
Accelerating Deep Learning Training Through
Transparent Storage Tiering

Marco Dantas, Diogo Leitão, Peter Cui†, Ricardo Macedo, Xinlian Liu?, Weijia Xu†, João Paulo
INESC TEC & University of Minho †University of Texas at Austin ?Hood College

Abstract—We present MONARCH, a framework-agnostic stor-
age middleware that transparently employs storage tiering to
accelerate Deep Learning (DL) training. It leverages existing stor-
age tiers of modern supercomputers (i.e., compute node’s local
storage and shared parallel file system (PFS)), while considering
the I/O patterns of DL frameworks to improve data placement
across tiers. MONARCH aims at accelerating DL training and
decreasing the I/O pressure imposed over the PFS.

We apply MONARCH to TensorFlow and PyTorch, while
validating its performance and applicability under different
models and dataset sizes. Results show that, even when the
training dataset can only be partially stored at local storage,
MONARCH reduces TensorFlow’s and PyTorch’s training time
by up to 28% and 37% for I/O-intensive models, respectively.
Furthermore, MONARCH decreases the number of I/O operations
submitted to the PFS by up to 56%.

Index Terms—I/O optimization, storage tiering, deep learning

I. INTRODUCTION

High-performance computing (HPC) infrastructures are in-
creasingly popular to support computational demanding deep
learning (DL) training workloads. These workloads are typi-
cally backed by large-scale datasets that range from few GiB to
several TiB in size and are made of multiple small-sized files.
For example, Open Images [1] has around 9 million images
and ImageNet-22k [2] has approximately 14 million images.

At the model training phase, data samples are repeatedly
read from storage to achieve accurate and unbiased models.
However, the long-lived and recurrent access to millions of
small files can overload the HPC’s shared parallel file system
(PFS) (e.g., Lustre [3], BeeGFS [4], GPFS [5]) with the sheer
amount of metadata and data requests. This load can also lead
to high throughput variability and performance loss for DL
jobs and other concurrent jobs accessing the PFS [4], [6]–[9].

To alleviate the small file performance bottleneck, i.e.,
reduce the number of metadata and data operations sub-
mitted to the PFS, DL frameworks (e.g., TensorFlow [10],
PyTorch [11], MXNet [12]) support optimized data formats,
such as TensorFlow’s TFRecords, MXNet’s RecordIO, and
HDF5 [13], that pack several small-sized files into a single,
larger one. Further, to boost the access to training data, these
frameworks implement different I/O optimizations, such as in-
memory caching, I/O prefetching, and parallel I/O [14]–[17].

Complementary to these optimizations, and since several
modern supercomputers include compute nodes equipped with
fast local storage mediums (e.g., SSD, NVMe) [18], [19],
storage tiering can be used to fully or partially cache datasets
locally, reducing the I/O pressure at the PFS and speeding

up DL training [20], [21]. However, this paper identifies four
challenges that are currently limiting the adoption of this
optimization at supercomputers.
Storage tiering is not available to all DL frameworks.
Most DL frameworks assume training datasets are stored in
a single storage backend. In such cases, the decision to move
the dataset from the PFS to the local storage mediums must
be done manually by users, which in turn, are often not aware
of these resources, or even how to use them.
The full dataset must fit at the faster tier. Some solutions
avoid manual user intervention but require training data to
fit entirely at the local storage medium, which is not the case
for large datasets [22], [23]. Alternatively, the local disks from
several compute nodes can be grouped to provide a caching tier
that supports large datasets [24]. However, under single-node
DL jobs, this approach requires allocating, and potentially
wasting, resources from several compute nodes.
Intrusiveness for developers and users. Existing storage tier-
ing solutions addressing the two previous challenges require
changing the original codebase of DL frameworks, thus limit-
ing their applicability [21]. These also require understanding
and using additional I/O libraries (e.g., custom-made, MPI)
for building DL training scripts, limiting user adoption [20].
DL-specific I/O patterns are unexplored. Storage tiering
systems, such as Hermes [20], are focused towards buffering
scientific write workloads at intermediary storage mediums
before reaching the PFS. However, DL training workloads
are read-oriented, and have specific I/O patterns that should
be considered when optimizing data placement over different
storage tiers [15], [21]. Namely, the full dataset must be
accessed for each training epoch, and each dataset file is
read once per epoch. Files may be requested in a randomized
order across epochs. Also, when using large file formats
(e.g., TFRecords), several I/O read requests are issued to read
different data samples packed into a single file.

To address the aforementioned challenges, we propose
MONARCH, a framework-agnostic storage tiering middleware
for single-node DL training at HPC centers. It enables DL
frameworks to transparently leverage local storage mediums of
compute nodes, even for datasets that may not fit entirely on
such resources. At its core, MONARCH mediates dataset read
requests between DL frameworks and HPC storage resources
(i.e., local storage and PFS), while providing a data placement
strategy that is fine-tuned for the I/O patterns of DL training
workloads. Namely, data placement is done as a background
task, to avoid adding extra latency at the critical I/O path



of DL frameworks. Further, it prefetches content from large
files, stored at the PFS, to faster storage mediums, which not
only promotes the use of faster storage resources, but also
avoids unnecessary accesses to the PFS. When combined,
these contributions i) accelerate DL training, ii) reduce I/O
variability, and iii) diminish I/O pressure at the PFS.

By decoupling storage tiering from other optimizations,
MONARCH can be combined with other mechanisms currently
supported by DL frameworks, such as optimized data formats,
I/O caching, prefetching and parallelism. This decoupled de-
sign enables porting MONARCH across different DL frame-
works, that rely on the POSIX interface to access the training
dataset (e.g., TensorFlow, PyTorch), without requiring any
changes at their codebase. Finally, it can be used transparently
by users without changing how DL training scripts are built.

We implemented a MONARCH prototype and applied it
over TensorFlow and PyTorch. The conducted experiments,
resorting to different models and dataset sizes, validate that
it can indeed solve the aforementioned challenges. Namely,
it decreases TensorFlow’s and PyTorch’s training time by
up to 28% and 37%, respectively, for I/O-intensive models
and datasets that do not fit entirely at the compute node’s
local storage. Furthermore, MONARCH is able to reduce I/O
variability, and decrease the number of operations submitted
to the PFS by up to 56%.

In summary, this paper provides the following contributions:
• An experimental study that analyzes and compares the

impact of running DL training jobs at the compute node’s
local storage medium and the PFS (§II).

• MONARCH, a transparent and portable storage tiering mid-
dleware for accelerating DL training workloads (§III).

• Implementation of the MONARCH prototype and its appli-
cability over TensorFlow and PyTorch frameworks (§III).
MONARCH is publicly available as an open-source project
at https://github.com/dsrhaslab/monarch.

• An experimental evaluation that showcases the impact of
MONARCH in terms of training performance, I/O variability,
and operations submitted to the PFS (§IV).

II. MOTIVATION

For DL models to provide accurate predictions, they must
be trained with large and varied datasets. During the training
phase, data samples are continuously read from a storage
backend, preprocessed in memory, typically by the CPU, and
then batched and transferred to the GPU to train the neural
network. This phase is divided into training epochs, and in
each of these, all dataset samples must be accessed.

HPC users typically store these datasets at the PFS, for
different reasons [21], [24]: i) users might not be aware of
local storage mediums available at compute nodes; ii) in
many cases, data must be manually copied from the PFS
to local storage; iii) large datasets may not fit entirely at
local storage resources. Therefore, storage tiering should be
done automatically and transparently for users to leverage the
performance benefits of HPC’s local storage resources.

0
4
8

12
16
20
24

Lustre

Local

CacheT
ra

in
in

g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0
5

10
15
20
25

Lustre

Local

Cache

0
18
36
54
72
90

Lustre

Local

Cache

Fig. 1: Average training time for the Lustre, Local, and Cache setups
under LeNet, AlexNet, and ResNet-50 training models. Each column
is stacked with the elapsed training time of each training epoch,
namely first ( ), second ( ), and third ( ).

A. DL training under different storage setups

We conducted an experimental evaluation comparing three
different DL training setups currently available to users.
Specifically, i) dataset samples are served from the PFS
(Lustre); ii) dataset samples are served from the compute
node’s local storage (Local); and iii) dataset samples are
served initially from the PFS (i.e., during the first training
epoch) but are then transparently cached and fully served from
the local disk for the remaining epochs (Cache).

Experimental testbed. Experiments were conducted on a
compute node of the Frontera supercomputer [18], which is
equipped with two 16-core Intel Xeon processors, four Nvidia
Quadro, 128 GiB of RAM, and a single 240 GiB SSD with an
accessible 119 GiB partition. Software-wise, it uses CentOS
7.8 with the Linux kernel v3.10 and the xfs file system. We
memory-limited the compute node to 68 GiB to simulate an
environment where the entire dataset would not fit in memory.

The production Lustre file system, available at the Frontera
supercomputer, was used as the PFS in these experiments.

Dataset, models, and DL framework. We used a trun-
cated version of the ImageNet-1k dataset [25] that includes
900K images (100 GiB), enabling the dataset to fit entirely
on the local device. To speedup training performance, we
converted the dataset into the TFRecord format, resulting in
1024 TFRecords. To ensure a comprehensive evaluation in
terms of workload heterogeneity, experiments included I/O-
bound models, namely LeNet [26] and AlexNet [27], and a
compute-bound model, namely ResNet-50 [28]. Due to its
popularity, we used the TensorFlow DL framework (v.2.3.2)
with I/O parallelism, prefetching and parallel preprocessing
optimizations enabled. For the Cache setup, we also enabled
TensorFlow’s caching mechanism [23].

Methodology. We measured the elapsed training time and
resource usage (i.e., average CPU, GPU, memory) of all ex-
periments. These were configured to run for 3 training epochs
with a 256 batch size, and simultaneously use all 4 GPUs
available in the compute node. Results of each experiment
concern the average and standard deviation of 7 runs.

Training time. Figure 1 depicts the overall training time, seg-
mented by epochs, under Lustre, Local, and Cache setups for
the LeNet, AlexNet, and ResNet-50 models. When compared
to Lustre, the Local setup reduces overall training time for I/O-
bound models. Under LeNet, execution time decreases from

https://github.com/dsrhaslab/monarch


18.9 to 9.8 minutes (48%), while for AlexNet, it decreases
from 18.9 to 15.1 minutes (20%).

At the Cache setup, data samples are cached at the local
SSD (i.e., copied from the PFS to the local file system) during
the first training epoch. Subsequent epochs fetch data from the
local medium, thus reducing the overall training time for the
LeNet and AlexNet models by 24% and 12% when compared
to Lustre. During the first epoch of these two models, training
time increases from 6.6 to 7.3 minutes, when compared to
Lustre. This is due to the extra data copying that must be done
between Lustre and the local file system. For the remainder
training epochs, the training time is similar to the one observed
in the Local setup.

For the RestNet-50, all setups perform similarly, ranging
from 64 and 67 minutes of execution time, as it imposes
less I/O demand [15]. Interestingly, the Lustre setup exhibits
the highest training time variability across identical runs of
each experiment. This is visible for the three models and
is due to the fact that the PFS is shared with other jobs
executing concurrently at the supercomputer, which can lead
to performance variability [4], [6]–[9].

Resource usage. For I/O-bound models, CPU and GPU usage
are directly related with the speed that data samples are fetched
from the corresponding storage backends. Therefore, for both
LeNet and AlexNet models, CPU usage increases from 30%
(Lustre) to 35% (Cache). The Local setup has the highest CPU
usage, namely 57% for LeNet and 43% for AlexNet.

Similarly, for the LeNet model, GPU usage increases from
22% (Lustre) to 28% (Cache) and to 39% (Local). GPU usage
for the AlexNet model increases from from 58% (Lustre) to
63% (Cache) and to 72% (Local).

As expected, the compute-bound ResNet model exhibits the
same CPU (10%) and GPU (90%) utilization for all the three
setups. Further, TensorFlow’s memory usage is approximately
10 GiB for all models and setups.

Summary. This evaluation shows that serving the training
dataset from local storage backends, which are closer to the
computation (i.e., Local and Cache), can i) significantly im-
prove DL training performance, particularly under I/O-bound
models; ii) improve the usage of the compute node’s CPU and
GPU resources; and iii) decrease training performance vari-
ability. However, the Local setup requires manual intervention
from users, while the Cache setup provides transparency but
it is limited to scenarios where the full training dataset can fit
into the available local storage resources.

III. MONARCH

MONARCH is a framework-agnostic tiering middleware that
leverages multiple storage backends at HPC infrastructures. Its
design is built under the following core principles.

Decoupling. To ensure applicability across different DL
frameworks (e.g., TensorFlow, PyTorch) and cross-compati-
bility with existing I/O optimizations (e.g., data shuffling,
prefetching, and parallelism) and storage backends (e.g., lo-
cal and remote file systems), MONARCH is decoupled from

DL framework
training file1

L2

L1

LN

L2

Storage driver
(e.g, local FS) 

Storage
quota

Storage driver
(e.g, PFS) 

Storage quota

Storage HierarchyMetadata Container
FD map

FPath map

logical fd physical fd

logical path physical path

Monarch

Local File SystemParallel File System

training file N...

Placement Handler 

thread poolplacement
policy

...
T2 TNT1

training file N-1

open read1 read2 close... ... ...
1

2

1 2
IV

I
II III

T1 read
T1 write

4

3

4 5

6

3

Fig. 2: MONARCH’s architecture and flow of requests.

the internal DL framework logic, being implemented as an
independent storage middleware.

Transparency. MONARCH does not change how users tradi-
tionally build training scripts and use DL frameworks. It can
be integrated with existing DL frameworks without requiring
any source code changes. This leads to a portable solution that
is easy to use at HPC centers.

Large datasets. When datasets are large and do not fit com-
pletely at local storage mediums, MONARCH automatically
chooses the data samples to keep at each storage tier.

Optimized for DL workloads. MONARCH is designed to
handle I/O patterns specific of DL training. We propose an
optimized data placement strategy for workloads that: i) read
the full dataset for each training epoch; ii) may read data
samples in random order; and, iii) may issue several small-
sized I/O requests to read the content of a given training file
(i.e., when using large file formats such as TFRecords).

Training performance and PFS I/O pressure. MONARCH
aims at accelerating the DL training phase, while reducing
the I/O operations submitted to the shared PFS. The former
is important to improve the quality of service (QoS) of DL
users, while the latter is key to improve the QoS of all users
resorting to the PFS, as it can be accessed simultaneously by
hundreds to thousands of different jobs.

A. Architecture

As depicted at Fig. 2, MONARCH sits between the DL
framework and a hierarchy of storage backends, and follows
a POSIX-compliant interface to store and fetch data from
both local file systems (mounted on the compute node’s local
storage) and the PFS (e.g., Lustre).

MONARCH intercepts file read operations submitted by the
DL framework and transparently serves the requested content
from the most appropriate storage tier. Our solution aims at
caching as many training data samples as possible (originally
stored at the shared PFS) at the compute node’s local device.
MONARCH is organized in three main components, namely the
storage hierarchy, placement handler, and metadata container.



Storage hierarchy. The storage hierarchy organizes and man-
ages the storage tiers (or levels) that will be used to read
and cache data samples for DL training. Tiers are organized
hierarchically, and their order can be configured by users and
system administrators. For instance, in the use cases evaluated
in this paper (§IV), tiers are organized in descending order in
terms of performance, i.e., the local file system is at level 1 and
the PFS is at level 2. These, however, could be organized with
other criteria, such as storage quota or energy consumption.

Each tier is represented by a storage driver, which abstracts
the I/O logic performed under a given storage backend. This
driver contains a set of properties that allow governing the
current state of that backend, including storage path (i.e., file
system directory where the training dataset will reside) and
available storage quota. This abstraction enables supporting
different storage tiers, promoting modularity and extensibility.

The last level (e.g., PFS) holds the full dataset and acts
as a read-only data source. Other levels are initialized at the
beginning of the training phase without any data samples,
being then populated in background by MONARCH.

Placement handler. The placement handler is responsible for
selecting and fetching dataset files to the correct storage tier.
We now describe its key features.

Placement policy. The selection of the tier where a given
file should be placed is addressed with the following policy.
Given a storage hierarchy of size N , the placement starts in
descending order, writing dataset files to the first level (i.e.,
level 1), until reaching its full capacity, moving then to the
remainder levels, until all levels are filled ([1, N − 1]).

In DL workloads, all dataset files are read at each training
epoch. Therefore, our placement policy does not perform
any file eviction at upper tiers when their storage quota is
reached. This decision allows reducing the number of I/O
operations served by the PFS tier. Since the dataset access
may follow a random distribution (to prevent overfitting [21]),
continuously promoting and evicting files (e.g., LRU, FIFO)
between storage tiers would increase resource usage and the
I/O pressure in the PFS file system, and would not bring
performance improvements to the DL training.

Data fetching and caching. For each intercepted operation,
MONARCH validates if it is destined to a file cached at the
upper levels of the storage hierarchy. For non-cached files,
the file’s content is read from the PFS tier and forwarded
to the DL framework. In background, the content of the file
is then written to the appropriate upper tier by following the
aforementioned placement policy. This asynchronous approach
avoids adding latency to the critical I/O path, and allows
DL training to start immediately and run simultaneously with
our placement algorithm. Further, MONARCH resorts to a
dedicated thread pool for this background processing, enabling
DL frameworks’ I/O requests to be served in parallel.

When the requested file is already cached at a faster
storage tier, MONARCH ensures that the requested content is
transparently served to the DL framework from such tier. No
additional data placement processing occurs for this case.

Prefetching for large files. When using large file formats
(e.g., TFRecords), the DL framework may submit read operati-
ons for obtaining a small portion (i.e., a subset of data samples)
of the file’s content. In this scenario, MONARCH replies to the
DL framework with the requested content, but in background,
it prefetches the full file from the PFS to the desired storage
level. Thus, when the file is available at the upper storage
tier, subsequent read operations to that file can be served from
this tier instead. Note that since the file’s content is served to
the DL framework in the same order as requested, MONARCH
does not alter how data is provided to the training workload
nor affects the model’s accuracy. This aspect, along with the
performance benefits of the previous optimizations, are further
validated and discussed in §IV.

Metadata container. Even though the dataset is physically
placed over different storage tiers, from the DL framework’s
perspective (logical), it is stored in a single storage backend
(e.g., PFS), preventing changes to the DL scripts specified by
users or to the framework’s codebase. However, to improve
training performance and reduce the PFS’s I/O pressure,
MONARCH aims to always serve requests from faster storage
tiers. Therefore, the metadata container is responsible for
keeping the logical and physical locations of each dataset file.
This information needs to be updated when an existing file is
cached at a given storage tier, other than the PFS, and to be
consulted when a file is being accessed by the DL framework.
Since MONARCH is targeted at frameworks that are using
POSIX-compliant backends, we require two different metadata
structures. The first maps logical file paths to physical ones,
which is important to redirect system calls, such as open and
close. The second maps logical file descriptors to physical
ones to redirect system calls, such as pread and mmap. Each
metadata entry sizes at 100B. While this entails additional
memory consumption, our experiments (§IV) demonstrate that
its impact is minimal and justified under I/O-bound workloads.

B. Operation Flow

We now describe MONARCH’s operation flow (Fig. 2).

Initialization. Before execution, the system designer specifies
the storage tiers that should be considered in a configuration
file. For example, MONARCH can be configured with two
storage tiers — level 1 respects to the compute node’s local
file system that is backed by a local SSD drive, while level
2 points to the dataset location at the shared PFS. When
the training phase starts, a MONARCH instance is initialized.
To initialize the metadata container, MONARCH traverses the
directory where the dataset resides (level 2) and collects the
location (file path) and size (file size) of each file.

I/O calls interception and handling. During the training
phase, MONARCH intercepts POSIX calls from the DL frame-
work, including open, pread, mmap, and close. Upon an
open ( 1 ), MONARCH verifies the metadata container for the
path where that file is stored. If the file is persisted at level
2, which is always the case for files being accessed for the
first time, then the request is forwarded to the corresponding



file path at the PFS. The resulting file descriptor (fd) is then
stored at the metadata container ( I ) and forwarded to the
DL framework. If the file is cached at level 1, which can
be consulted at the metadata container, the request is sent
to the file path at the local file system, and the resulting fd
is equally stored at the metadata container ( I ). Note that
the fd returned to the DL framework is always the logical
(original) one associated with the PFS, which is available at the
metadata container. Again, this decision makes the process of
data placement completely transparent to the DL framework.

After opening a file, the DL framework will submit one
or more requests (e.g., pread, mmap) to access the content
of that file ( 2 and 3 ). These are intercepted by MONARCH
and redirected to the corresponding storage tier. The mapping
between logical and physical fds is available at the metadata
container. The content read by MONARCH is then forwarded
to the DL framework.

Upon a close ( 4 ), MONARCH redirects it to the ap-
propriate storage tier, and forwards the reply back to the
framework. Moreover, the metadata entry mapping that logical
and physical fd is deleted at the metadata container ( II ).

Background data fetching and placement. The data place-
ment is triggered when the content of a given file, which is
not yet available at level 1, is requested (read) by the DL
framework from level 2. If there is enough free storage quota
at level 1 ( III ), the requested file’s content is then written
asynchronously to that level by a background thread. When
a small portion of a large file is being requested by the DL
framework, MONARCH’ background thread will prefetch the
full content of the file from level 2 to level 1 ( 5 and ( 6 )).

When the full content for the requested file is available at
level 1, the metadata container is updated regarding the new
physical file path for that file ( IV ), while the storage quota
for that tier is updated ( III ). Moreover, if the file is currently
being accessed by the DL framework (i.e., an open call was
submitted and the corresponding fd has not been closed yet),
the file now persisted at level 1 is opened by MONARCH,
and the logical fd to physical fd metadata mapping is updated
accordingly. This enables subsequent read operations from the
DL framework to that file to be served by level 1 (such as 3 ),
instead of level 2, thus further reducing the number of I/O
calls redirected to the PFS. This optimization is applicable for
scenarios where the DL framework submits multiple read
requests to a large file for fetching different data samples.

Updates at the metadata container structures are thread-safe
as both background (i.e., data placement) and foreground (i.e.,
DL framework requests) operations access these concurrently.

C. Implementation and Applicability

We have implemented a MONARCH prototype with 3K
lines of C++14 code. We used the C++ Thread Pool Library
(CTPL) (version 0.0.2) [29] for implementing the thread
pool of the placement handler module. The metadata con-
tainer lookup tables use both the Abseil (v20210324.2) [30]
and Intel Threading Building Blocks Concurrent HashMap

(v2021.2.0) [31] libraries. These structures provide a thread-
safe environment for concurrent operations, and are kept in
memory due to performance considerations. Such design does
not compromise the fault tolerance of our solution because,
if a DL job fails, the metadata container information can be
recovered from the data persisted at the PFS.

MONARCH uses LD_PRELOAD to transparently intercept
POSIX calls (destined towards the logical path) and route
them to the physical data path. Specifically, we replaced the
open, pread, mmap, and close POSIX calls, supported
by glibc, by ones that are serviced by MONARCH. We
found that supporting this set of calls is sufficient to at-
tend the requirements of the workloads presented in (§IV).
MONARCH is publicly available as an open-source project at
https://github.com/dsrhaslab/monarch.

IV. EVALUATION

Our evaluation seeks to answer the following questions:
• Is MONARCH applicable over different DL frameworks?
• Can MONARCH improve training performance of differ-

ent DL models and dataset sizes?
• Can MONARCH reduce the I/O pressure on the PFS?
• Does MONARCH impact DL training accuracy?

Experimental testbed. The experimental setup, models, and
methodology used in these experiments are the same as those
described in §II. Two different datasets based on the ImageNet-
1k were used: a small version, sizing at 100 GiB (§II), and a
large version, sizing at 200 GiB. The large version was used
to assess a scenario where the dataset cannot fit entirely in the
compute node’s local storage and memory. The dataset was
converted into TFRecords, resulting in 2048 training files.

MONARCH configuration. MONARCH was configured with
6 threads for the placement handler’s thread pool and two
storage levels for the storage hierarchy. Level 1 corresponds
to the compute node’s xfs file system, mounted on top of a
local SSD partition with 115 GiB. Level 2 corresponds to the
directory where the dataset is stored at Lustre.

DL frameworks configurations. To demonstrate the appli-
cability of MONARCH, it was evaluated under TensorFlow
(v2.3.2) and PyTorch (v1.6.0). TensorFlow was set with the
same configurations as in §II. PyTorch experiments were con-
ducted in conjunction with the DALI framework (v.1.5.0) [14].
DALI was configured with 16 threads for the LeNet and
AlexNet models, and 8 threads for the ResNet model (more
threads would cause internal memory allocation errors).

For the remainder of this section, we analyze MONARCH
regarding training performance, volume of data and metadata
operations submitted to the PFS (i.e., Lustre), and resource
usage for each combination of DL framework (TensorFlow
and PyTorch) and dataset size (100 GiB and 200 GiB).

A. TensorFlow 100 GiB

Training performance. Fig. 3 depicts the training perfor-
mance for all experimental scenarios. When compared to

https://github.com/dsrhaslab/monarch


0
5

10
15
20
25

T
ra

in
in

g
 t
im

e
 (

m
in

)
TensorFlow-100 TensorFlow-200 PyTorch-100 PyTorch-200

L
e
N

e
t

A
le

x
N

e
t

R
e

s
N

e
t5

0

0
5

10
15
20
25

0
18
36
54
72
90

Lustre

Local

Cache

M
onarch

0
16
32
48
64

0
18
36
54
72
90

0
60

120
180
240

Lustre

M
onarch

0
20
40
60
80

100

0
20
40
60
80

100

0
22
44
66
88

Lustre

Local

M
onarch

0
45
90

135
180

0
45
90

135
180

0
65

130
195
260

Lustre

M
onarch

Fig. 3: Average training time of Lustre, Local, Cache, and
MONARCH setups in TensorFlow and PyTorch, under different train-
ing models (LeNet, AlexNet, ResNet-50) and dataset sizes (100 GiB
and 200 GiB). Each column is stacked with the elapsed time of each
training epoch, namely first ( ), second ( ), and third ( ).

Lustre, MONARCH significantly improves the overall training
performance for I/O-bound models, decreasing training time
by 38% (7.1 min) for LeNet and 26% (4.9 min) for AlexNet.
For ResNet-50, all setups perform similarly.

For the first training epoch (steps [0, 3500]), under I/O-
bound models, MONARCH achieves better performance than
Lustre and Cache. This is due to MONARCH’s large file
prefetching mechanism (§III-A, placement handler). Specifi-
cally, when a read call is submitted to a given TFRecord,
MONARCH fetches the whole file from the PFS. Under this
scenario, both reads (from the DL framework) and writes
(submitted to the local storage tier by MONARCH) are buffered
at the compute node’s page cache. As depicted in Fig. 4a,
this optimization has particular impact in the first half of the
first epoch, where MONARCH experiences significantly higher
throughput than the aforementioned setups. However, for the
second half, as the page cache fills, MONARCH’s throughput
degrades while matching the performance of Lustre and Cache
setups. Because the ingestion rate of the DL framework is
higher than the flushing rate of dirty pages to local storage,
reads start being submitted to the PFS, as the requested files
are not yet available at local storage (as described in §III-A).
Under the LeNet model, this behavior is also manifested at
the beginning of the second training epoch, since there is
accumulated backlog (i.e., dirty pages) from the first epoch
still being written to the local disk and competing with read
requests being done over the same storage medium.

For the second (]3500, 7000]) and third (]7000, 10500])
training epochs, when the full dataset is persisted at the
local tier, MONARCH experiences similar performance as
of the Cache and Local setups. When compared to Lustre,
MONARCH reduces training time by up to 46% (5.7 min) and
29% (3.6 min) for LeNet and AlexNet, respectively.

PFS operations. As depicted in Fig. 5a, due to the storage
tiering and large file prefetching mechanisms, MONARCH
significantly reduces the number of read calls directed to the
PFS. The Lustre setup submits approximately 360, 000 read
calls per epoch, while Cache only submits these during the

first epoch, since the dataset will then be served from the
local storage tier.

In MONARCH, under I/O-bound models, the number of
operations submitted to the PFS can be analyzed in three
phases, similarly to the training performance. At a first phase,
due to the large file prefetching mechanism, read calls are
large, fetching the whole file from the PFS, and forthcoming
reads are mainly served from the compute node’s page cache.
Then, when the page cache fills, MONARCH submits small-
sized read calls to PFS, while simultaneously storing the
dataset in local storage. Finally, when the full dataset is
available from the local tier, no more read calls are submitted
to the PFS. These PFS operations are related to the network
traffic generated with the DL training job. For the ResNet-50
model, since it is compute-bound, MONARCH’s prefetching
mechanism is able to fetch all data samples timely, only
submitting as many read calls as the number of existing
TFRecords (1024).

A decrease is also noticeable for metadata operations,
namely open and close. As depicted in Fig. 5b, for
MONARCH and Cache setups, all operations are concentrated
in the first training epoch, performing a single open and
close call for each training file. Lustre, on the other hand,
repeats this behavior at each training epoch. Additionally, to
obtain the necessary information to populate the metadata
container (e.g., file size), MONARCH performs 1024 additional
getattr operations (i.e., one getattr call per file).

Resource usage. Because MONARCH can service training
samples faster to the DL framework, it demonstrates the
second highest CPU and GPU utilization (being surpassed
by Local). Specifically, it achieves a CPU and GPU usage of
approximately 45% and 33% for LeNet model, 40% and 73%
for the AlexNet, and 10% and 92% for ResNet. Regarding
memory consumption, MONARCH performs identically has
remainder setups (i.e., 10 GiB).

B. TensorFlow 200 GiB

For the 200 GiB dataset, only MONARCH and Lustre setups
were considered, since both Cache and Local require the full
dataset to fit in the local storage tier.

Training performance. As depicted in Fig. 3, MONARCH im-
proves training performance under I/O-bound models, decreas-
ing training time by 28% (13 min) for LeNet and 21% (12.5
min) for AlexNet, when compared to Lustre. During the first
training epoch ([0, 11500]), as depicted in Fig. 4b, MONARCH
experiences a throughput degradation due to the page cache
filling up and the local storage tier achieving its quota. For
the remainder epochs, MONARCH serves the DL framework
read calls from both local and remote storage tiers. For the
ResNet-50 model, MONARCH and Lustre perform similarly.

PFS operations. As depicted in Fig. 5c, the Lustre setup
submits approximately 2.4 million read requests to the PFS
across all training epochs. MONARCH is able to significantly
reduce this value since a large portion of the dataset is stored
in the local storage tier (115 GiB). Specifically, MONARCH



0
1500
3000
4500
6000

T
h

ro
u

g
h

p
u

t 
(s

a
m

p
le

s/
s)

Step

Lustre Local Cache Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet50
0

200
400
600
800

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(a) TensorFlow 100 GiB.

0
1500
3000
4500
6000

T
h

ro
u

g
h

p
u

t 
(s

a
m

p
le

s/
s)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet50
0

200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

(b) TensorFlow 200 GiB.

Fig. 4: TensorFlow training performance. Throughput, in samples per second, of Lustre, Local, Cache, and MONARCH setups under LeNet,
AlexNet, and ResNet-50 models, for 100 GiB (a.) and 200 GiB (b.) sized datasets.

-0.25

0.25

0.75

1.25

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

6
)

Step

Lustre Cache Monarch

LeNet

AlexNet

ResNet50

-0.25

0.25

0.75

1.25

LeNet

AlexNet

ResNet50

-0.25

0.25

0.75

1.25

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(a) Read calls, 100GiB.

0
1.5

3
4.5

6

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step

Lustre Cache Monarch

LeNet

AlexNet

ResNet50

0
1.5

3
4.5

6

LeNet

AlexNet

ResNet50

0
1.5

3
4.5

6

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(b) Metadata calls, 100GiB.

0
0.5

1
1.5

2
2.5

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

6
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
0.5

1
1.5

2
2.5

LeNet

AlexNet

ResNet50

0
0.5

1
1.5

2
2.5

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

(c) Read calls, 200GiB.

0
3
6
9

12

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

(d) Metadata calls, 200GiB.

Fig. 5: TensorFlow PFS operations. Accumulated read (a. and c.) and metadata (b. and d.) operations submitted to the PFS for the Lustre,
Cache, and MONARCH setups under LeNet, AlexNet, and ResNet-50 models, for 100 GiB (a. and b.) and 200 GiB (c. and d.) sized datasets.

reduces PFS read operations by 50% for LeNet and 56% for
both AlexNet and ResNet-50. After the first training epoch,
contrary to the 100 GiB dataset experiments, MONARCH
continues submitting operations to the PFS to access the data
samples that could not fit in the local storage tier. Metadata
operations manifest the same behavior, as depicted in Fig. 5d.

Resource usage. MONARCH is able to increase CPU and
GPU efficiency when compared to Lustre. In more detail,
CPU usage increases from 36% and 31% (Lustre) to 48% and
37% (MONARCH) for LeNet and AlexNet, respectively. GPU
usage increases from 30% and 63% (Lustre) to 40% and 76%
(MONARCH). For ResNet-50, both setups exhibit similar CPU
(9%) and GPU (90%) usage. Regarding memory consumption,
both setups perform similarly (i.e., 10 GiB).

C. PyTorch 100 GiB

Unlike TensorFlow, PyTorch does not include a persistent
caching optimization. Thus, experiments were conducted over
Lustre, Local, and MONARCH setups.

Training performance. As depicted in Fig. 3, PyTorch ex-
hibits higher training times than TensorFlow for all three
models, specially for the Lustre setup and I/O-bound models.

The Local setup trains LeNet, AlexNet and ResNet-50 in
17.5, 16.1 and 69.9 minutes, respectively. MONARCH, when
compared to Local, exhibits similar training execution times.
When compared to Lustre, MONARCH significantly improves
overall training performance for I/O-bound models, decreasing
training time by 74% (57.3 min) for LeNet and 77% (59.5 min)
for AlexNet. For ResNet-50, MONARCH reduces training time
from 84 to 72.4 minutes (14% reduction). Interestingly, when

using PyTorch, the ResNet-50 model also becomes I/O-bound,
thus explaining the performance improvement of MONARCH.

Local achieves sustained latency throughout the overall
execution and across all training models, never exceeding 0.2
seconds. To ease illustration, Local results were not included
in Fig. 6a. For the first training epoch (steps [0, 3510]), when
compared to Lustre, MONARCH is able to reduce training time
by 68% (18 min), 71% (18.7 min), and 6% (1.8 min) for
LeNet, AlexNet, and ResNet-50, respectively. Similarly to the
results observed in §IV-A, this is due to MONARCH’s large
file prefetching mechanism. Again, during the second half of
the first epoch, the compute node’s page cache fills (with dirty
pages) and read calls start being submitted to the PFS, as the
requested files are not yet available at the local storage tier,
leading MONARCH to experience latency spikes.

For the second (]3510, 7020]) and third (]7020, 10530])
epochs, since the full dataset is available at the local tier,
MONARCH ensures sustained latency, improving training times
by 77% (39.3 min), 80% (40.9 min) and 17% (9.7 min) for
LeNet, AlexNet and ResNet-50, respectively.

PFS operations. PyTorch uses the mmap system call to map
whole training files to memory. Contrary to TensorFlow, which
performs multiple explicit read calls per file, PyTorch’s I/O is
performed implicitly when it attempts to access the in-memory
data (as a result of mmap) and a page fault occurs, resulting
in the data samples being copied on demand. As depicted
in Figs. 7a and 7b, MONARCH’s prefetching mechanism
significantly reduces the calls directed to the PFS. In detail,
Lustre submits a total of 3,461 mmap and 9,234 (open and
close) metadata calls, while MONARCH only submits 1,152
and 4,618, respectively. Since the mmap system call performs



0
0.2
0.4
0.6
0.8

1
La

te
nc

y 
(s

)

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0

0.2
0.4
0.6
0.8

1

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

0 2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(a) PyTorch 100GiB.

0
0.2
0.4
0.6
0.8

1

La
te

nc
y 

(s
)

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0

0.2
0.4
0.6
0.8

1

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

0 5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

(b) PyTorch 200GiB.

Fig. 6: PyTorch training performance. Latency, in seconds, of Lustre and MONARCH setups under LeNet, AlexNet, and ResNet-50 models,
for 100 GiB (a.) and 200 GiB (b.) sized datasets.

0
1
2
3
4
5

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1
2
3
4
5

LeNet

AlexNet

ResNet50

0
1
2
3
4
5

200 400 600 800 1000

LeNet

AlexNet

ResNet50

(a) Mmap calls, 100GiB.

0
2.5

5
7.5
10

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
2.5

5
7.5
10

LeNet

AlexNet

ResNet50

0
2.5

5
7.5
10

200 400 600 800 1000

LeNet

AlexNet

ResNet50

(b) Metadata calls, 100GiB.

0
2
4
6
8

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
2
4
6
8

LeNet

AlexNet

ResNet50

0
2
4
6
8

500 1000 1500 2000 2500 3000 3500

LeNet

AlexNet

ResNet50

(c) Mmap calls, 200GiB.

0
5

10
15
20

A
c
c
u

m
u

la
te

d
 O

p
s
 (

x1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
5

10
15
20

LeNet

AlexNet

ResNet50

0
5

10
15
20

500 1000 1500 2000 2500 3000 3500

LeNet

AlexNet

ResNet50

(d) Metadata calls, 200GiB.

Fig. 7: PyTorch PFS operations. Accumulated mmap (a. and c.) and metadata (b. and d.) operations submitted to the PFS for Lustre and
MONARCH setups under LeNet, AlexNet, and ResNet-50 models, for 100 GiB (a. and b.) and 200 GiB (c. and d.) sized datasets.

implicit I/O we have not traced the amount of bytes read.
Moreover, MONARCH operations to the PFS are all done in
the first training epoch, since after that, all requests are served
from the local storage tier.

Resource usage. MONARCH shows the second highest CPU
and GPU usage, as expected. For the LeNet and AlexNet
models, CPU ranges from 5% (Lustre), to 22% (MONARCH)
and to 26% (Local) while, for ResNet-50, it increases from
7% (Lustre) to 9% (MONARCH) and to 10% (Local). For
LeNet, GPU utilization ranges from 14% (Lustre), to 50%
(MONARCH), and to 58% (Local) while, for AlexNet, it
increases from 9% (Lustre), to 35% (MONARCH), and to 41%
(Local). For ResNet-50, it ranges from 75% (Lustre), to 85%
(MONARCH), and to 88% (Local). All setups exhibit similar
memory consumption, using 10 GiB for LeNet and AlexNet,
and 8 GiB for ResNet-50.

D. PyTorch 200 GiB

As in IV-B, for the 200 GiB dataset, only Lustre and
MONARCH setups were considered.

Training time. As depicted in Fig. 3, MONARCH significantly
improves training performance under I/O-bound models, de-
creasing training time by 35% (58 min) and 37% (61.2
min) under LeNet and AlexNet, respectively. For ResNet-50,
training time is reduced by 5% (12 min).

Looking at the performance over time (Fig. 6b),
MONARCH’s latency degrades at the second half of each
training epoch. The reason behind this is twofold. First,
MONARCH caches approximately half of the training dataset
(56%, which corresponds to the storage quota at the compute
node’s disk) in the local storage tier, serving DL requests

from local resources rather than the PFS. Second, when
combining PyTorch and DALI, TFRecords are read from
storage sequentially and the shuffling process is made in-
memory. This leads to a deterministic storage I/O pattern
across training epochs (i.e., the first half of the dataset is
served from the local storage tier, while the remainder is read
from the PFS). Given this sequential access pattern, to further
optimize training performance, MONARCH could evict and
prefetch samples based on the deterministic order that these
are requested. However, as discussed in §III-A, this would
increase the I/O pressure at the PFS, since with an eviction
policy, MONARCH would always submit operations to the PFS
regardless of the training epoch.

PFS operations. Similarly to IV-B, the number of operations
submitted by MONARCH to the PFS is directly related with the
portion of the dataset stored at the local storage tier (i.e., 56%).
As depicted in Fig. 7c, during the first training epoch, both
Lustre and MONARCH perform 1,890 mmap calls. However,
for the remainder epochs, while Lustre’s mmap calls increase
linearly, MONARCH submits 2,322, representing a 50% reduc-
tion. For the second and third epochs (Fig. 7d), MONARCH
reduces the number of combined open and close metadata
calls from 9,274 (Lustre) to 4,640.

Resource usage. MONARCH increases CPU and GPU effi-
ciency when compared with Lustre. For LeNet and AlexNet,
CPU increases from 6% (Lustre) to 10% (MONARCH). For
ResNet-50, CPU usage is 7% for both setups.

For LeNet, GPU utilization goes from 20% (Lustre) to 31%
(MONARCH). For AlexNet, it increases from 13% (Lustre)
to 21% (MONARCH). For ResNet-50, it ranges from 83%



0

15

30

45

60

0 10 20 30 40 50To
p-

k 
Ac

cu
ra

cy

Epochs Epochs

Top-1
Top-5

Lustre Monarch

0

20

40

60

80

0 16 32 48 64 80

Lustre Monarch

Fig. 8: Top-1 and top-5 accuracy results for PyTorch with Lustre
and MONARCH setups the AlexNet model and 200 GiB dataset, over
a 48 hours period.

(Lustre) to 87% (MONARCH). Memory consumption results
and conclusions are identical to those presented in §IV-C.

E. Long run and accuracy analysis

MONARCH’s training performance and accuracy were as-
sessed for a 48 hours long training workload (time limit for
regular user jobs at the Frontera supercomputer). The AlexNet
model was chosen, along with the PyTorch deployment and
the 200 GiB ImageNet-1k dataset used in §IV-D. Next, we
compare the results for the Lustre and MONARCH setups.

As depicted in Fig. 8, in 48 hours, Lustre completes 48
training epochs and reaches Top-1 and Top-5 accuracies of
37% and 61%, respectively. MONARCH, on the other hand,
completes the same set of epochs in 28 hours (a reduction of
20 hours), while achieving similar Top-1 and Top-5 accuracies,
namely 38% and 63%.

For the full workload (i.e., 48 hours), MONARCH com-
pletes 81 epochs and achieves Top-1 and Top-5 accuracies
of 51% and 75%. This shows that, for the same time frame,
MONARCH can increase the number of epochs and, conse-
quently, the accuracy of trained models.

While this experiment is based on the PyTorch deployment
and AlexNet model, for other combinations of frameworks
and models (e.g., TensorFlow, LeNet), one would also expe-
rience performance improvements proportional to the results
discussed in previous sections.

F. Summary

Besides showcasing MONARCH’s applicability to different
frameworks, models and dataset sizes, the previous experi-
ments validate three key aspects: i) MONARCH is able to
reduce TensorFlow’s and PyTorch’s training time by up to
28% and 37% for I/O-bound models; ii) for both compute
and I/O-intensive models, MONARCH reduces the number of
data and metadata operations submitted to the PFS by up
to 56%. This is key to ensure stable storage performance
for DL workloads and other jobs using the PFS; and, iii)
MONARCH does not impact the accuracy of DL workloads; in
fact, it enables running more training epochs, and consequently
achieving better accuracy values, for limited time frames.

V. RELATED WORK

The DL storage bottleneck is currently a relevant and open
research issue that has inspired different I/O optimizations.

Data loading and preprocessing. Some proposals improve
DL data loading and preprocessing efficiency by resorting
to different caching and prefetching algorithms. DALI [14]

supports direct I/O prefetching from storage to GPUs. Pumma
et al. [16] optimize Caffe’s LMDB I/O subsystem to improve
the mapping and caching of training data from storage to
memory. CoorDL [17] provides insights on storage I/O data
stalls and mitigates them by providing a new in-memory
caching policy. PRISMA [15] proposes a Software-Defined
Storage data plane that performs data prefetching to memory.

While our solution leverages ideas from these works (e.g.,
caching, applicability to different frameworks), it is focused
on using the available storage resources at the supercomputer
to accelerate DL training performance and reduce the I/O
pressure on the shared PFS. Therefore, these are orthogonal
to our work and can even be used in conjunction with it.

Data substitution and staging. Other solutions employ data
substitution techniques [32]–[34] where training samples being
served to DL frameworks are replaced by others (e.g., cached
samples) that are faster to access. These techniques are useful
for scenarios where several jobs are training models from
the same dataset (i.e., shared dataset). Differently, MONARCH
optimizations are designed for single-node training scenarios
where, to improve accuracy, each file of the dataset must be
read once per epoch. In this scenario, if the cache size is
relatively small when compared to the full dataset, data sub-
stitution techniques either require accessing the PFS multiple
times or may lead to fetching the same files repeatedly at each
training epoch, thus potentially impacting training accuracy.

Serizawa and Tatebe [22] use the local disks of compute
nodes to fully cache datasets to be trained with the Chainer
framework. Fanstore [24] aggregates the local storage of
several compute nodes to enable data sharing in distributed
training environments. Finally, Diesel [35] resorts to local
storage mediums and an external distributed key-value store to
cache data and metadata information. MONARCH is designed
for single-node training and provides a simpler solution that
avoids allocating additional resources and orchestrating com-
plex data and metadata staging areas, while not assuming that
the dataset fits entirely on faster storage tiers.

Storage tiering. NoPFS [21] uses a performance model to
proactively fetch training samples, to different storage tiers,
before these are requested by the DL framework. However,
NoPFS is intrusive to both developers and users, as it requires
changing the original source code of DL frameworks and
the way training scripts are specified. Contrarily, MONARCH
focuses on providing storage tiering, outsourcing the proactive
data fetching to built-in mechanisms already present in DL
frameworks, or provided by external solutions such as DALI.
This enables MONARCH to be non-intrusive for DL frame-
works, and avoids changing the way users build DL scripts.

Hermes [20] provides a storage tiering solution for buffering
scientific write workloads at intermediary storage mediums
before reaching the PFS. In contrast, MONARCH is targeted
towards read-oriented DL training workloads. As discussed in
the paper, these have specific I/O patterns (e.g., full dataset is
read for each training epoch, random I/O accesses) that change
the way data samples must be placed across storage tiers.



VI. CONCLUSION

This paper presents MONARCH, a storage tiering mid-
dleware for accelerating DL training and reducing the I/O
pressure and variability imposed in the shared PFS. To achieve
this, and promote a wider adoption of storage tiering at HPC
infrastructures, MONARCH builds upon four main principles: i)
it leverages faster local storage mediums, available at compute
nodes, to fully or partially cache the training data samples; ii)
it does so automatically and without changing the way users
build their DL training scripts; iii) it is portable across different
frameworks without requiring source code modifications; and
iv) it provides data placement mechanisms that are optimized
for the I/O patterns present at DL training workloads.

To validate the applicability and performance of MONARCH,
we developed a prototype and applied it over TensorFlow
and PyTorch frameworks. Results show that TensorFlow’s and
PyTorch’s training time can be reduced by up to 28% and
37% for I/O-intensive models, even for large datasets, that can
only be partially cached at local storage mediums. Further,
MONARCH is able to reduce the number of I/O operations
submitted to the PFS by up to 56%.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments and feedback. We thank TACC for providing
access to computational resources of Frontera. We thank
Cláudia Brito and Cláudia Correia for their valuable input
in initial versions of this work. This work was supported
by the Portuguese Foundation for Science and Technol-
ogy and the European Regional Development Fund, through
the PhD Fellowship SFRH/BD/146059/2019 and projects
BigHPC (POCI-01-0247-FEDER-045924) and PAStor (UTA-
EXPL/CA/0075/2019).

REFERENCES

[1] “Open Images Dataset,” 2017. [Online]. Available: https://github.com/
cvdfoundation/open-images-dataset

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[3] P. Schwan, “Lustre: Building a File System for 1000-node Clusters,” in
Proceedings of the Linux Symposium, 2003.

[4] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance Evalu-
ation of BeeGFS for Deep Learning,” in International Conference on
Parallel Processing, 2019.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in USENIX Conference on File and Storage
Technologies, 2002.

[6] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Performance
of Petascale Storage Systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010.

[7] J. Han, L. Xu, M. M. Rafique, A. R. Butt, and S.-H. Lim, “A Quantitative
Study of Deep Learning Training on Heterogeneous Supercomputers,”
in IEEE International Conference on Cluster Computing, 2019.

[8] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in International Parallel and Distributed Processing Symposium, 2016.

[9] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A Year in the Life of a Parallel File System,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2018.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in USENIX Symposium on Operating
Systems Design and Implementation, 2016.

[11] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in
PyTorch,” 2017.

[12] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” 2015.

[13] T. H. Group, “Hierarchical data format version 5,” 2000-2021. [Online].
Available: https://www.hdfgroup.org/solutions/hdf5/

[14] “NVIDIA DALI.” [Online]. Available: https://developer.nvidia.com/dali
[15] R. Macedo, C. Correia, M. Dantas, C. Brito, W. Xu, Y. Tanimura,

J. Haga, and J. Paulo, “The Case for Storage Optimization Decoupling
in Deep Learning Frameworks,” in IEEE International Conference on
Cluster Computing, 2021.

[16] S. Pumma, M. Si, W.-C. Feng, and P. Balaji, “Scalable Deep Learning
via I/O Analysis and Optimization,” ACM Transactions on Parallel
Computing, vol. 1, no. 1, 2019.

[17] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Ana-
lyzing and Mitigating Data Stalls in DNN Training,” Proceedings of the
VLDB Endowment, vol. 14, no. 5, 2021.

[18] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and
D. K. Panda, “Frontera: The Evolution of Leadership Computing at the
National Science Foundation,” in Practice and Experience in Advanced
Research Computing, 2020.

[19] “AI Bridging Cloud Infrastructure.” [Online]. Available: https://abci.ai
[20] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A Heterogeneous-

Aware Multi-Tiered Distributed I/O Buffering System,” in Symposium
on High-Performance Parallel and Distributed Computing, 2018.

[21] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler, “Clairvoyant
Prefetching for Distributed Machine Learning I/O,” in International
Conference for High Performance Computing, Networking, Storage, and
Analysis, 2021.

[22] K. Serizawa and O. Tatebe, “Accelerating Machine Learning I/O by
Overlapping Data Staging and Mini-Batch Generations,” in IEEE/ACM
International Conference on Big Data Computing, Applications and
Technologies, 2019.

[23] “TensorFlow API: tf.data.Dataset.cache.” [Online]. Available: https:
//www.tensorflow.org/api docs/python/tf/data/Dataset#cache

[24] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “FanStore: Enabling Efficient and Scalable
I/O for Distributed Deep Learning,” 2018.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet Large
Scale Visual Recognition Challenge,” International Journal of Computer
Vision, vol. 115, no. 3, 2015.

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, 1998.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, 2012.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[29] “CTPL.” [Online]. Available: https://github.com/vit-vit/CTPL
[30] “Abseil.” [Online]. Available: https://abseil.io/
[31] “OneTBB.” [Online]. Available: https://github.com/oneapi-src/oneTBB
[32] D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl, “Faster neural network

training with data echoing,” 2020.
[33] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu,

“Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC
Systems,” in IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2018.

[34] A. V. Kumar and M. Sivathanu, “Quiver: An Informed Storage Cache
for Deep Learning,” in USENIX Conference on File and Storage
Technologies, 2020.

[35] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and Q. Luo,
“DIESEL: A Dataset-Based Distributed Storage and Caching System
for Large-Scale Deep Learning Training,” in International Conference
on Parallel Processing, 2020.

https://github.com/cvdfoundation/open-images-dataset
https://github.com/cvdfoundation/open-images-dataset
https://www.hdfgroup.org/solutions/hdf5/
https://developer.nvidia.com/dali
https://abci.ai
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#cache
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#cache
https://github.com/vit-vit/CTPL
https://abseil.io/
https://github.com/oneapi-src/oneTBB

	Introduction
	Motivation
	DL training under different storage setups

	Monarch
	Architecture
	Operation Flow
	Implementation and Applicability

	Evaluation
	TensorFlow 100 GiB
	TensorFlow 200 GiB
	PyTorch 100 GiB
	PyTorch 200 GiB
	Long run and accuracy analysis
	Summary

	Related Work
	Conclusion
	References

