feature scaling is applied to each of these values, constrain-
ing them to the range [0, 1], to equalise their weight in the
decision process. Data is arranged in a 1-D vector and sent
as input to the agent. Nevertheless, the size of the observation
vector can still be too big. Therefore, IRMaSim offers three
levels of detail. The normal level provides all data previously
listed, with a size of Nnodes + Nprocessors + Ncores ∗
3 + Nrestype ∗ 5 + 1 items. The small level skips the per-
core information. And the minimal level provides only the job
distribution and variation ratio.

2) Action space: The agent alters the environment through
actions. The Action Space is the set of actions which can
be selected by the agent. IRMaSim implements a discrete
action space where several classic policies are presented to
the agent to choose from. A policy consists of a pair of
job selection policy and resource selection policy, which are
shown in table II. A special void action is also incorporated
in order for the agent to be able to stall; this is intended to
address cases where the selection of any other action would
result in a worse outcome. In total there are 37 policies,
36 combinations from classic policies plus the void action.
Nevertheless, IRMaSim is designed to be easily extended in
this sense. Any subset of policies might be specified by the
user to adjust the action space size in their experiments.

V. IRMASIM DESIGN

As stated before, IRMaSim takes advantage of the function-
ality of Batsim and PyBatsim. A great effort has been made to
isolate new functionality from these tools and keep them intact.
Upon these two frameworks, IRMaSim builds the necessary
components to simulate heterogeneous systems with resource

Simulation InstanceBatsim

PyBatsim Job Batsim ProxyScheduler

IRMaSim

Workload
Manager

Job
Scheduler

Resource
Manager

Job
Queue

Resource
Hierarchy

Environment

Observation
space

Action
space

Data

Utilities

Core

Core PoolAgent

Inner Model

Fig. 6. Full component layout

sharing constraints and deep learning decision systems. An
overview of the design in three layers is shown in Figure 6.
The first being the simulation instance in Batsim. Second is the
PyBatsim layer, that eases the communication to Batsim, as
well as parsing the workload traces. The last layer is IRMaSim
whose components are detailed next.

The Job Queue receives jobs from PyBatsim and holds the
jobs that are eligible for execution. The Job Scheduler selects
from the Job Queue the next job that will be sent to the
Workload Manager. For the selection any scheduling policy
may be used from the ones listed in Table II.

The Workload Manager is the entry point for the decision
system. It communicates with PyBatsim via events, which can
be job submissions, job completions, resource allocations and
releases. In every cycle, it will receive jobs from the Job
Scheduler and through the Resource Manager resources will
be allocated for them. Then, the mapping between jobs and
resources is sent to PyBatsim. The Resource Manager selects
resources available for new jobs using a selection policy from
those listed in Table II. Once a resource is allocated to a
job, the Resource Manager updates performance and energy
models of the affected resources in the Core Pool and Resource
hierarchy components. The latter provides relations between
each type of resource, and allows for the Resource Manager
to determine which cores share resources, like memory.

To support the implementation of DRL techniques, IR-
MaSim has been extended by adding event flow control
between actions taken by the agent, information reported by
Batsim and observations made in the Environment. These new
components that have been already described in previous sec-
tions are the Agent with its Inner-Model and the Environment
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Fig. 7. Makespan and energy results in a homogeneous cluster.

TABLE III
MODEL PARAMETERS FOR COMPUTE NODES.

Freq b c da db dc dd pa pb
3.4 GHz

−1.85 · 10−5 32000 1.75 3500 45000 3000
6.14 5.59

2.5 GHz 3.51 3.20
1.7 GHz 2.31 1.59

that includes the Action Space and the Observation Space. Two
python libraries have been used to facilitate the implementa-
tion of the machine-learning features, PyTorch [18] to create
the agents and inner-models, and the OpenAI’s Gym library
to provide a standardized environment and action/observation
space definitions [6].

VI. METHODOLOGY

For the purpose of validation, this article compares simu-
lation results to the execution of a set of benchmarks on real
hardware. The cluster used is composed by 15 compute nodes
and one front-end node, each with a Intel Core i5-7500 Kaby
Lake architecture with 4 cores and two memory channels with
a combined bandwidth of 38.4GB/s. The memory configura-
tion consists of two 4GB of DDR4-2400 modules. The nodes
are connected to each other with GigaBit Ethernet. The cluster
is based on CentOS 7.6 and the workload manager is Slurm
17.11. The parameters for the memory contention and energy
models are listed in Table III.

The traces fed to the simulator are extracted from a set of
batch executions of benchmarks selected from the NPB suite
version 3.3.1 [2]. The list of benchmarks together with their
properties, measured with Likwid [23], is shown in Table IV.
Each batch is a burst of sequential jobs randomly selected from
the previous list. Since the serial versions of the benchmarks
are used, the concept of job and task are in some cases
interchangeable. The jobs of each batch are submitted in the
first minutes, so the queue is never empty until the end of
the batch. For each experiment, there are five batches with
growing number of jobs and therefore execution time.

As with any simulator, there is a need of compromise
between the speed of the execution and the accuracy of the
results. Therefore the following metrics have been considered
in this validation. The makespan, defined as the time from
the first job submission to the conclusion of the last task.

TABLE IV
EXECUTION METRICS OF BENCHMARKS.

Benchmark Instructions IPC Mem. vol.
bt.C 633.50 · 1010 3.06 5.17TB
cg.C 60.31 · 1010 1.10 7.30TB
ep.C 80.94 · 1010 1.16 0.21TB
is.C 6.43 · 1010 0.95 0.07TB
lu.C 370.25 · 1010 2.20 8.70TB
sp.C 356.10 · 1010 2.74 9.60TB
ua.C 312.57 · 1010 2.30 4.32TB

The energy consumption is the total energy consumption of
all the nodes during the makespan. The execution time of the
simulator itself is also measured. To show the improvements
of IRMaSim, experiments show results of a baseline model
that represents the cluster as a pool of independent cores, not
taking into account the multicore architecture.

VII. VALIDATION

The validation of the IRMaSim simulator is accomplished in
two parts. The first evaluates the advantages of modelling the
multicore architecture to estimate memory contention penalties
and energy consumption. The second part of the validation
evaluates the Deep Leaning functionality.

A. Multicore architecture validation

The first experiment of this validation isolates the memory
contention penalty from the performance prediction, by exe-
cuting various workloads in a homogeneous multicore cluster.
All the nodes are set to a clock frequency of 3.4GHz. The
experiment results of makespan and energy consumption for
the different traces can be seen in Figure 7. The graphs
compare the results of three different sets of data: baseline and
IRMaSim represent simulation performed without and with the
models presented in this article, real refers to the results of
executing in a real cluster.

Its clear that the results given by the baseline model are very
far from the real ones. Note that the makespan values produced
have a relative error of about 37% in all traces. In contrast
IRMaSim, as it models the performance penalty of memory
contention, can reduce this error down to 3%. As can be seen
in the figure, the energy results of the baseline model are also
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Fig. 8. Makespan and energy results in a heterogeneous cluster.
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Fig. 9. Energy consumption of different scheduling policies.

disappointing, reaching a relative error of 47%. This is partly
derived from the poor time prediction, but also because of
the independent modeling of the energy consumption cores.
Experiments show that the consumed power of the cluster
reported by Batsim is 320W, which is significantly lower than
that given by IRMaSim, 440W, or the real value, 400W. The
improved power model of IRMaSim reduces the relative error
to 10%.

A similar experiment has been done in a heterogeneous
cluster, where out of the 15 nodes, 8 run at 3.4GHz, 4 at
2.5GHz and 3 at 1.7GHz. The makespan and energy results for
this experiment are shown in Figure 8. As can be seen, these
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results are consistent with the previous experiment, which
confirms that the heterogeneity modelling is also accurate.
Indeed, the relative error of the baseline model is poor, with
values of 30% and 45% in makespan and energy, respectively.
And in contrast, IRMaSim substantially reduces both errors
down to 5%. It is noteworthy that the errors decrease compared
to the previous experiment, this is because the heterogeneous
cluster includes low speed nodes that exhibit less performance
penalty due to memory contention.

Another important advantage of IRMaSim is the fact that
simulation time and energy consumption are very small com-
pared to real execution. With speedups up to 200, simulating
in a commodity computer, it allows researchers to make
large number of simulations to test different approaches or
scenarios.

B. Deep Reinforcement Learning validation

Once the validation of the simulator is accomplished, this
section presents an illustration of the machine learning capa-
bilities of IRMaSim. This serves two purposes, first it shows
how a DRL agent converges to making correct decisions,
and second proves the importance of correctly modeling the
architecture of the cluster. Thus, a DRL agent is trained with
a given trace on the heterogeneous cluster. This is done once
with the baseline model, that does not regard the multicore
architecture, and again with IRMaSim, that better models the
cluster.
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In this experiment, the agent is configured to minimise the
energy consumption by choosing from a small subset of the
policies presented in Table II. In order to determine if the agent
makes the right decision, an execution was made with each
policy, with the baseline and IRMaSim models. The energy
consumption of the traces are shown in Figure 9.

When using the IRMaSim model, it appears that some
policies are better than others. This is explained by the fact
that the energy consumption of the multicore architecture
benefits from the grouping of jobs in cores of the same
processor. Then the policies that favor this grouping present an
improved energy consumption. In contrast, the baseline model,
where any active core consumes the same power, all policies
present very similar results. Additionally, these results are in
agreement with the previous experiments, where the baseline
model gave substantially less energy consumption.

The learning progress of the DRL agent with successive
training episodes in each scenario is shown in Figures 10
and 11. In both cases there is a point in the training, where
the agent favors one policy over the rest. It can be seen
that the chosen policy is in fact one that causes minimum
energy consumption, according to the results in Figure 9. In
the baseline case, in spite of the similarity of the results for
each policy, the agent is capable of choosing a correct policy,
even if it requires substantially more training episodes.

These results confirm that the machine learning techniques
offer interesting possibilities to the workload management
problem. But more importantly, they highlight the importance
of the accuracy of the simulator. Because if the chosen policies
were to be used in a real scenario, the one obtained with the
baseline model would not be the best one, as it was chosen
with a simplistic representation of the cluster.

VIII. RELATED WORK

A first attempt to implement DRL techniques in task
scheduling was to use the SLURM [31], which is a well
known and established workload manager. However, several
shortcomings were found. For example the plugin architecture
of SLURM was too constrained, the launch script input
options did not cover some necessary aspects like the memory
bandwidth. In the end, for the kind of research aimed at, a
simulation environment was preferred over physical computing
infrastructure.

Other simulation frameworks were evaluated together with
Batsim. Alea v4 [13] is developed on top of GridSim [7],
implemented in Java and is open-source. It uses its own inter-
nal representation of machines (nodes), and provides a simple
interface for creating management policies in Java.Scheduler
Simulation Framework or ScSF [22] implemented as a wrapper
around a real SLURM instance. Experiments are defined in a
controller, which manages worker instances spawned in their
own virtual machines. Components may be distributed, and
physical network latencies have an impact in the simulation.
New algorithms are implemented via SLURM plugins. Ac-
casim [9] is an event-driven simulation. An event manager
processes events within the simulated system, and a dispatcher

assigns jobs to resources in the system. It is implemented
in Python, with new algorithms integrated by extending base
classes. These tools were disregarded in favour of Batsim due
to a set of the following factors: scarcity of the documentation,
difficulty of interaction with state-of-the-art DRL frameworks,
overhead of managing a physical infrastructure and lack of
data analysis tools.

In addition to classic job selection policies, like First In
First Out (FIFO) and Shortest Job First(SJF), there are several
alternative approaches in the literature. Backfill schedules jobs
based on their priority and the run times requested by the
users, and then attempts to fill empty gaps in the schedule
with lower priority jobs [17]. This approach that is sensitive
to the accuracy of the requested run times has seen many
improvements, like EASY++ that tries to predict job run
times [27]. In [11] the authors propose a machine learning
approach, where they fit a L2-regularized polynomial model
for predictions. Other authors also use auto machine learning
frameworks to find the optimal model [24]. Other authors
focus on optimising different metrics. For instance, ExpREsS
focuses on minimizing the energy consumption as long as
performance requirements are met [16].

On the other hand, another interesting approach is policy
search. Unlike the previous techniques, the actual policy is
inferred from both, the incoming jobs and the resource states.
Genetic algorithms have been used successfully to optimize
job sequencing [20], while reinforcement learning has also
been used in [1] via enhanced Q-learning [28]. Most recent so-
lutions leverage deep artificial neural networks for learning the
optimal scheduling policy, such as DeepRM [15] and Wrangler
[30]. RLScheduler [32] is a scheduler based on Reinforcement
Learning that schedules batch jobs in a homogeneous cluster.

This body of work shows that the job scheduling and
resource selection problems are decision problems that can
benefit from machine learning techniques. Therefore there
is a need for the development of new tools that can allow
researchers to easily develop new ideas to address these
problems. In this sense IRMaSim is a framework that aims
to fill this void.

IX. CONCLUSION

This paper presents IRMaSim, a new open-source simulator
that fills the void of solutions to develop ideas in the context
of workload management, including those based on machine
learning. Compared to other solutions, it extends the range of
clusters that can be simulated by providing greater detail in
the modeling of the architectures. On the one hand, it allows
specifying different computational capabilities to the different
nodes, allowing the definition of heterogeneous clusters. In
addition, it simulates the contention derived from accessing
shared resources, like memory. Also, it includes a model of
power consumption more adequate for multicore architectures.
Finally, it presents an easy to use API that allows the im-
plementation of deep reinforcement learning techniques. This
implies the design of agents, environments, observation and
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action spaces, parameter tuning via data-analysis utilities and
simulation log insight tools.

An experimental validation of the simulator is presented,
that tests the new features against a real scenarios. Which
include homogeneous and heterogeneous clusters, and traces
extracted from different size execution batches. The results are
substantially better than Batsim, as IRMaSim presents relative
errors up to 5% in makespan and 10% in energy consumption.

The second part of the validation supports the possibility
of employing Deep Reinforcement Learning techniques to
the problem of workload management. It allows researchers
to speed their research in the improvement of proposals
and achievement of more sophisticated schedulers. But more
importantly, it highlights the importance of leveraging simu-
lation for this kind of research, and proves that the multicore
architecture of clusters must be taken into account to obtain
correct results

This is a young field and there are many exciting ideas that
can be developed. Future lines of work can further refine the
detail of the architectural modeling, as well as improve the
framework by adding new policies, agents, observation and
action spaces to enrich the experiments that can be performed.
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