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Abstract—In Function as a Service (FaaS), a serverless com-
puting variant, customers deploy functions instead of complete
virtual machines or Linux containers. It is the cloud provider
who maintains the runtime environment for these functions. FaaS
products are offered by all major cloud providers (e.g. Amazon
Lambda, Google Cloud Functions, Azure Functions); as well as
standalone open-source software (e.g. Apache OpenWhisk) with
their commercial variants (e.g. Adobe I/O Runtime or IBM Cloud
Functions). We take the bottom-up perspective of a single node
in a FaaS cluster. We assume that all the execution environments
for a set of functions assigned to this node have been already
installed. Our goal is to schedule individual invocations of
functions, passed by a load balancer, to minimize performance
metrics related to response time. Deployed functions are usually
executed repeatedly in response to multiple invocations made
by end-users. Thus, our scheduling decisions are based on the
information gathered locally: the recorded call frequencies and
execution times. We propose a number of heuristics, and we also
adapt some theoretically-grounded ones like SEPT or SERPT.
Our simulations use a recently-published Azure Functions Trace.
We show that, compared to the baseline FIFO or round-robin,
our data-driven scheduling decisions significantly improve the
performance.

Index Terms—scheduling, function as a service, FaaS, server-
less, data center, cloud, latency, response time, flow time, stretch

I. INTRODUCTION

Serverless computing [1] allows cloud customers to execute
their code without configuring and maintaining a production
environment or a software infrastructure stack. Major cloud
offer serverless products, e.g. Amazon Lambda, Google Cloud
Functions, and Microsoft Azure Serverless. In this paper, we
focus on a variant of serverless computing called Function as
a Service (FaaS) [2]. In FaaS, a cloud customer develops a
source code of a stateless function and then uploads it to the
cloud provider. When a function is invoked by an end-user,
this invocation is processed on the infrastructure managed by
the provider.

We consider a set of functions that have been already loaded
into memory of a single node in a large cluster. We inten-
tionally omit function-to-node assignment to show that the
performance of the whole cluster can be improved on the node-
level too. Such an improvement is orthogonal to improvements
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in function placement [3], [4], load-balancing [4] or auto-
scaling of the clusters [5].

In FaaS, each function can be invoked numerous times, e.g.
in response to repeated HTTP requests coming from various
end-users. Thus, the local (node) scheduler can make online
decisions on how to assign these invocations to available CPU
cores based on invocations from the past. The information used
may include, among others, the frequency of invocations and
their observed past execution times. For this reason, theoretical
lower bounds for competitiveness of online strategies such as
SPT or SRPT (see, e.g., [6]–[8]) can be too conservative in
case of the analysed problem (formally introduced in Sec. II).

These local scheduling decisions can be made implicitly by
the kernel scheduler (at the operating system level). However,
the kernel has a low-level perspective on the scheduling prob-
lem. In particular, the kernel is not aware of how individual
FaaS invocations map to processes (threads), so, in the context
of FaaS, it cannot make dynamic, function-related decisions.
As a consequence, the kernel is forced to use variants of
the round-robin approach, where individual invocations are
processed in turns and thus repeatedly preempted. We show
that the overall performance of the system can be increased
by implementing other reasonable heuristics on the local
scheduler level with no significant computational or memory
cost—as long as we can use the information about how the
individual invocations link to the functions.

We state that in practice one rarely deals with extreme
generality (as in the theoretical, worst-case results), and that
better decisions can be made by taking into account infor-
mation readily available on a local FaaS node. This is so
independently of whether information is known a priori or
it is guessed (predicted) based on historical data. We validate
this claim with computational experiments using the real-life
data recently published as the Azure Functions Trace [9].

The contributions of this paper are as follows:

• We define a theoretical model of node-level scheduling
for FaaS (Sec. II). We adapt the real-life data from the
Azure Function Trace to reflect our model (Sec. III–IV).

• We propose a number of theoretically-grounded heuristics
and a new one, Fair Choice, that can be used by the local
scheduler to make decisions online. We also show that
these heuristics can be implemented without significant
increase of auxiliary computations (Sec. V).
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• By simulations, we show that applying heuristics based
on past information leads to reduction in latency-related
objectives, compared to the preemptive round-robin (cor-
responding to standard scheduling used by the operating
system, Sec. VI).

II. PROBLEM DESCRIPTION

In this section, we define the optimization problem of
minimizing latency-related objectives in the FaaS environment.
The aim of this problem is to be simply-defined, yet realistic
enough to address dilemmas encountered in the serverless
practice. Our notation follows the standard of Brucker [10].

We consider a single physical machine with m parallel
processors/cores P1, P2, . . . , Pm (a processor is a standard
scheduling term; our processor maps to a single core on the
machine). This machine has been assigned a set of n stateless
functions, f1, f2, . . . , fn, that can be invoked multiple times,
without a significant startup time (i.e. they are already loaded
into memory). The functions are stateless, so one processor can
execute one function at a time, but at any moment invocations
of the same function can be independently processed on
different processors. Each invocation (call) corresponds to a
single end-user request. The actual execution time of fj differs
between calls, and we model it as a random variable with the
Pj distribution. We consider both a preemptive and a non-
preemptive case. In the preemptive case, a process executing
a function can be suspended by the operating system, and
later restored on the same or on another processor. In the
non-preemptive case, a process executing a function—once
started—occupies the processor until the function finishes and
the result is ready to be returned to the end-user.

We assume that the f1, f2, . . . , fn functions, assigned to
the machine, have been selected by an external load bal-
ancer/supervisor. In the case of cloud clusters, where thou-
sands of physical machines work simultaneously, this process
may take into account complex placement policies (balancing
the overall load, affinity to reduce cluster network load, anti-
affinity to increase reliability by placing instances executing
the same function on different nodes or racks). In this paper,
we focus on the micro-scale of a single node in such a cluster.

We consider a time frame of [0, T ) where T is a positive
integer. Each function fj can be executed multiple times in
response to numerous calls incoming in this time frame. Thus,
the instance of the considered problem can be described as a
sequence of an unknown number of invocations (calls) in time.
Let the i-th call be represented by a pair of values: the moment
of call r(i) and a reference f(i) to the invoked function. Of
course, 0 ≤ r(i− 1) ≤ r(i) < T for all i > 1.

Once the i-th invocation is finished (e.g. the result is re-
turned to the end-user), we know the moment of its completion
c(i), and the total processing time p(i) that the invocation
required. Note that it is possible that c(i) ≥ T . We use two
base metrics to measure the performance of handling a call.
The flow time F (i), i.e. c(i)−r(i), corresponds to the server-
side processing delay of the query. The stretch (also called the

slowdown) S(i), i.e. F (i)/p(i), weights the flow time by the
processing time.

For any instance of our problem, processes executing
functions need to be continuously assigned to processors in
response to incoming calls. We determine the quality of the
obtained schedule based on the following performance metrics
that aggregate flow times or stretches across all the calls.
• Average flow time (AF),

∑
i F (i)/#{i}, where #{i}

is a total number of invocations. It is a standard perfor-
mance metric considered for over four decades in various
industrial applications [11]. It corresponds to the average
response time.

• Average stretch (AS),
∑
i S(i)/#{i}, which takes into

account the actual execution time of a call [6], and thus
responds to the observation that it is less noticeable that
a 2-second call is delayed by 40 milliseconds (with the
stretch of 2.04/2 = 1.02) than it would be in case of a 10-
millisecond call (resulting in the stretch of 50/10 = 5).

• 99th percentile of flow time (F99), x : P(F (i) < x) =
0.99, and

• 99th percentile of stretch (S99), x : P (S(i) < x) =
0.99, which are less fragile variants of the maximum
performance metrics [6]. We state that maximum-defined
metrics are not good indicators of the performance in
FaaS, as if the flow time or stretch of a call exceeds a
perceptual threshold accepted by the end-user, the call
is cancelled and the function is called again (e.g. by
refreshing a webpage). This perceptual threshold reduces
the number of calls with an unacceptably high flow time
that have a significant impact on the overall performance
[12]. Our robust variants, measuring the 99th percentile,
return a value x such that 99% of all invocations have
stretch (or flow time) smaller than x.

• Average function-aggregated flow time (FF),

1

n

n∑
j=1

∑
{i : f(i)=j} F (i)

#{i : f(i) = j}
,

where #{i : f(i) = j} is the number of all fj calls, and
• Average function-aggregated stretch (FS),

1

n

n∑
j=1

∑
{i : f(i)=j} F (i)∑
{i : f(i)=j} p(i)

,

which we propose as new metrics specific for the FaaS
environment. Our aim is to measure the fairness of a
schedule, based on the average values of the flow time
or stretch within the sets of invocations of the same
functions. These metrics take into account that func-
tions developed by different users may require different
amounts of resources (i.e. time), and that the performance
of an invocation should not depend significantly on the
set of functions that share the same machine.

As the actual processing times of invocations are random
variables, we solve a set of online stochastic scheduling
problems. Using the extended three-field notation [10], we
denote these problems as Pm|on-line, r(i), p(i) ∼ Pf(i)|E[σ]
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Fig. 1: CDF of the relative difference ∆k
j of the number of

invocations compared to the previous one-minute interval over
10 000 randomly sampled interval-function pairs (k, j), where
at least one of the λkj and λk−1j values is non-zero.

and Pm|on-line, pmtn, r(i), p(i) ∼ Pf(i)|E[σ] where σ ∈
{AF, AS, F99, S99, FF, FS}.

Proposition 1. The Pm|pmtn, r(i)|FF and 1|r(i)|FF problems
are strongly NP-Hard. The 1|r(i)|FS problem is NP-Hard.

Proof. Consider special cases of the above problems, in
which each function is invoked exactly once. Then, the
FF metric becomes equivalent to the

∑
i c(i) metric. The

Pm|pmtn, r(i)|
∑
i c(i) [13] and 1|r(i)|

∑
i c(i) [14] prob-

lems are strongly NP-Hard. Similarly, the FS metric be-
comes equivalent to the

∑
i S(i) metric. It is known that the

1|r(i)|
∑
i S(i) problem is NP-Hard [15].

III. MEASURING INVOCATIONS IN THE AZURE DATASET

The recently published Azure Function Trace [9] provides
information about function invocations collected over a con-
tinuous 14-day period between July 15th and July 28th, 2019.
For each day within this period, the trace presents a number
of invocations of each of the monitored functions during each
minute of the day (24·60 = 1440 separate measurements). We
denote the number of invocations of the fj function within the
k-th minute of the trace as λkj . The trace distinguishes between
different invocation sources, e.g. incoming HTTP requests or
periodic executions (cron tasks). In this paper, we consider
HTTP requests only, as they are less predictable. Additionally,
the trace shows the distribution of the execution times for each
function during each day (based on weighted averages from
30-second intervals). For each function, the trace provides
values of the 0th, 1st, 25th, 50th, 75th, 99th and the 100th
percentile of this approximate distribution.

Some of the scheduling algorithms presented in Sec. V use
the expected number of invocations in the k-th interval, λkj ,
to make decisions online. The most straightforward way to
estimate the unknown λkj is to use the number of invocations
in the previous interval, λk−1j . We analyzed how the actual
number of invocations differed between two consecutive one-
minute intervals. In particular, we define the relative difference

Fig. 2: Relative differences for numbers of invocations com-
pared to the previous one-minute interval. Each point shows
one of 10 000 randomly sampled interval-function pairs (k, j),
where at least one of the λkj and λk−1j values is non-zero. Red
line represents linear regression fit to the visible data. Bands
around the line indicate 90% confidence interval.

between λkj and λk−1j as

∆k
j =

0 if λkj = λk−1j = 0 or λk−1j not known
|λk

j−λ
k−1
j |

λk
j+λ

k−1
j

otherwise

We calculated relative differences ∆k
j for all the recorded

functions fj and minutes k. We found out that 85% of these
were equal to zero (meaning that the number of invocations did
not change): for 93% of these cases (and 79% of all) there were
no invocations in both the minutes (λkj = λk−1j = 0). Next,
we studied in detail the cases for which λkj + λk−1j > 0. We
randomly sampled 10 000 pairs (k, j) for which λkj +λk−1j >
0, and calculated the corresponding relative differences. Fig. 1
shows the CDF of the obtained ∆k

j values. In 29% of the cases
the number of invocations did not change; but for roughly
51% the relative difference was 1.0, denoting cases in which
either λkj or λk−1j was 0. Fig. 2 shows ∆k

j as a function of
λkj (for clarity of the presentation, the x-axis is cut at the 99th
percentile of all λkj values). We see that the relative difference
decreases with the increased number of invocations per minute.

In further sections we present algorithms taking advantage
of this knowledge to predict number of invocations to come.
However, our algorithms additionally rely on the p(i) values,
the execution times of invocations. Due to the limited space,
for the analysis of p(i) in the trace we refer the reader to
Sec. 3.4 of the excellent analysis in [9].

IV. MAPPING THE AZURE DATASET TO OUR MODEL

The theoretical model introduced in Sec. II is an on-
line scheduling problem with release times and stochastic
processing times. In this section, we show that monitoring data
from Azure, a real-world FaaS system, is sufficient to fulfill
the assumptions we take in the model (e.g., that the processing



times are generated by an arbitrary distribution). The main
issue is that when the number of events (e.g. function invoca-
tions) is large, it can be monitored only in aggregation—as in
the case of the number of invocations and function execution
times in the Azure dataset. Thus, we need to extrapolate these
aggregations. Below, we describe how we acquire two sets of
parameters required by our theoretical model: invocation times
and the random distribution of processing times.

A. Invocation times

The Azure dataset does not give us the exact moments of
invocation of each function. However, the total number λkj
of invocations of each function fj is known for every k-th
monitored minute. Thus, we assume that T , the duration of
the considered time frame, is a multiple of 60 000 (number
of milliseconds in a minute; our base unit is a millisecond
because the processing times are given in milliseconds). The
number of invocation, λkj , may change in the [0, T ) interval
as, for example, some functions are called intensively in the
morning and rarely during the night. In order to model such
changes, we divide the [0, T ) time frame into K = T/60 000
consecutive, one-minute intervals vk:

v1 = [0, 60 000),
v2 = [60 000, 120 000),
. . .
vK = [(K − 1) · 60 000, T ).

We use the values of λkj obtained directly from the Azure
dataset to generate invocation times of function fj in these
intervals. Following a standard queueing theory, we assume
that in the interval vk, each function fj is called based on
the Poisson point process with rate λkj /60 000. Thus, the time
(in milliseconds) between consecutive calls of function fj in
the vk interval is a random variable with the Exp(λkj /60 000)
distribution. Our scheduling model does not rely on this
assumption—we use r(i) values, the realizations of the ran-
dom variables. However, some of our scheduling algorithms
estimate λkj for better scheduling decisions.

B. Processing times

Precise information on p(i) values, the execution times of
single invocations, is not provided in the Azure dataset. Our
model assumes the existence of the distribution Pj (of execu-
tion times of a function fj) in its exact form. However, the
Azure dataset only shows selected percentiles of the empirical
cumulative distribution function (p0, percentile 0, p1, the 1st
percentile, p25, p50, p75, and p100). We thus approximate Fj ,
the CDF of Pj , by a piecewise-linear interpolation of these
percentiles. For example, if x ∈ (p1, p25], then

Fj(x) = 0.01 + 0.24 · x− p1
(p25 − p1)

.

The actual processing time of each invocation is generated
based on the approximation of Fj .

V. SCHEDULING ALGORITHMS

Within the mapping described in the previous section,
we apply both the well-known and theoretically-grounded
strategies, and new approaches. In particular, we consider the
following strategies.
• FIFO (First In, First Out, for a non-preemptive case) —

all invocations are queued in the order in which they were
received. When a processor is available, it is assigned the
invocation with the lowest value of r(i).

• SEPT (Shortest Expected Processing Time, for a non-
preemptive case) — when a processor is available, it
is assigned the invocation with the shortest expected
processing time.

• FC# (Fair Choice based on the number of invocations,
for a preemptive and a non-preemptive case) — when
a processor is available, it is assigned the invocation
which is the most unexpected. In fact, we want functions
that are called occasionally to have larger priority than
the frequently-invoked ones. At any point t ∈ vk, the
most unexpected invocation is the one with the lowest
value of max

{
λkj ,#{i : r(i) ∈ vk and f(i) = j}

}
. The

priority is thus determined based on the maximum of the
expected number of invocations in the considered period
and the actual number of these invocations.

• FCP (Fair Choice based on the total processing time,
for a preemptive and a non-preemptive case) — when a
processor is available, it is assigned the invocation related
to the least demanding function in total. In fact, we want
functions that use limited resources to have larger priority
than the burdening ones. At any point t ∈ vk, the least
demanding invocation is the one with the lowest value of

max

λkj · E[X ∼ Pj ],
∑

{i : r(i)∈vk and f(i)=fj}

p(i)

 .

The priority is thus determined based on the maximum
of the expected total processing times of invocations in
the considered one-minute interval and the actual value
of this amount.

• RR (Round-robin, for a preemptive case) — all invoca-
tions that have not been completed are queued. When a
processor is available, it is assigned the first invocation
from the queue. If the execution does not complete by
a fixed period of time is it preempted and moved to the
end of the queue. We consider periods of the length of
10, 100 and 1000 milliseconds. As this strategy is used
as a reference, we assume that all the invocations have
the same priority.

• SERPT (Shortest Expected Remaining Processing Time,
for a preemptive case) — when a processor is available,
it is assigned the invocation with the shortest expected
remaining processing time. The strategy is applied only
when an invocation is finished or a new call is received,
even if all the processors are busy. Such a restriction is in-
troduced because otherwise executions of functions with



Algorithm 1 A framework scheduling algorithm

1: Q← {} . A queue of incoming invocations
2: A← {} . A set of acknowledged invocations
3: E ← {} . A set of invocations being processed
4: preemptive ∈ {true, false} . Is the strategy preemptive?
5: while true do
6: wait until (a processor is free and (|A|+ |Q| > 0)) \

or (preemptive and |Q| > 0)
7: for each i-th call in E that has been finished do
8: UPDATE(f(i), p(i))
9: Remove i from E

10: Move all the invocations from Q to A
11: if preemptive then
12: Move all the invocations from E to A
13: while |A| > 0 and there are free processors do
14: i′ ← arg mini∈A POSITION(f(i), p(i))
15: . Here, p(i) is a partial processing time
16: Assign the i′-th call to any free processor
17: Move i′ from A to E

increasing expected remaining processing times could be
preempted an arbitrarily large number of times.

In all cases, if the rule is unambiguous, we select the invo-
cation with the lowest value of r(i). The expected (remaining)
processing times and the values of λkj are estimated based on
previous invocations.

Although the FIFO, SEPT, RR and SERPT strategies are
well-known, we implemented them among our solutions. For
each of SEPT, SERPT, FC# and FCP strategies, we introduce
two methods: POSITION and UPDATE. The first method re-
turns the position of an invocation in the execution queue. For
example, in case of SEPT, it returns the expected processing
time of a function. The UPDATE method is called after the
execution of the invocation ends, and it updates auxiliary
data structures that are used by the POSITION method. The
framework algorithm (Alg. 1) for the above strategies is based
on a standard scheduling loop. In this loop, we prioritize calls
and choose the one with the lowest position.

The positions of invocations are calculated differently for
different strategies. We present pseudocodes for two of them,
a non-preemptive SEPT and a preemptive SERPT, as FC# and
FCP are similar. Alg. 2 defines the POSITION and UPDATE
methods for case of the SEPT strategy. As the invoked function
is known at the moment of the call, the methods are similar for
all the functions, but the auxiliary data structures are function-
dependent. At any point in time, we store two values for each
function fj : the total processing time (TPTj) of all its previous
invocations and a number of these invocations (NOCj). The
expected processing time is approximated using a standard
estimator, the average execution time TPTj/NOCj .

Similarly, Alg. 3 provides the same methods for the SERPT
strategy. For each function fj , we store execution times of
its previous invocations in the PTj vector. In general, this
vector can be arbitrarily long. However, to reduce the memory

Algorithm 2 SEPT

1: for j ∈ {1, 2, . . . , n} do . Set initial values
2: TPTj ,NOCj ← 0, 0

3: procedure POSITION(j, p) . p is always 0
4: if NOCj > 0 then return TPTj/NOCj
5: else if

∑
j NOCj = 0 then return 0

6: else return
∑
j TPTj/

∑
j NOCj

7: procedure UPDATE(j, p)
8: TPTj ← TPTj + p
9: NOCj ← NOCj + 1

Algorithm 3 SERPT

1: for j ∈ {1, 2, . . . , n} do . Set initial values
2: PTj ← {} . A set of previous processing times
3: procedure POSITION(j, p)
4: pp, pc← 0, 0
5: for pt ∈ {x ∈ PTj : x− p ≥ 0} do
6: pp← pp+ (pt− p)
7: pc← pc+ 1

8: if pc > 0 then return pp/pc
9: else

10: for pt ∈ {x ∈ ∪jPTj : x− p ≥ 0} do
11: pp← pp+ (pt− p)
12: pc← pc+ 1

13: if pc > 0 then return pp/pc
14: else return 0
15: procedure UPDATE(j, p)
16: Add p to PTj

footprint of the algorithm, we might want to limit its size.
In such a case, the oldest values can be replaced with the
newest ones. This approach has two main advantages: (1) if
the distribution of processing times changes in time, it can
be reflected within the algorithm, (2) the memory is saved.
On the other hand, if the number of remembered values
is limited, the accuracy of the estimation of the expected
remaining processing time (ERPT) is limited too. For clarity of
the presentation, we omit most of the implementation details.
For example, one can use binary search or priority queues to
improve the complexity of the presented approach.

In order to determine the ERPT of a call of fj after p
milliseconds, we select from PTj the execution times that
were equal to or exceeded p. We then estimate the expected
processing time of the current invocation based on the standard
estimator, similar to the one presented in case of SEPT.

VI. EVALUATION

We evaluate and compare our algorithms using discrete-time
simulations, as this method enables us to perform evaluations
on a large scale. In this section, we present the results of these
evaluations. In Sec. VI-A, we present estimation models used
with the algorithms. To make sure that our input data matches
real-world scenarios, we generate test instances based on the



Azure Functions Trace, with mapping indicated in Sec. IV. In
Sec. VI-B, we describe data preprocessing, and in Sec. VI-C
we describe how we create inputs for our simulator. Finally,
in Sec. VI-D–VI-E, we analyse results of the simulations and
the behavior of the tested algorithms.

We implemented the simulator and all the algorithms in
C++ and run the simulator on Intel Xeon Silver 4210R CPU
@ 2.40GHz with 250GB RAM. The simulator was validated
using unit tests and a close-up inspection of results on small
instances.

A. Estimations and baselines

Our algorithms rely heavily on probabilistic estimations of
parameters (e.g. the processing time p(i)); these in turn depend
on estimations of parameters of the generating distributions
(e.g. E[X ∼ Pj ]). The methods we use are simple. To measure
how much we loose with this simplicity, we compare our
methods with the ground truth on two different levels.

First, we compare our probabilistic methods with exact
clairvoyant algorithms that rely on the knowledge of the true
execution time (that the real-world scheduler clearly does not
have): the SPT (Shortest Processing Time) strategy in the non-
preemptive case and the SRPT (Shortest Remaining Processing
Time) strategy in the preemptive case. These two non-real
strategies are based on full knowledge of the actual execution
time of invocations that are not yet finished. This way we can
analyze how strategies based on expectations approach these
standard theoretically-grounded strategies for fixed processing
times—and thus the limits of how much the algorithms can
further gain from better estimates.

Second, our probabilistic methods estimate the parameters
of distributions. For each invocation of function fj , algorithms
presented in Sec. V may require information about its ex-
pected (remaining) processing time or the expected number of
invocations of function fj in the current one-minute interval.
As we want to measure the influence of the imperfection of
such estimations, some of the algorithms are compared in
three different variants: the reactionary one (RE), a limited
reactionary one (RE-LIM), and the foresight one (FOR).

In the reactionary variant, the EPT, ERPT and λkj values for
the fj function are not known and thus are estimated based on
all the previous invocations of function fj . The λkj values in
the reactionary model are predicted a priori based on the actual
number of invocations in the previous one-minute interval, i.e.

λkj =

{
1 if k = 1

#{i : f(i) = j and r(i) ∈ vk−1} if k > 1

The EPT and ERPT values are estimated as shown in Alg. 2–3.
In particular, if it is not possible to estimate any of these values
(e.g. there were no previous calls of a particular function), an
arbitrary default value is used. For example, SEPT uses the
average processing time of all previous invocations.

Although the storage needed to estimate the expected pro-
cessing time of an invocation (see Alg. 2) does not depend on
the number of invocations, this is not a case when the ERPT
value is calculated (see Alg. 3). In a real system, keeping

Algorithm 4 Instance generation (based on Azure)

1: function FILL(T1, T2, m, χ, ε)
2: F ← {1, 2, . . . , n}
3: I ← {} . Generated instance
4: L← 0 . Total load
5: do
6: j ← RANDOM(F )
7: Ij ← seq. of invocation of the fj function
8: Lj ← total load of Ij
9: if L+ Lj ≤ (1 + ε) · χ ·m · (T2 − T1) then

10: S ← S ∪ {j}
11: L← L+ Lj
12: I ← I ∪ Ij
13: F ← F \ {j}
14: while L < χ ·m · (T2 − T1) ∧ |F | > 0
15: return I

information about all the previous calls of any function fj
is not practical. Therefore, we introduce limited reactionary
variants (RE-LIM) of some algorithms, in which we keep
information about at most 1 000 last invocations of each
function fj . (We also tested RE-LIM limited to 10 and to 100
executions which resulted in significantly worse performance).

In order to check how better estimators would impact the
performance of algorithms, we compare the algorithms against
foresight (FOR) variants which use actual parameters of the
distributions used to generate the instance. These parame-
ters correspond to the perfect, clairvoyant estimations. More
formally, in the foresight variants we assume that for each
function fj the values of E[X ∼ Pj ] (expected processing
times), E[X ∼ Pj |X ≥ p]−p (expected remaining processing
times) and λkj are estimated a priori based on the whole
instance. However, the algorithms are still probabilistic, e.g.,
for a just-released job we know its expected processing time,
E[X ∼ Pj ], but not the actual processing time p(j).

B. Preprocessing of the trace data

We pre-processed the Azure dataset as follows. First, we
filtered out 38 functions having multiple records per day,
leaving 671 404 out of 671 080 records from all the 14 days.
Then, as indicated in Sec. III, we removed all the records that
were not related to HTTP invocations, which further narrowed
the dataset to 200 194 records. We were particularly interested
in functions invoked by HTTP requests, as they are less
regular and their invocation patterns are harder to predict and
optimize — contrary to functions triggered by internal events
(e.g cron tasks). Finally, we omitted functions containing
missing data (i.e. missing information about execution times),
which resulted in 199 524 records of data on 30 325 individual
functions.

As the trace did not provide any information on either the
I/O-intensiveness of individual functions, or the characteristics
of I/O devices used in clusters, we assumed that functions are
CPU-intensive. The given function processing times include
the time needed to perform all the I/O operations. Thus, in



our simulations, a processor remains busy during I/O phases.
However, on the kernel level, the job performing the I/O would
change its state to “waiting” (“not ready”) and another ready
job would be assigned to the processor. As a consequence,
our simulation results provide upper-bounds for what we could
expect in case of I/O-intensive functions.

C. Generating instances

The performance of the scheduling algorithms was tested
for various configurations. Each configuration specified the
number of available processors (10, 20, 50 or 100), their
desired average load (70%, 80%, 90% or 100%) and the time
frame duration T (30, 60 or 100 min).

For each configuration we generated 20 independent in-
stances (each box shows statistics over 20 instances). For each
instance, we randomly selected a window [T1, T2) of length T
within one of 14 days of the trace. This way, each instance was
generated based on the data coming from a consistent interval
in the trace. From within the [T1, T2) window, we randomly
selected a subset of functions so the average load χ is achieved
for the given number m of processors. Alg. 4 describes this
process. First, we pick all functions having any invocation in
the [T1, T2) window (for clarity, we denote these functions by
1, 2, . . . , n). Then, we randomly select functions from this set
until the load of the generated instance is in the [χ, (1 + ε)χ]
range (with ε = 2%) or the set of available functions becomes
empty. For a selected function fj , we generate a sequence of its
invocations using the provided information about the number
of calls within each minute of the [T1, T2) time frame and the
percentiles of average execution times of its invocations during
the day. This process is fully consistent with the mapping
described in Sec. IV. The invocations of the fj function are
included into the generated instance if the total load after such
an inclusion does not exceed (1 + ε)χ of the total available
CPU time. From this point on, we map [T1, T2) to [0, T ).
The generated instance contains all the information required
to evaluate the proposed algorithms – for the i-th invocation
we provide: the moment of call r(i), a reference f(i) to the
invoked function and the true processing time p(i). We stress
that the p(i) value is not revealed to the reactionary variants
of the proposed algorithms, so they are required to estimate
them online.

D. Comparison of different algorithms

Fig. 3 presents the comparison of different metrics (formally
defined in Sec. II) for configuration of 20 processors, 90%
average load and a 30-minute time frame T .

We split results into two groups: preemptive algorithms (left
side of figures) and non-preemptive algorithms (right side).
To mitigate the impact of the variability of results between
instances, for each instance we normalize the performance
metric (e.g. the average flow time) by the performance of a
baseline algorithm. Results for preemptive algorithms are nor-
malized to round-robin with a 10-millisecond period (denoted
by RR-10), i.e. metric values for each test case are divided by
corresponding results for RR-10. (We also tested round-robin

variants with periods of 100 and 1 000 milliseconds, but they
had worse results than RR-10 for all tested metrics, thus we
skip them). Similarly, results for non-preemptive algorithms
are normalized to FIFO. As RR-10 and FIFO always have
normalized performance equal to 1, they are not shown on
graphs.

For all considered performance metrics, our proposed
SERPT and SEPT algorithms significantly improve the results
compared to the baselines, round-robin and FIFO. The smallest
improvements are in flow-time related metrics for preemptive
case (Fig. 3, (a) and (c), left)—but, as SERPT is close to
the clairvoyant SRPT, we see that there is not much space
for improvement. In the non-preemptive variants (Fig. 3, (a)
and (c), right), the improvements in the average flow time
are almost an order of magnitude. The reduction in stretch
(Fig. 3, (b) and (d)) is larger: in non-preemptive variants
by two orders of magnitude; in preemptive variants from 2-
times for the average and to more than an order of magnitude
for the 99th percentile. For all these metrics, SERPT in
reactionary and foresight variants are close to SRPT, even
though SRPT is clairvoyant while SERPT relies on estimates.
This proves that our simple estimates of processing times are
sufficient. However, in non-preemptive cases, the difference
between SEPT and the clairvoyant SPT is larger: here, the
impact of a wrong processing time estimate is harder to
correct. SERPT limited to 1000 last executions (SERPT-RE-
LIM) performed similarly to SERPT-RE for all tested metrics,
which is promising, as that variant requires less memory when
implemented in a real-world scheduler. For our fair, function-
aggregated metrics (Fig. 3, (e) and (f)), FCP dominates other
variants including FC# (which we skip from other figures as it
was always dominated by FCP)—with an exception of average
stretch in the clairvoyant variant, where FCP performance is
similar to SERPT.

E. Impact of instance parameters

To make sure that the obtained results are valid for a wide
range of scenarios, we verified the impact of changing average
loads, processor counts and time window lengths.

Fig. 4 presents the 99th percentile of stretch (S99) with
different loads. We chose this metric as it is the most sensitive
to the density of function calls. First, for all loads SRPT results
are close to the optimal 1, demonstrating that in all cases it is
feasible to pack invocations almost optimally. Second, stretch
increases with load for all other algorithms—however, both the
increase and the absolute numbers are larger for the baselines
FIFO and RR, compared with SERPT. Fig. 5 reinforces this
observation: the higher the load, the better is the performance
of our algorithms compared to the baselines.

We also analyzed how results change when the number of
processors changes, with up to 100 processors (as the largest
C2 instance in AWS has 96). Fig. 6 shows that with the
increase in the number of processors, it is easier to schedule
invocations almost optimally even with simple heuristics, as
it is less and less probable that all processors will be blocked
on processing long invocations—thus, the impact of better
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Fig. 3: Comparison of different metrics. Each box shows a statistics over 20 independent instances. Each instance has 20
processors, 30-minute time frame and 90% load.
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Fig. 4: 99th percentile of stretch when varying the average load. 30-minute time frame, 20 processors.

scheduling methods diminishes. This is confirmed by smaller
relative gains of the SRPT in the preemptive case (Fig. 6, (f)).

Finally, we verified whether 30-minute time frame is rea-
sonable by providing results that can be extrapolated on larger
time windows. In Fig. 7 we present representative results on
samples generated with different time frame durations. All the
results are comparable, which indicates that our algorithms
provide similar results for longer time spans.

VII. RELATED WORK

A. Serverless and FaaS scheduling

As serverless model is flexible and there are various sce-
narios of its application, there exists a wide range of different
aspects of this model that have to be addressed [16], [17]. An
important issue connected with FaaS scheduling is the cold
start—an additional overhead required to prepare execution
environment at the time of the first invocation. Particle [18]
identify network provisioning as an important factor influenc-
ing startup time in platforms using containers. To address this
issue, proposed solution decouples creation of network from
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Fig. 5: Relative performance when varying the average load. 30 min time frame, 20 processors.
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Fig. 6: Relative performance when varying the number of processors. 30-minute time frame and 90% load.

container creation process and uses pool of ephemeral IPs.
[19] proposes decoupling common dependencies from

function code—packages (e.g. libraries)—cache them directly
on worker nodes and schedule invocations taking into account
package availability. Such approach leads to the reduction of
startup time as large libraries do not have to be downloaded
multiple times. Further analysis of performance challenges
connected with FaaS is presented in [20].

Fifer [21] considers execution of functions chains (i.e.
invocation patterns where one function invokes a next one) and

take into account the effects of cold starts. Fifer implements
its prediction model for incoming invocations using LSTM.

Massive parallel invocations of cloud functions can easily
lead to an exhaustion of cluster resources. In [22], ineffi-
cient memory usage (e.g. redundant data runtime, libraries)
is addressed by introducing context sharing between multiple
invocations.
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Fig. 7: Comparison of the algorithms with different time frame durations. 20 processors and 90% load.

B. Scheduling with fixed processing times

A number of theoretical research papers on scheduling with
release dates was focused on fixed job execution times. As
the release date of each job, ri, is schedule-independent, the
total flow-time objective,

∑
(Ci − ri), becomes equivalent

to the total completion time,
∑
Ci. It was shown that al-

though the Pm||
∑
Ci problem is polynomially-solvable [23],

the Pm|pmtn, rj |
∑
Ci [13], [24] and even 1|ri|

∑
Ci [14]

problems are strongly NP-Hard. For these general problems,
some online algorithms were analyzed. The modified version
of the delayed SPT strategy [25]) was shown to provide
a 2-competitive ratio for the Pm|on-line, rj |

∑
Ci problem

[26]. The same competitive ratio can be achieved for the
Pm|on-line, pmtn, rj |

∑
wiCi problem [8], but only a 2.62-

competitive algorithm is known for the non-preemptive case
[27]. These results were extended in [28] where it was proven
that, for P = pmax/pmin being the ratio of the maximum to the
minimum job execution time, SRPT is a O(log(min{ nm , P}))-
approximation offline algorithm for the Pm|pmtn, rj |

∑
Ci

problem.
In case of the total stretch (

∑
Si) objective, the results are

even less promising. It was shown that the SRPT strategy is 14-
competitive for the Pm|on-line, pmtn, rj |

∑
Si problem [7]. In

[29], it was shown that there exists a strategy with a constant-
factor competitive ratio for a uniprocessor machine even is the
processing times are known only to within a constant factor of
accuracy. There was also shown a PTAS for the offline version
of the 1|pmtn, rj |

∑
Si problem [29].

The maximum-defined objectives, such as max{Ci − ri}
(Fmax) and max{(Ci − ri)/pi} (Smax), were also discussed.
A number of results were shown in [6]. In particular, it
was proven that for the Pm|on-line, ri|Fmax problem, FIFO

is a (3 − 2/m)-competitive strategy, and this bound is tight.
It is also known that the offline version of the 1|ri|Smax
problem cannot be approximated in polynomial time to within
a factor of O(n1−ε), unless P = NP [6]. Finally, it is
shown that for P = pmax/pmin, every online algorithm for the
Pm|on-line, pmtn, ri|Smax problem is Ω(P 1/3)-competitive for
three or more job sizes.

C. Stochastic approaches to scheduling

The results for fixed job processing times provide us lower
bounds for the expected performance in case of the corre-
sponding stochastic problems. In practice, stochastic problems
are more complex. For example, it was shown that the perfor-
mance guarantee for the Pm|on-line, rj |E[

∑
wiCi] problem

can be upper-bounded by 5+
√
5

2 − 1/(2m), if the expected
remaining processing time of any job is a function decreasing
in time [30], compared to a 2.62-competitive ratio in case
of a non-stochastic variant [27]. A good review of research
papers considering stochastic scheduling problems, mostly
non-preemptive, can be found in [31], [32]. It can be observed
that most results are related to the

∑
wiCi objective.

To the best of our knowledge, there is only a limited number
of papers on preemptive stochastic scheduling (e.g. [33], [34]).
However, performance guarantees are shown only for specific
distributions of processing times (i.e. discrete ones). Moreover,
we found no theoretical papers on stochastic scheduling with
average or maximum stretch as performance metrics.

VIII. CONCLUSIONS

This paper was driven by real-world data provided in the
Azure Function Trace. We studied various non-clairvoyant,
online scheduling strategies for a single node in a large FaaS
cluster. Our aim was to improve performance measured with



metrics related to response time or stretch of the function invo-
cations. To estimate the values of the expected processing time
or the expected remaining processing time of an invocation,
we took advantage of the fact that the same function is usually
invoked multiple times. This way, we were able to adapt
SEPT and SERPT strategies with no significant increase in
the consumption of memory or computational power. For our
newly-introduced fair metrics, the function-aggregated stretch
and flow time, we proposed two new heuristics, called Fair
Choice. There, decisions are made based on an additional
estimation of the expected number of function calls in the
next monitoring interval.

Compared to round-robin and FIFO baselines, in the base
case of our simulations, our proposed SEPT and SERPT
strategies reduce the average flow time by a factor of 1.4
(preemptive) to 6 (non-preemptive); and the average stretch by
a factor of 2.6 (preemptive) to 50 (non-preemptive). Gains over
FIFO and round-robin increase with increased pressure of the
workload on the system: with the lower number of processors
and the higher average load. For the fair, function-aggregated
metrics, our newly introduced Fair Choice strategies clearly
outperform other implementable algorithms when measuring
the flow time (while the gain is smaller for stretch).

SEPT, SERPT and Fair Choice can be easily implemented
in the node-level component of the FaaS scheduling stack
(e.g. the Invoker module in OpenWhisk). We expect the actual
improvement compared to round-robin and FIFO baselines in
practical cases, as our simulations were based on real-life data.
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