
EGEON: Software-Defined Data Protection for
Object Storage

Raul Saiz-Laudo, Marc Sánchez-Artigas
Computer Science and Maths, Universitat Rovira i Virgili

Tarragona, Catalonia, Spain

Abstract—With the growth in popularity of cloud computing,
object storage systems (e.g., Amazon S3, OpenStack Swift, Ceph)
have gained momentum for their relatively low per-GB costs and
high availability. However, as increasingly more sensitive data is
being accrued, the need to natively integrate privacy controls into
the storage is growing in relevance. Today, due to the poor object
storage interface, privacy controls are enforced by data curators
with full access to data in the clear. This motivates the need for a
new approach to data privacy that can provide strong assurance
and control to data owners. To fulfill this need, this paper presents
EGEON, a novel software-defined data protection framework for
object storage. EGEON enables users to declaratively set privacy
policies on how their data can be shared. In the privacy policies,
the users can build complex data protection services through the
composition of data transformations, which are invoked inline by
EGEON upon a read request. As a result, data owners can trivially
display multiple views from the same data piece, and modify these
views by only updating the policies. And all without restructuring
the internals of the underlying object storage system. The EGEON
prototype has been built atop OpenStack Swift. Evaluation results
shows promise in developing data protection services with little
overhead directly into the object store. Further, depending on the
amount of data filtered out in the transformed views, end-to-end
latency can be low due to the savings in network communication.

Index Terms—object storage, software-defined, serverless, data
privacy

I. INTRODUCTION

With the rapid growth in popularity of Cloud services, object
storage systems (e.g., Amazon S3, IBM COS or OpenStack
Swift [1]) have gained momentum. These storage systems offer
consolidated storage at scale, with high degrees of availability
and bandwidth at low cost. Proof of that is the recent trend of
serverless computing. Due to the high difficulty of function-to-
function communication1, many serverless systems use object
storage for passing data between functions [2]–[6], which has
revived the interest in this type of object storage.

Although very useful for cloud applications, object storage
systems offer a small number of options to keep sensitive data
safe. Few (or no) efforts have been realized on security issues
such as data confidentiality, data integrity, or access control,
to mention a few. For instance, online storage services such as
Amazon S3, or IBM COS, only provide server-side encryption
for protecting objects at rest [7], [8]. Similar words can be said
for the access control of individual objects2, which is currently
either realized via simple object ACLs (Access Control Lists)
as in S3 [7], or not possible at all as in OpenStack Swift [9].

This poor interface is insufficient for many applications. For
instance, it does not enable in-place queries on encrypted data,

1Some works have shown that cloud functions can communicate directly
using NAT (Network Address Translation) traversal techniques. However,
direct communication between functions is not supported by cloud providers.

2In general terms, cloud object stores enforce access at the container level
rather than at the object level.

transparent and secure data sharing, and access control based
on the content of an object. But also, it is very difficult to
make it evolve to meet the changing needs of applications
and withstand the test of time. In practice, most of these
object storage systems leave no other choice to modifying the
system internals to incorporate new security mechanisms at the
object level. This requires a deep knowledge of the system,
extreme care when modifying critical software that took years
of code-hardening to trust, and significant cost and time (see,
for instance, [10], where it is described the “daunting” task of
deploying new erasure coding solutions in object stores such
as OpenStack Swift [1] and Ceph [11]).

Rather than relying on object storage systems to change, we
advocate in this paper to “work around” the traditionally rigid
object storage APIs by embracing a software-defined approach.
Similarly to software-defined networking (SDN), we argue that
the separation of the “control logic” from the “data protection
logic” can give the needed flexibility and ease of use to enable
users, programmers and sysadmins to custom-fit access control
and object protection. To give an example, pretend that upon
certain conditions, parts of an encrypted object need to be re-
encrypted to share it with the mobile users of the application.
Further, these conditions may depend on the contents of the
object itself (e.g., on sensitive data such as sexual orientation),
which must always remain confidential from the server. Simply
put, what we pursue is to offer users the ability to succinctly
express this behavior at the object storage level, and enforce it
by calling the corresponding re-encryption modules.

Nevertheless, a software-defined solution to enhance object
storage data protection requires solving several issues at two
levels:

• At the control plane, by enabling the composition of per-
object protection services. These compositions should be
expressed concisely and in a manner agnostic to the data
protection code and the remaining storage stack.

• At the data plane, by making it truly programmable. To
put it baldly, the data plane should not only allow to plug-
in new protection logic in the critical I/O path, but to run
it safely. In addition, it should enable the re-usability of
the protection capabilities, so that users can compose new
data protection controls.

In this research work, we present EGEON, a novel software-
defined data protection framework for object storage. EGEON
exports a scripting API to define privacy policies for protecting
objects. These policies enable data owners to declaratively set
complex data protection services through the composition of
user-defined transformations run in a serverless fashion. These
functions represent the elementary processing units in EGEON,
and may be re-used and linked together to implement complex
privacy policies. The major feature of these transformations is

ar
X

iv
:2

20
6.

13
16

2v
1 

 [
cs

.D
C

] 
 2

7 
Ju

n 
20

22



that they are executed “inline” by EGEON upon a standard Get
request. In this way, users can trivially display multiple views
from the same object, and modify these views by updating the
policies. If some functionality to implement a view is missing,
EGEON provides a simple API to deploy new transformations
and customize the access to data objects.

In this sense, one of the primary contributions of EGEON is
the ability to provide privacy-compliant transformed views of
the underlying data on the fly. Perception of privacy can vary
broadly across applications. As an example, a dataset created
by a hospital may include personally identifiable information
(PII) that is not needed when it is processed by a data analytics
engine. Nonetheless, if the same dataset is accessed by medical
personnel, a richer view of it should be given. Thus, a practical
system needs to support a range of privacy preferences.

By adopting a software-defined storage architecture, EGEON
allows users to express their privacy preferences as policies in
the control plane and produce views conforming to the policies
by running transformations in the data plane. In this work, we
focus on (cryptographic) transformations that process data as
streams, that is, as data is being retrieved from object storage
nodes. Consequently, the first bytes of transformed views are
received as soon as possible, which permits EGEON to scale to
arbitrary object sizes without important penalty on end-to-end
latency.

The EGEON prototype we present in this research has been
implemented atop OpenStack Swift [1]. We took Swift because
it is open source and a production quality system. Its sizable
developer community ensures that our new properties are built
on code that is robust and that will be soon evaluated. It must
be noticed that the design concepts underpinning EGEON are
generic and could be easily ported to other storage substrates.
For example, object classes allow to extend Ceph by loading
custom code into Object Storage Daemons (OSDs), which can
be run from within a librados application [12]. Thus, with
some effort, it would be possible to leverage object classes to
implement transformed views of data.

Our performance evaluation of EGEON shows promise in
developing data protection services with low overhead directly
into the object storage. For instance, the overhead of a NOOP
policy, where a storage function simpy echoes the input data,
is of around 9 ms. Also, depending on the amount of protected
data filtered out in the transformed views, end-to-end latency
can be even lower with EGEON due to the savings in network
communication (up to 72.1x for a 4G mobile use case).

II. DESIGN

EGEON is a software-defined data protection framework that
augments object storage with composable security services to
enforce users’ privacy preferences over protected data. These
services are built up as pipelines of serverless functions. Fig. 1
illustrates an overview of EGEON’s architecture. Our objective
is to enable authorized users or applications to access protected
data without violating the privacy policies of data owners. We
have designed EGEON to make it easy the leverage of state-of-
the-art privacy solutions (such as content-level access control,
homomorphic encryption, encrypted keyword search, ...) while
preserving the normal data flow in the consuming applications.
Concretely, we achieve this by introducing a logical separation
between the privacy plane, where data owners set their privacy
preferences, and the data plane, where the creation of privacy-
compliant transformed views happens. This separation allows

Fig. 1: EGEON’s architecture.
for heterogeneous policies atop the same data without having
to modify the system internals to enforce advanced policies at
the object level.

EGEON’s architecture consists of the following components:

Privacy Plane. The privacy plane in EGEON corresponds to
the control plane of a software-defined architecture [13], [14],
but specialized for data protection. In practice, this means that
EGEON provides its own script language to assist data owner in
composing data protection services from elementary serverless
functions in the data plane. The textual, JSON-based language
supports conditions and compositions to build up inline privacy
transformers (e.g., see Listing 39). Moreover, EGEON offers an
API to allow data owners to manage the life-cycle of their data
protection policies. For performance reasons, once uploaded,
the policies are automatically compiled into Java bytecode and
stored in the Metadata Service. For fast access, this service has
been built on top of Redis [15], an in-memory, low-latency key
value store.

Data Plane. In EGEON, the data plane has a critical role. The
data plane is responsible for generating the privacy-compliant
data views. And hence, it must be extensible to accommodate
new functionality that enables privacy transformations on data.
Particularly, in this realization of EGEON, we have focused on
inline privacy transformations as data is retrieved from storage
nodes HDDs. As mandated by the policies in the privacy plane,
privacy transformations are constructed from pipelines of user-
defined functions executed as serverless functions by EGEON.
Namely, a user integrating a new transformation only needs to
contribute the logic. Resource allocation and execution of the
chain of transformations is automatically handled by EGEON,
bringing a true serverless experience to users.

To minimize execution overhead, since many cryptographic
operations are CPU-intensive, EGEON abides by the principles
of reactive programming and runs a transformation only when
is strictly needed, instead of continuously on the data streams.
More concretely, EGEON extends the observer pattern [16] and
execute a certain transformation in the pipeline when an event



occurs [17]. Consequently, EGEON better utilizes the available
resources in the storage servers by balancing the load across
the chain of transformations. To better understand this, pretend
that a user wants to compute the average salary of employees
in a department X. Now suppose that all the employee records
have been saved in a single JSON document with all the salary
values homomorphically encrypted. Thanks to EGEON reactive
core, the transformation to average the salary will only be run
when the event “employee of department X” comes through
the data stream, thereby saving CPU resources.

A. Threat Model
Specifically, EGEON enforces user’s privacy preferences via

function composition. That is, users are ensured that their data
is transformed as it goes through a pipeline of transformation
functions before it is released to applications. In the meantime,
the original data remains end-to-end encrypted.

We assume an honest-but-curious [18] storage servers, i.e.,
the server performs the computations correctly but will analyze
all observed data to learn as much information as possible. We
also presume the existence of an identity service (IDS) such as
OpenStack Keystone for user authentication. We leverage this
service for authentication of the storage functions. An IDS is a
standard requirement in multi-user systems and can even be a
trustworthy external entity.

Consumers of shared data are semi-trusted, in that they do
not collude with the servers to leak the data or keys. This is a
reasonable assumption for groups of data consumers that are
acquainted with each other. Further, EGEON assumes that the
applications behave correctly and do not hand out user keys to
malicious parties. Finally, we assume state-of-the-art security
mechanisms to be in place for user devices, and that all parties
communicate over secure channels.

In this setting, EGEON enforces data confidentiality, making
sure that the adversary learns nothing about the data streams,
except what can be learned from the transformed views.
Robustness. While EGEON is able to handle various types of
failures in practice, provable robustness against misconfigured,
or even malicious privacy policies, and data producers is out
of scope for this research. A malicious user sending corrupted
tokens cannot compromise privacy but could alter the output of
a transformed view.

B. Privacy Plane
In the privacy plane, EGEON provides the capabilities for

data owner to set their privacy preferences —i.e., user-centric
privacy—, and what transformations will be required to apply
to enforce a privacy policy. These transformations are specified
by their unique name, and their existence is verified when the
privacy policy is to be compiled. A privacy policy applies to a
single object. In this paper, we do not consider the question of
how to set privacy policies for group of objects and how they
should look like. This question has been left for future work.

In EGEON, targeted data objects in the privacy policies are
specified by its full resource path. Following OpenStack Swift
specs [1], the access path to an object is structured into three
parts: /account/container/object. As an example, for the
rose.jpg object in the images container in the 1234 account,
the resource path is: /1234/images/rose.jpg.

Data owners can translate their preferences over an object
to a set of transformations by mapping them in a JSON-based
schema language. In addition to some meta-information (e.g.,

policy identifier), this schema permits data owners to formalize
conditions at the policy level using a rich set of operators such
as “StringLike”, “NumericLessThan”, etc. Importantly, the
language enables data owners to build date expressions using
operators like “DateNotEquals”, which makes it possible to
express temporal restrictions. For instance, pretend that a data
owner wishes to prevent that a document can be accessed on
weekends. She could indicate this through the date expression:
“DateNotEquals” : {“Day” : [“Sat”, “Sun”]}.

More interestingly, this schema allows composing complex
data protection transformations from elementary UDFs. This
can be achieved by adding each individual UDF as a step in the
transformation pipeline defined in the JSON object “Action”.
This object contains two name-value pairs: “StartAt”, which
indicates the first transformation in the pipeline, and “Steps”,
which is another JSON object that specifies the transformation
UDFs along with their input parameters. Since transformations
run only when the corresponding events come through the data
stream, this schema allows data owners to specify the observed
events for each transformation to execute. To do so, there exists
a field named “EventType” to signal the event to be observed
by a particular transformation UDF. A typical “EventType”
block looks like this:

{
"Type": "<type_of_event>",
"Input": [<parameter_block>, ...],

}

where the “Type” field specifies the type of an event (e.g., an
XPath [19] event) and the array “Input” lists the parameters
that are required for this type of event. For instance, if a data
owner wanted to apply a transformation UDF over all salary
elements of an XML document, she could do so by setting an
XPath event as follows:

{
"Type": "XPathEvent",
"Input": [{"Predicate": "//salary"}],

}

Similarly, a transformation UDF block is defined as follows:

{
"Id": "<identifier_of_UDF>",
"EventType": "<event_block>",
"Input": [<parameter_block>, ...],
"Next": (<identifier_of_UDF>|"End")

}

The “Id” field is a string which uniquely identifies the UDF,
while the “Input” field permits to specify the parameters for
the transformation UDF (e.g., the targeted security level of a
cryptosystem). Finally, the “Next” field indicates the next step
to follow in the pipeline, or “End” to indicate the end of the
chain of transformations.

An example of a real policy can be found in Listing 1. This
policy provides transformed views over a JSON file containing
employee records of the format:

{
"employee": {

"name": "Alice",
"identification": {
"SSN": "32456677"

},
"salary": 50000

}
...

}



As a first transformation in the chain, this policy uses content-
level access control [9] (CLAC). Very succinctly, CLAC works
as follows. It assigns targeted JSON elements an object label
(olabel) and each user a user-label (ulabel). Then, it allows
to define rules in the form of (ulabel, olabel), which means
that the JSON elements labeled with any of the olabels are
allowed to be read by the users labeled with the corresponding
ulabels. To indicate what JSON items to protect, CLAC uses
JSONPath in this case.

In this policy, we assume two types of users: treasurers with
user label “treasurer” and regular users with label “user”.
We protect the salaries with the object label “sensitive” and
specify the single rule (“treasurer”, “sensitive”), which
means that only treasurers will have access to the salaries. The
field “salary” is identified using the JSONPath expression:
‘$.employee.salary’ (Listing 1, line 14).

The second transformation applies homomorphic encryption
on the field “salary” to prevent the servers from learning the
employee salaries [20], while computing the average salary of
employees (Listing 1, lines 20-30).

As a final transformation in the chain, the policy uses proxy
re-encryption [20] to convert the homomorphically encrypted
average salary to a ciphertext under the receiver’s key. Thus,
the transformed view can be decrypted by the receiver, without
the data owner having to share her private key nor performing
any encryption for the receiver on her personal device.

To wrap up, this policy will generate two transformed views
of the same data. For regular users, it will only be executed the
first step (lines 10-19): the CLAC transformation. Due to lack
of permissions, the CLAC module will eliminate the encrypted
“salary” field, and output a transformed view with the rest of
information. For a treasurer, it will output the same view as any
regular user (without individual salaries), but enriched with the
average salary encrypted under her public key thanks to proxy
re-encryption (Listing 1, lines 31-37).

We want to note that the different transformations UDF only
execute when the corresponding JSONPath events come along.
To wit, proxy re-encryption will only be run one time, after the
JSON field named “average salary” is added at the end of
the response by the second transformation in the chain.

As a final word, this example clearly displays how EGEON is
capable of performing real-time privacy transformations atop
the same data object for a variety of application scenarios, thus
enhancing the rigid interface of object storage systems.

C. Data Plane

The focus of EGEON is on inline privacy transformations,
where data streams are “observables” and user-defined privacy
transformations are “observers” subscribed to the data streams.
As as soon as an event is observed, it will be delivered to the
subscribed observers. If there are no events on the data stream
then the original data stream is pushed back to the user. In this
sense, a privacy transformation is nothing but a function taking
an observable as input and returning another observable as its
output. This design has the advantage that transformations can
be chained together to generate complex data views compliant
with the policies in the privacy plane.
Runtime. Currently, EGEON’s runtime is Java-based. Thus, the
chain of transformations is run within a Java Virtual Machine
(JVM) wrapped within a Docker container to guarantee a high
level of isolation between two different data transformations.

1{
2"Id": "employee.policy",
3"Object": "v1/{account}/{container}/employees.json",
4"Condition": {
5"DateNotEquals": { "Day": ["Sat","Sun"] }
6},
7"Action": {
8"StartAt": "Step1",
9"Steps": {
10"Step1": {
11"Id": "CLAC",
12"EventType": {
13"Type": "JSONPathMarkerEvent",
14"Input": [{"Predicate":"$.employee.salary",

"olabel": "sensitive" }]
15},
16"Input": [{"ulabel": "treasurer",
17"olabel": "sensitive" }],
18"Next": "Step2"
19},
20"Step2": {
21"Id": "SUM",
22"EventType": {
23"Type": "JSONPathEvent",
24"Input": [{"Predicate":"$.employee.salary"}]
25},
26"Input": [{"average": true},
27{"keyOwner": "meta://Alice/keys/hom",
28{"output":"$.average_salary"}],
29"Next": "Step3"
30},
31"Step3": {
32"Id": "PRE",
33"EventType": {
34"Type": "JSONPathEvent",
35"Input": [{"Predicate":"$.average_salary"}]
36},
37"Next": "End"
38}}}

Listing 1: A sample policy to process employee records.

Policy Enforcement. Upon a new Get request, EGEON starts
up a thread inside the JVM to perform three tasks. We refer to
this thread as the “master thread”. The three tasks in order of
execution are:

1) Policy loading, where the master thread loads the policy
into memory and evaluates its conditions clauses.

2) Observable setting, where the master thread opens a data
stream to the target object, namely, the observable, if the
policy conditions are fulfilled. To this aim, it creates an
instance of the appropriate subclass of the abstract class
StreamBuilder that the EGEON’s engine leverages to
start parsing the object. Subclasses are required since the
specific logic to parse the data stream and generate the
events depends on the type of file. Specifically, EGEON
picks up the proper StreamBuilder subclass based on
the object extension (e.g., “.json” for JSON documents)
using factory methods.

3) Transformations setting, where the master thread makes
an instance of each transformation UDF in the pipeline
and chains them together. The StreamBuilder subclass
generates events as the data is being parsed, and notifies
the subscribed transformation UDFs in the same order as
dictated in the privacy policy. To wit, in Listing 39, upon
the JSONPath event ‘$.employee.salary’, EGEON will
execute first the CLAC transformation, followed by the
SUM transformation.

In EGEON, we assume that an observable can only handle one
event at a time. We adopted this design to minimize compute
resources at the storage layer, so that both the data stream and
all its transformations operate in the same thread, in our case,
the master thread. Nevertheless, this can be easily changed by
switching to a different thread and integrating some additional



logic for coordinating the threads.
Since each transformation UDF acts as an observer, another

responsibility of the master thread is to subscribe each privacy
transformation to the events specified in the policy. To this aim,
it invokes the method install(Event event, UDF observer)
in the StreamBuilder class, where the parameter observer
is the transformation UDF bound to the event.
Extensibility. At the time of this writing, EGEON implements
three types of data sources: XML, JSON and CSV documents,
a number of events including XPath and JsonPath expressions,
CSV field and records, etc., and multiple transformation UDFs
(see §II-D for further details). However, EGEON is extensible,
and new events, observables and observers can be incorporated
by extending the abstract classes Event, StreamBuilder and
UDF, respectively.

Due to space constraints, we only show here an example of a
transformation UDF to perform summations on ciphertexts [20]
to see how easy it is to code a transformation UDF (Listing 2).

1 package com.urv.egeon.function;
2
3 import com.urv.egeon.runtime.api.crypto.Homomorphic;
4 import com.urv.egeon.runtime.api.parser.UDF.ContextUDF;
5 import com.urv.egeon.runtime.api.parser.UDF.UDF;
6 import com.urv.egeon.runtime.api.parser.event.Event;
7
8 public class Sum extends UDF {
9 private Homomorphic accum = new Homomorphic();

10
11 @Override
12 public Event update(Event e, ContextUDF ctx) {
13 try {
14 this.accum.add((String) e.getValue());
15 } catch (Exception ex) {
16 // first execution of the UDF
17 this.accum.setKeys((String)

ctx.getParameter("keyOwner"));
18 this.accum.setCipher(this.accum.fromSerial((String)

e.getValue()));
19 } finally {
20 return e;
21 }
22 }
23 @Override
24 public Object complete(ContextUDF ctx) { ... }
25 }

Listing 2: A transformation UDF to perform summations on
ciphertexts.

As shown in Listing 2, a UDF has two methods: the method
update, which is invoked every time a new subscribed event is
emitted, and the method complete, which is called when the
data stream is finalized (empty). The update method has two
arguments of type Event and ContextUDF. The first argument
encapsulates the details of the emitted event. For instance, for
the homomorphic summation UDF of Listing 2, this may mean
a JSONPath event, alongside the value of the selected field by
the JSONPath expression (e.g., an encrypted salary value), and
accessible via the method getValue (Listing 2, line 14). The
ContextUDF encapsulates the access to the request metadata,
such as HTTP headers and cryptographic keys and tokens sent
out by the client, the object’s metadata, and specific parameters
required for the UDF to work, such as the data owner’s public
key to operate on the encrypted values (Listing 2, line 17). All
this information is automatically made available by EGEON to
the transformation UDF. This includes the input parameters set
in the privacy policy (e.g., Listing 1, lines 26-28).

It is worth to mention here that the input arguments whose
values have the format of “meta : //key” are automatically
downloaded from the Metadata Service using the key “key”.
In this way, a data owner can change the input parameters (e.g.,

her homomorphic public key) without having to re-compile the
policy. An example of this can be found in Listing 1, line 27,
for the argument “keyOwner”, whose value is retrieved from
the Metadata Service behind the scenes, and made accessible
to the summation UDF via the context (Listing 2, line 17).

The purpose of the method complete is to provide a hook
for developers to perform final computations and append their
result at the end of the data stream. For instance, this could be
useful to compute the average over encrypted data and append
the result as new item at the end of a JSON document.

D. Data Transformation UDFs

EGEON comes up with a library of reusable functions (UDFs)
for inline data protection. While some of these functions apply
cryptographic transformations, others act on raw data, e.g., by
filtering out protected parts of a JSON object to non-privileged
users [9]. All functions are composable to provide complex
transformed data views. These are the following:

Homomorphic encryption (HOM). HOM is a cryptosystem
(typically, IND-CPA secure) that allows the server to perform
computations directly on encrypted data, the final result being
decrypted by the user devices. For general operations, HOM is
prohibitively slow. However, it is efficient for summation. To
support summation, along with proxy re-encryption (PRE), we
adopted the homomorphic cryptosystem of [20]. We chose this
scheme, because it allows secure data sharing and is tailored to
mobile platforms and constrained IoT devices. Concretely, we
implemented two UDFs:
• Summation (SUM): This UDF supports the summation of

ciphertexts, such that the result is equal to the addition of
the plaintext values: Enc(m1)·Enc(m2) = Enc(m1+m2).

• Re-Encryption (PRE). Succinctly, PRE allows the storage
servers to convert ciphertexts under the data owner’s key
to ciphertexts under authorized users keys without leaking
the plaintext. Therefore, the data owner can securely share
data with other users, i.e., without sharing her private key
nor performing any encryption for them on her personal
device. To do so, the data owner d solely needs to issue a
re-encryption token for a user u based on his public key
pku as the Tokend→u. With this token, the PRE UDF can
automatically re-encrypt data on behalf of the data owner
without her intervention. Further, the re-encryption tokens
are unidirectional and non-transitive.

For both UDFs, we assume integers of ≤ 32 bits with 128-bits
of security. The implementation makes use of the optimal Ate
pairing [21] over Barreto-Naehrigopera elliptic curve [22], and
also applies the Chine Remainder Theorem (CRT) to optimize
decryption [20]. For all this cryptographic processing, we use
the RELIC toolkit [23].

Keyword search (SEARCH). To allow keyword searches (as
the SQL“ILIKE” keyword), we make use of a cryptographic
scheme for keyword searches on encrypted text [24]. As above,
we have chosen this scheme because it is multi-user. To put it
baldly, before storing an object, the data owner first selects the
users with whom she wants to share her data and then encrypts
it with their public keys. To search for keywords in the shared
object, a user makes a trapdoor TrapW for the keyword set W
using his private key, and then sends it to the server. The server
runs the SEARCH UDF, which takes the public key of the user,
the trapdoor TrapW and the encrypted text, and returns “yes”



if contains W or “no” otherwise. As expected, this scheme is
proved secure against chosen keyword attacks (IND-CKA).

One major advantage of this scheme is its short ciphertext
size. Concretely, for n users, it requires (n+ `+ 1) · L1 bits,
where ` is the number of keywords and L1 is the bit length of
the underlying finite field Fq , which is much smaller than the
deployment of n separate instances of a public key searchable
encryption scheme, one for each user. For the implementation
of this scheme, we use the “SS512” elliptic curve, a symmetric
curve with a 512-bit base field, which provides a security level
of 80-bits, from the jPBC library [25].
Content-level access control (CLAC). As an example of a
non-cryptographic function, we decided to implement content-
level access control [9]. The central idea of CLAC is to enforce
access control at the content level to restrict who reads which
part of a document. To give a concrete example, consider that
a hospital stores its patient records as big JSON object. These
records should be accessed differently by different personnel.
For example, a “doctor” could see health information from her
patients, while a “receptionist” should only view basic profile
information about the patients. With CLAC, a data owner can
define content-level policies to censor access to parts of a data
object. Remember that in object storage systems such as Swift
or Amazon S3, once an object is made accessible to someone,
she retrieves the full content of the object. So, there is no way
to hide out sensitive information to that user.

Our implementation of CLAC overcomes this limitation. As
introduced in §II-B, CLAC borrows the LaBAC model (Label
Based Access Control Model) [9]. Either be an XML element,
a JSON element, or a CSV column, an object label (olabel) is
assigned on the targeted item. Similarly, each authorized user
is given a user label (ulabel). Then, the LaBAC model works
by specifying tuples of rules in the form of (ulabel, olabel),
which tell that only the users labeled with ulabel can access
the items labeled with that olabel. For instance, if only users
with the user label “manager” were authorized to access items
labeled with “restricted”, a data owner should have to set
the rule (“manager”, “restricted”) to effectively formalize
access control. As in the LaBAC model, our implementation
admits hierarchies of both ulabels and olabels to rank users
and objects.

One interesting side effect of our reactive data plane is that
our CLAC implementation is generic, and not tied to a specific
file type. What changes is the mechanism to identify the items,
which depends on the object type. That is, for XML, an XPath
expression should be used to indicate that a certain element has
“restricted” access, while for a JSON document, a JSON
predicate should be used in its stead. We have abstracted this
coupling by the definition of specific marker events as shown
in Listing 1, lines 22-25.

III. IMPLEMENTATION

We have constructed EGEON by extending Zion [26], a data-
driven serverless computing middleware for object storage. In
particular, we have implemented EGEON on top of OpenStack
Swift [1], a highly-scalable object store.

OpenStack Swift is split into several components. The main
components are the object and proxy servers. While the object
servers are responsible for the storage and management of the
objects, the proxy servers expose the RESTful Swift API (e.g.,
GET /v1/account/container/object to get object content)
and stream objects to and from the clients upon request.

To be as non-intrusive as possible, the only modification we
perform in the default Swift architecture is the deployment of a
custom Swift middleware to intercept GET, or read, requests at
the proxy servers [27]. This middleware also provides a simple
API to manage the life-cycle of privacy policies. Essentially, it
communicates with the Metadata Service to store and retrieve
the privacy policies for protected data objects. Recall that the
Metadata Service leverages Redis [15] to yield sub-millisecond
access latency to metadata. To optimize request matching even
further, we have collocated the Redis instance with the proxy
server.

As Zion, EGEON uses containers to sandbox the execution
of the chain of privacy transformations. However, contrary to
Zion, which is a general-purpose serverless platform, EGEON
employs a single, optimized serverless function to produce the
privacy-compliant views of the underlying data. This function
deserializes the compiled privacy policy, loads it into memory,
evaluates the conditions from the clauses, and if it “applies”, it
runs the the pipeline of UDF transformations. This design has
two main benefits. On the one hand, EGEON runtime starts up
faster. On the other hand, UDF transformations enjoy of a great
level of isolation. Simply put, they have neither direct network
access nor access to the local Linux file system, among other
namespaced resources, which protects the whole system from
malicious transformations.

Also, to enhance response time for policies that are accessed
frequently, EGEON runtime deploys a cache for policies using
the Google Guava caching library [28] configured with a least-
recently-used (LRU) eviction policy.

Resource allocation is managed by Zion. EGEON does not
contribute any optimization at this level. When a read request
comes along, our Swift middleware contacts the Zion service,
which manages the containers in the object servers, and starts
up a new one if necessary.

IV. EVALUATION

In this section, we evaluate key aspects of EGEON’s design
and our prototype implementation. First, we begin with a series
of microbenchmarks to judge aspects such as system overhead,
throughput and the performance of the cryptographic operators
in isolation. Finally, we assess EGEON’s flexibility to compose
complex data views.
System setup. All the experiments have been conducted in a
cluster of 8 machines: 2 Dell PowerEdge R320 machines with
12GB RAM, which operate as Swift Proxy servers, and 6 Dell
PowerEdge R320 machines with 8GB RAM and 4-core CPUs,
which act as object servers. The version of OpenStack Swift is
Stein 5.2.0. All the machines run Ubuntu Server 20.04LTS and
are interconnected through 1GbE links. The client machine for
the experiments is equipped with a Intel Core i5-4440 CPU
with 4 cores and 8GB RAM.
Competing systems. In some tests, we have compared EGEON
against plain Zion [26] and Vertigo [29], all deployed in the
same Swift cluster as above. Concretely, we have used Zion as
a baseline to assess the overhead added by EGEON’s software-
defined architecture to the original Zion design, while we have
chosen Vertigo as an example of a general-purpose, software-
defined object storage system. As EGEON, Vertigo allows users
to create pipelines of storage functions, each implemented as
an OpenStack Storlet [30]. Hence, it is a good representative to
act as a proving ground for the performance of EGEON against



a similar software-defined architecture. It must be noticed that
the control plane in Vertigo is programmatic, while in EGEON
is declarative through the use of JSON-based privacy policies.

A. Microbenchmarks
We have run several microbenchmarks:

Cryptographic operations. To better understand the sources
of overhead incurred by EGEON, we examined the throughput
of the individual transformation UDFs, since different privacy
policies may result in various transformation mixes. For each
type of cryptographic transformation, we measured the number
of operations per second that the EGEON runtime can perform
on a object server in the data plane, as well as the latency. The
meaning of each operation depends on the specific type of the
cryptographic transformation UDF. For HOM, this refers to the
summation of two encrypted 32-bit integers. For PRE, it refers
to the proxy re-encryption of a single encrypted 32-bit integer,
while for SEARCH, it represents the search of a keyword in an
encrypted document with the same keyword. The results of this
experiment are given in Table I. As expected, we can observe
that the latency of the cryptographic operations is in the order
of a few milliseconds, which is acceptable for many use cases.
Due to the added latency of the cryptographic transformations,
a reactive data plane such as that available in EGEON, which is
driven exclusively by the events appearing in the data streams,
can be of great help to define privacy policies that minimize the
number of cryptographic operations (for instance, by skipping
unneeded data in the first steps of the transformation chain).

Overhead. To provide a full picture of the overheads incurred
by EGEON, we measured the latency introduced by EGEON to
the I/O path with respect to Zion and vanilla Swift. To measure
the overhead, we utilized the Time to First Byte (TTFB), which
captures how long the client needed to wait before receiving its
first byte of the response payload from the Swift servers. To
make measurements more precise, we colocated the client with
one of the Swift proxy servers. As a client, we used pycurl
to generate the Get requests for three different data file sizes.
For each object size, we performed 1K requests. For Zion, each
request caused the invocation of a NOOP function that simply
echoes the input stream to the output (see Listing 1 in [26] for
further details). For EGEON, we set up a NOOP policy which
includes a single NOOP UDF in the transformation chain. This
UDF does nothing:

1 package com.urv.egeon.function;
2
3 import com.urv.egeon.runtime.api.parser.UDF.ContextUDF;
4 import com.urv.egeon.runtime.api.parser.UDF.UDF;
5 import com.urv.egeon.runtime.api.parser.event.Event;
6
7 public class Noop extends UDF {
8 @Override
9 public Event update(Event e, ContextUDF ctx) { return e; }

10 @Override
11 public Object destroy(ContextUDF ctx) { return null; }
12 }

Listing 3: A no-operation (NOOP) UDF.

The results are given in Fig. 2. As seen in this figure, Zion and
EGEON are on par, which demonstrates that EGEON software-
defined architecture adds little overhead to Zion. With respect
to vanilla Swift, both systems add around 9ms of extra latency,
which can be considered very small. To wit, serverless function
invocation in major cloud providers usually take between 25
to 320ms in warm state [31].

TABLE I: Performance of cryptographic primitives available
in EGEON.

Transformation UDF Throughput (ops/sec) Latency (ms)
Homomorphic Addition (SUM) 616 1.62
Proxy Re-Encryption (PRE) 137 7.29
Keyword Search (SEARCH) 166 6.02

Since Zion does not support the pipelining of functions, we
compared EGEON against Vertigo. Recall that Vertigo enables
users to chain several Storlets together, where each Storlet can
implement some reusable storage function such as decryption,
compression, etc. We repeated the same experiment as above,
but evaluating chains of increasing length. For EGEON, we set
up chains of NOOP UDFs, while for Vertigo, we did the same,
but for pipelines of NOOP Storlets. The results are depicted in
Fig. 3. We can see that while the overhead keeps constant in
EGEON, Vertigo shows a linear increase in latency. The reason
for such a difference is the reactive core of EGEON, which does
nothing if the transformations are not subscribed to any event.
Vertigo, however, wires each Storlet with their neighbors in the
chain, which takes some time, albeit each of them just copies
the input to the output. This strongly reinforces the idea that
for a software-defined data protection system to be useful, it is
not a good idea to route the data streams through a pipeline of
functions, but rather to act on them when it is strictly needed.
Indeed, Vertigo’s overhead is more than one magnitude higher
than EGEON’s overhead as shown in Fig. 3.

Throughput. As a final microbenchmark, we quantified the
impact of EGEON on the system throughput. As above, EGEON
was compared to Zion and vanilla Swift to give real sense of
its performance. For this experiment, we utilized the getput
benchmarking tool suite [32] for Swift. And in particular, the
gpsuite to conduct parallel tests with multiple clients. More
concretely, we run gpsuite in one of the Swift proxy servers
for 10 seconds and for different object sizes. We considered a
replication factor of 3, and instrumented gpsuite to stress 3
out of the 6 object servers in the data plane. As in the overhead
test, a NOOP function call per request was made for Zion and
a NOOP policy plus NOOP UDF for EGEON. Table II reports
the maximum throughput in operations per second attained by
each system. Similarly to what was observed for the overhead,
EGEON and Zion perform in similar terms. More interestingly,
as the object size increases, the gap between both EGEON and
Zion and Swift grows. We investigated this issue and we found
that this happens due to a higher CPU interference caused by
the JVM used to run the EGEON logic and the NOOP code in
Zion, respectively.

Also, Fig. 4a plots the throughput for an increasing number
of emulated clients for a 1MB object, which exhibits the same
behavior as before. That is, EGEON and Zion showing a similar
performance, while Swift delivering a much higher throughput
due to the absence of any computation in the I/O path. Finally,
Fig. 4b illustrates EGEON’s slowdown relative to vanilla Swift,
calculated as Slowdown = EGEON download time

Swift download time , as a function of
the object size (x-axis) and the number of concurrent clients
(y-axis). As can be seen in the figure, the slowdown factor does
not increase steeply. Rather, it increases gradually in both axes,
never doubling the latency. This indicates that pushing down
data protection logic to the storage may be acceptable for many
applications.



Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

T
T

F
B

 (
s
e
c
s
)

(a) TTFB for a 10KB object.

Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

0.04

T
T

F
B

 (
s
e
c
s
)

(b) TTFB for a 100KB object.

Swift Zion Egeon

System

0.013

0.016

0.019

0.022

0.025

0.028

0.031

0.034

0.037

0.04

T
T

F
B

 (
s
e
c
s
)

(c) TTFB for a 1MB object.

Fig. 2: Time to First Byte (TTFB) for different object sizes.

#1 #2 #3

Number of NOOP UDFs

2

4

6

8

10

12

14

16

18

20

L
a
te

n
c
y
 (

m
s
)

(a) Overhead of EGEON.

#1 #2 #3

Number of NOOP Storlets

60

80

100

120

140

160

180

L
a
te

n
c
y
 (

m
s
)

(b) Overhead of Vertigo.

Fig. 3: Overhead of chain setup of EGEON versus Vertigo.

TABLE II: Maximum throughput (ops/sec) for different object
sizes.

System Object size
100KB 1MB 10MB

Swift 157,81 111,43 31,62
Zion 140,72 79,69 21,17

Egeon 140,56 79,59 21,26

B. Applications
To evaluate the composability of EGEON, we have designed

two privacy policies that capture the different complexities of
real-world applications. These applications are the following:
Covid-19 use case. In this use case, we demonstrate the same
policy of Listing 1, but applied to healthcare. We use the JSON
file reported by the US government that summarizes the patient
impact on healthcare facilities caused by Covid-19 [33] (April
2021). Specifically, we exchange the user label “treasurer”
by “state coordinator”, and label the field that reports the
sum of patients hospitalized in a pediatric inpatient bed in 7-
day periods [FAQ-10.b)] as “sensitive”, as it reveals which
hospitals may be collapsed. The rest of information is ignored.
As a result, the transformed view for state officials only bears
a single homomorphically encrypted value that aggregates the
sum of all healthcare facilities. As in Listing 1, the policy links
3 UDFs: CLAC→HOM→PRE. To play out with the file size, we
split this dataset into three smaller files based on increasingly
smaller time periods: year, month and week.
Adult dataset [34] use case. This dataset in CSV format from
the UCI Machine Learning Repository [34] has 48842 records
and 14 attributes. Some of these attributes can leak sensitive
information such as race and occupation. For this use case, we
have decided to protect the attribute #7: occupation, with the
SEARCH scheme to allow for type-of-employment searches on

encrypted text. To prove composability, we have used CLAC to
protect three attributes out of the four attributes chosen for this
experiment. We have used one object label: “sensitive”, and
one user label: “HR manager”, so that only a human resources
manager can retrieve the three protected columns. Further, we
have encrypted other fields to increase the file size to 134MB,
to later split it into 3 smaller files based on the attribute #6:
marital-status. The policy is as follows (some fields have been
omitted for brevity):

{
"Object": "v1/{account}/{container}/adult.csv",
"Action": {
"StartAt": "Step1",
"Steps": {

"Step1": {
"Id": "CLAC",
"EventType": {

"Type": "ColumnMarkerEvent",
"Input": [{"columns": [2,6,7], "olabel": "sensitive" }]

},
"Input": [{"ulabel": "HR manager", "olabel": "sensitive" }],
"Next": "Step2"

},
"Step2": {
"Id": "SEARCH",
"EventType": {"Type": "ColumnEvent", "Input": [{"column":7}]},
"Next": "End"

}}}

TABLE III: Network Speeds.

Network 4G Fiber LAN
Median speed (Mbps) 28.9 [35] 55.98 [36] 887 (SpeedTest)

Experiment. In this test, we measure the time to download the
raw files directly from Swift against the time to download the
transformed views generated by EGEON. The goal is to decide
if it is worth to push the privacy transformations into the object
store instead of running them on the user devices and VMs, so
that software-defined data protection is within reach. To do so,
we have capped the ingoing bandwidth of our client machine
to emulate different network speeds and customary scenarios:
Fiber network speeds to emulate home and business users, 4G
network bandwidth to emulate mobile users, and finally, LAN
to simulate a scenario where the client and Swift servers reside
on the same local area network (e.g., a university intranet). The
exact network speeds are listed in Table III. We performed 1K
executions per object size and network speed.

The results are plotted in Fig. 5a for the Covid-19 use case,
and in Fig. 5b for the Adult dataset. Error bars display the
standard deviations of results, which are indeed very narrow.
Non-surprisingly, we can see that EGEON lowers the download
time significantly for the slow 4G and fiber connections, which



1 2 4 8 16 32 64 128 256

Clients

20

40

60

80

100

120

O
p

e
ra

ti
o

n
s
 /

 s
e

c

Swift Zion Egeon

(a) Throughput (ops/sec) for a 1MB object. (b) Slowdown of EGEON over vanilla Swift.

Fig. 4: Throughput and latency of EGEON under a multi-client setting.

1.3 GB 537 MB 153 MB 38 MB

Object size

0

100

200

300

400

D
o
w

n
lo

a
d
 t
im

e
 (

s
e
c
s
) Egeon

LAN 1Gb

4G network 28Mb

Fiber 50Mb

(a) Covid-19 use case.

134 MB 63 MB 18 MB 4 MB

Object size

0

10

20

30

40

D
o
w

n
lo

a
d
 t
im

e
 (

s
e
c
s
) Egeon

4G network 28Mb

Fiber 50Mb

LAN 1Gb

(b) Adult dataset use case.

Fig. 5: Performance of EGEON in two composite policies.

means that pushing down privacy transformations to storage is
a good deal better than the naive approach of encrypting data
on the client side and retrieve the whole file as alleged by cloud
providers such as AWS for S3. The savings in some scenarios
can be dramatic such as in the Covid-19 use case, where just a
few bytes (e.g., aggregates such as SUM, COUNT and AVG, etc.)
are consumed by the application, reaching 72.1X speedup for
4G mobile terminals. For the LAN setting, the benefits are not
so clear, and for the Adult dataset, EGEON shows a slowdown
factor of 3.3X in the worst case due to the heavy computations
associated with keyword search—actually, the test primitive of
SEARCH requires three pairing operations [24]. Either way, we
believe that EGEON’s fine-grained data protection capabilities
outweigh the slight loss of performance.

V. RELATED WORK

Software-defined storage systems. A first category of related
work comprises software-defined approaches for storage, and
in particular, for object storage systems. The common feature
of these approaches is that they break the vertical alignment
of conventional storage infrastructures by reorganizing the I/O
stack to decouple the control and data flows into two planes of
functionality—control and data. A number of proposals have
followed this approach, including IOFlow [37], sRoutes [38],
Retro [39], Vertigo [29] and Crystal [13], [14].

Among them, only Vertigo and Crystal have been tailored to
object storage. As EGEON, both systems have been deployed
atop OpenStack Swift. But unlike EGEON, their data plane is
based on OpenStack Storlets [30]. A Storlet is a piece of Java
logic that is injected into the data plane to run custom storage
services over incoming I/O requests. As in EGEON, this design
increases the modularity and programmability of the data plane
stages, fostering reutilization. However, Storlet-made pipelines

are not reactive, wasting resources when we are only interested
in specific elements of the data stream. Moreover, the Storlet-
enabled data plane of Vertigo and Crystal emphasizes control-
flow over data-flow, making it hard to explicitly represent the
(cryptograhic) transformations of objects. Per contra, EGEON’s
data plane is driven solely by the events showing up in the data
streams, which makes it easy to reuse the same transformations
over and over again on different data. Only the events must be
re-defined in the policies.

Finally, it is worth to note that to the best of our knowledge,
we are not aware of another software-defined storage system
that automatically enforces privacy policies along the I/O path
as EGEON. Software-defined security has remained within the
boundaries of software-defined networking (see, for instance,
Fresco [40]). The only exception is the recent vision paper [41]
on software-defined data protection. Like EGEON, [41] argues
that the key ideas of software-defined storage can be translated
to the data protection domain. However, the approach of [41] is
radically different. Instead of adding privacy controls to the I/O
stack of a disk-based object storage system, [41] assumes all
in-storage processing to occur on FPGAs and “smart storage”
devices, for we see [41] as an orthogonal work to us.

Privacy Policy Enforcement. There exist many systems that
enforce privacy policies automatically. Most of these systems
resort to Information Flow Control (IFC) as a means to control
how information flows through the system. See, for instance,
Riverbed [42], which uses IFC to enforce user policies on how
a web service should release sensitive user data. In contrast to
these systems, EGEON follows a software-defined approach to
leverage the storage resources and enforce the privacy policies
where data is. Similar to our transformation chains, Zeph [43]
proposes to enforce privacy controls cryptographically but over
encrypted stream processing pipelines. Specifically for storage,
Guardat [44], at the block level, and Pesos [45], at the object
level, enable users to specify security policies, for instance, to
stipulate that accesses to a file require a record be added to an
append-only log file. Nonetheless, these systems do not permit
the composition of advanced privacy controls as EGEON, and
thus, fall short to empower users with strong data controllers.

VI. CONCLUSIONS

As increasingly much more sensitive data is being collected
to gain valuable insights, the need to natively integrate privacy
controls into the storage systems is growing in importance. In
particular, the poor interface of object storage systems, which



lacks of sophisticated data protection mechanisms, along with
the inherent difficulties to refactor them, have motivated us to
design and implement EGEON. To put in a nutshell, EGEON is
a novel software-defined data protection framework for object
storage. It allows data owners to define privacy policies on how
their data can be shared, which permit the composition of data
transformations to build sophisticated data protection controls.
In this way, data owners can specify multiple views from the
same data piece, and modify these views by only updating the
policies (e.g., by modifying the chain of transformations that
produce a particular view), leaving the system internals intact.
The EGEON prototype has been coded atop OpenStack Swift.
And our evaluation results demonstrate that EGEON adds little
overhead to the system, yet empowering users with the needed
controls to ensure strong data protection.

ACKNOWLEDGMENT

This research has been partly supported by EU under grant
agreement No. 825184 and the Spanish Government through
project PID2019-106774RB-C22. Marc Sanchez-Artigas is a
Serra-Húnter Fellow.

REFERENCES

[1] OpenStack, “Swift,” https://docs.openstack.org/swift/, 2021.
[2] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. Garcı́a-López, “Server-

less data analytics in the ibm cloud,” in 19th ACM/IFIP Middleware
Conference Industry (Middleware’18), 2018, pp. 1–7.

[3] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: scalable
analytics on serverless infrastructure,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’19), 2019, pp.
193–206.

[4] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada: Interactive data
analytics on cold data using serverless cloud infrastructure,” in 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), 2020, pp. 115–130.

[5] M. Sánchez-Artigas, G. T. Eizaguirre, G. Vernik, L. Stuart, and
P. Garcı́a-López, “Primula: A practical shuffle/sort operator for server-
less computing,” in 21st International Middleware Conference Industrial
Track (Middleware’20), 2020, pp. 31–37.

[6] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and
S. Bagchi, “SONIC: Application-aware data passing for chained server-
less applications,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), 2021, pp. 285–301.

[7] Amazon, “Amazon S3 Developer Guide,” http://aws.amazon.com/
documentation/s3, 2018.

[8] IBM, “IBM Clod Object Storage,” https://cloud.ibm.com/docs/services/
cloud-object-storage, 2018.

[9] P. Biswas, F. Patwa, and R. Sandhu, “Content level access control for
openstack swift storage,” in ACM CODASPY, 2015, pp. 123–126.

[10] X. Li, R. Li, P. P. C. Lee, and Y. Hu, “OpenEC: Toward Unified
and Configurable Erasure Coding Management in Distributed Storage
Systems,” in USENIX FAST, 2019, pp. 331–344.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-performance Distributed File System,” in
USENIX OSDI, 2006, pp. 307–320.

[12] L. Militano, “Experimenting on Ceph Object Classes
for Active Storage,” https://blog.zhaw.ch/icclab/
experimenting-with-ceph-object-classes-for-active-storage/, 2019.

[13] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. Garcı́a-
López, Y. Moatti, and E. Rom, “Crystal: Software-defined storage for
multi-tenant object stores,” in 15th USENIX Conference on File and
Storage Technologies (FAST 17), 2017, pp. 243–256.

[14] R. Gracia-Tinedo, J. Sampé, G. Parı́s, M. Sánchez-Artigas, P. Garcı́a-
López, and Y. Moatti, “Software-defined object storage in multi-tenant
environments,” Future Generation Computer Systems, vol. 99, pp. 54–
72, 2019.

[15] “Redis,” https://redis.io/.
[16] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[17] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter, “A survey on reactive programming,” ACM Comput. Surv.,
vol. 45, no. 4, aug 2013.

[18] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,”
in Twenty-Third ACM Symposium on Operating Systems Principles
(SOSP’11), 2011, pp. 85–100.

[19] W3C, “XML Path Language,” https://www.w3.org/TR/xpath-30/, 2020.
[20] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and S. Duquennoy,

“Secure sharing of partially homomorphic encrypted iot data,” in 15th
ACM Conference on Embedded Network Sensor Systems (SenSys’17),
2017.

[21] F. Vercauteren, “Optimal pairings,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 455–461, 2010.

[22] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in Selected Areas in Cryptography (SAC), 2006, pp.
319–331.

[23] D. F. Aranha and C. P. Gouvêa, “Relic is an efficient library for
cryptography,” https://github.com/relic-toolkit/relic, 2017.

[24] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in Interna-
tional conference on pairing-based cryptography. Springer, 2007, pp.
2–22.

[25] A. De Caro and V. Iovino, “jpbc: Java pairing based cryptography,” in
16th IEEE Symposium on Computers and Communications, ISCC 2011,
2011, pp. 850–855.

[26] J. Sampé, M. Sánchez-Artigas, P. Garcı́a-López, and G. Parı́s, “Data-
driven serverless functions for object storage,” in 18th ACM/I-
FIP/USENIX Middleware Conference (Middleware’17), 2017, pp. 121–
133.

[27] OpenStack, “Middleware and metadata,” https://docs.openstack.org/
swift/latest/development middleware.html, 2021.

[28] Google, “Guava: Google Core Libraries for Java,” https://github.com/
google/guava, 2021.

[29] J. Sampé, P. Garcı́a-López, and M. Sánchez-Artigas, “Vertigo: Pro-
grammable micro-controllers for software-defined object storage,”
in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD’16), 2016, pp. 180–187.

[30] OpenStack, “Welcome to storlets’ documentation!” https://docs.
openstack.org/storlets/latest/, 2020.

[31] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018, pp. 133–146.

[32] M. Seeger, “GetPut benchmarking suite,” https://github.com/markseger/
getput, 2021.

[33] U.S. Department of Health & Human Services, “COVID-19 Reported
Patient Impact and Hospital Capacity by Facility,” https://healthdata.
gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/
anag-cw7u, Apr. 2021.

[34] C. B. D. Newman and C. Merz, “UCI repository of machine learning
databases,” https://archive.ics.uci.edu/ml/index.php, 1998.

[35] www.opensignal.com, “Benchmarking the global 5G user experience –
October update — Opensignal,” https://www.opensignal.com/2020/10/
13/benchmarking-the-global-5g-user-experience-october-update.

[36] www.fcc.gov, “Measuring Fixed Broadband - Tenth Report
— Federal Communications Commission,” https://www.fcc.
gov/reports-research/reports/measuring-broadband-america/
measuring-fixed-broadband-tenth-report.

[37] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “Ioflow: a software-defined storage
architecture,” in ACM SOSP’13, 2013, pp. 182–196.

[38] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, “sRoute:
treating the storage stack like a network,” in USENIX FAST’16, 2016,
pp. 197–212.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
resource management in multi-tenant distributed systems,” in USENIX
NSDI’15, 2015, pp. 589–603.

[40] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “Fresco: Modular composable security services for software-
defined networks.” in 20th Annual Network and Distributed System
Security Symposium NDSS’13, 2013.

[41] Z. István, S. Ponnapalli, and V. Chidambaram, “Software-defined data
protection: Low overhead policy compliance at the storage layer is
within reach!” Proc. VLDB Endow., vol. 14, no. 7, pp. 1167–1174, 2021.

[42] F. Wang, R. Ko, and J. Mickens, “Riverbed: Enforcing user-defined
privacy constraints in distributed web services,” in 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19),
2019, pp. 615–630.

[43] L. Burkhalter, N. Küchler, A. Viand, H. Shafagh, and A. Hithnawi,
“Zeph: Cryptographic enforcement of end-to-end data privacy,” in 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, Jul. 2021, pp. 387–404.

[44] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Druschel,
R. Rodrigues, J. Gehrke, and A. Post, “Guardat: Enforcing data policies

https://docs.openstack.org/swift/
http://aws.amazon.com/documentation/s3
http://aws.amazon.com/documentation/s3
 https://cloud.ibm.com/docs/services/cloud-object-storage
 https://cloud.ibm.com/docs/services/cloud-object-storage
https://blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-active-storage/
https://blog.zhaw.ch/icclab/experimenting-with-ceph-object-classes-for-active-storage/
https://redis.io/
https://www.w3.org/TR/xpath-30/
https://github.com/relic-toolkit/relic
https://docs.openstack.org/swift/latest/development_middleware.html
https://docs.openstack.org/swift/latest/development_middleware.html
https://github.com/google/guava
https://github.com/google/guava
https://docs.openstack.org/storlets/latest/
https://docs.openstack.org/storlets/latest/
https://github.com/markseger/getput
https://github.com/markseger/getput
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
https://archive.ics.uci.edu/ml/index.php
https://www.opensignal.com/2020/10/13/benchmarking-the-global-5g-user-experience-october-update
https://www.opensignal.com/2020/10/13/benchmarking-the-global-5g-user-experience-october-update
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-tenth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-tenth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-tenth-report


at the storage layer,” in Tenth European Conference on Computer
Systems (EuroSys ’15), 2015.

[45] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and
C. Fetzer, “Pesos: Policy enhanced secure object store,” in Thirteenth
EuroSys Conference (EuroSys ’18), 2018.


	I Introduction
	II Design
	II-A Threat Model
	II-B Privacy Plane
	II-C Data Plane
	II-D Data Transformation UDFs

	III Implementation
	IV Evaluation
	IV-A Microbenchmarks
	IV-B Applications

	V Related Work
	VI Conclusions
	References

