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ABSTRACT

Service mesh is getting widely adopted as the cloud-native mechanism for traffic management in
microservice-based applications, in particular for generic IT workloads hosted in more centralized
cloud environments. Performance-demanding applications continue to drive the decentralization of
modern application execution environments, as in the case of mobile edge cloud.
This paper presents a systematic and qualitative analysis of state-of-the-art service mesh to evaluate
how suitable its design is for addressing the traffic management needs of performance-demanding
application workloads hosted in a mobile edge cloud environment. With this analysis, we argue
that today’s dependability-centric service mesh design fails at addressing the needs of the different
types of emerging mobile edge cloud workloads and motivate further research in the directions of
performance-efficient architectures, stronger QoS guarantees and higher complexity abstractions of
cloud-native traffic management frameworks.

Keywords service mesh · efficient traffic management · mobile edge cloud · multi-access edge computing ·
performance-demanding applications · software engineering

1 Introduction

The advanced digitalization of industry, enterprise, and society drives increasingly strict and stringent application
performance requirements compared to what is offered by Centralized Cloud (CC) execution environments. The always
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demanding application performance requirements motivate the distribution and decentralization of computational
resources, as in the case of Edge Cloud (EC).

EC allows applications to perform better and, at the same time, reduces network congestion compared to more CC
environments. Mobile Edge Cloud (MEC), a.k.a. Multi-access Edge Computing, is a type of EC where the computing
nodes are placed geographically close to Mobile Network (MN) nodes, and thus closer to mobile end-users (see
Figure 1). Hence, MEC introduces new opportunities to optimize application performance at the cost of an increasing
degree of complexity.

Figure 1: Mobile Edge Cloud architecture. The Mobile Network (MN) is composed by the Radio Access Network
(RAN) and the Core Network (CN). The CN is, at the same time, composed by a Control Plane (CP) and a User Plane
Function (UPF). On the other hand, the application execution environment is distributed across Centralized Cloud (CC)
and Edge Cloud (EC) clusters.

Managing service-to-service communication in a microservice-based architecture is a challenging task. The
microservice-based architecture has several advantages, but it also brings complexities related to the development and
configuration of disaggregated application components, especially when dealing with a high number of very distributed
microservices Fahs and Pierre [2019]. Application-level Service Mesh (SM) is being proposed as a cloud-native
approach for traffic management which is getting widely adopted as a de-facto standard. SM supports configurable
traffic control, consistent traffic observability, among others. A generic SM is realized as a dedicated infrastructure
layer, unifying and centralizing the management and operation of microservice communication (see Figure 2).

However, the design of SM technology is currently oriented towards the needs of generic IT workloads, such as
web-based applications, intended to be hosted in CC execution environments. These applications have relatively low
performance demands when compared with emerging applications such as the ones targeting automotive, industrial
control, Augmented Reality/Virtual Reality (AR/VR) and Internet of Things (IoT) use-cases; meanwhile the latter ones
have strong demands in terms of latency, bandwidth and/or reliability. To know if SM can adequately be used for traffic
management in MEC, there is a need to analyze in detail their current design.

The research question addressed by this paper is: How suitable is the service mesh design for traffic management
of performance-demanding applications hosted in a mobile edge cloud? To answer this question, we perform a
systematic and qualitative evaluation of state-of-the-art (SoTA) SM design for addressing the traffic management needs
of performance-demanding applications running on top of MEC. We do not aim to base our analysis on a comparison
across existing SM implementations, but rather on overall SoTA design features of SM.

We start by reviewing related work in this area (see Section 2). Then, we define a set of evaluation criteria based on the
characteristics and requirements from MEC and its application workloads (see Section 3). Such evaluation criteria are
contrasted with the design drivers, functional and non-functional characteristics of SoTA SM (see Section 4). As a
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Figure 2: General Service Mesh functionality and architecture. The Service Mesh (SM) is generally split into a
Management Plane (MP), a Control Plane (CP) and a Data Plane (DP).

result of this evaluation, we identify SM strengths, limitations and trade-offs that motivate further research in the area
(see Section 5).

Our main contributions are two-folded: i. identification of strengths, limitations and tradeoffs associated with SM for
MEC, and ii. identification of research challenges and opportunities related to the MEC-specialized SM we envision.
With our analysis, we argue why SM fails at addressing the needs of emerging application workloads and foster further
research in the areas of performant architecture, differentiated Quality of Service (QoS) assurance, and autonomy of SM.
These contributions may represent critical input to standardization efforts related to cloud-native traffic management
frameworks not only in the open-source community, i.e., the Service Mesh Interface (SMI)2, but also the ones related to
3GPP standards for next-generation mobile networks, in particular, enhanced application architecture for enabling edge
applications 3GPP [2021].

2 Related Work

Around 2016, one of the first, well-known and well-adopted open-source SM implementations, Linkerd v1, was
proposed. Istio and Linkerd v2 started to emerge in 2017 and 2018, respectively. Interesting to note that, at the time of
writing, there are more than 20 different implementations of SM3. Thus, the SMI initiative is aiming at standardizing
the core functionalities of SM. In terms of SM management and operation, tools such as Gloo Mesh and Meshery are
starting to appear.

However, most of the SM concepts and implementations are led by the open-source community. Interest from the
research community started to emerge in 2017. This section presents related research work in terms of enhanced
performant architecture, telco applicability and self-adaptability associated with SM, in relation to our insights discussed
in Section 5.

2.1 Performant Service Mesh Architecture

In terms of performance enhancement, one proxy-less approach has been proposed. Subhraveti, D., et al. propose
AppSwitch, a transport layer network element for modern application architectures Subhraveti et al. [2017]. AppSwitch
provides common network connectivity functions such as consistent application identity, application firewall and
load balancing logic Cidon et al. [2017] without adding extra cost or complexity. It is implemented as a system call
trap/generation function that propagates application location information via a gossip protocol.

2https://layer5.io/projects/service-mesh-interface-conformance, The service mesh interface, accessed 2021-10-04
3https://layer5.io/service-mesh-landscape, The SM landscape: Comparison of service mesh strengths, accessed 2021-10-04
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2.2 Service Mesh for Telco Domain

Initial efforts are also identified in terms of SM for telco use-cases. For example, Dobaj, J., et al. identify and
summarize relevant challenges regarding dependable network design for mission-critical systems, i.e., the need of
ensuring dependable system and service connectivity, highly dynamic and flexible connectivity, and holistic and
system-wide design approaches to support system interoperability Dobaj et al. [2019]. The authors evaluate three
networking patterns: the physical mesh pattern, the logic mesh pattern and the SM pattern for microservice-based
applications.

Furthermore, Li, W., et al. explore the challenges, SoTA and future research opportunities of SM Li et al. [2019]. This
survey paper revises SM concepts and implementations highlighting opportunities for future research in the area, in
particular, the need for further exploration of SM applicability into edge computing environments.

On the other hand, Antichi, G. and Rétvári, G. explore the idea of a full-stack Software-defined Networking (SDN)
framework in relation to SM Antichi and Rétvári [2020]. They highlight the need for substantial research in the area,
in terms of performant and adaptable architectures and identify high-level SM limitations such as lack of support for
carrier-grade performance, QoS assurance and compliance with telco standards and protocols.

2.3 Self-adaptability of Service Mesh

In terms of generic self-adaptation support in SM, initial efforts are seen in the research community. For example,
Mendonça, N., et al. study the lack of adoption of existing self-adaptation frameworks in the industry community
Mendonça et al. [2018]. The paper presents a survey and evaluation of existing solutions in terms of generality vs.
reusability and identify multiple self-adaptation patterns, i.e., system-level, infrastructure-level and cross-layer patterns.
Furthermore, the authors identify SM as a promising uniform architectural style to handle life cycle of self-adaptive
distributed applications.

Saleh Sedghpour, M. R., et al. study and enhance the circuit breaking capability of existing SM Sedghpour et al. [2021].
They argue that existing SM lacks adaptable circuit breaking actuation logic. To tackle this problem, they propose an
adaptive controller that avoids overload, mitigates failures, and keeps tail response time below an specified threshold,
while keeping throughput at a maximum. To do so, this controller dynamically adjusts circuit breaking queue length
thresholds. The proposed adaptive controller can be easily configured to optimize the tradeoff between response time
and throughput in a customized way.

Kosińska, J. and Zieliński, K. evaluate how important autonomous performance management is for addressing the
highly dynamic requirements characteristic of a cloud-native execution environment Kosińska and Zieliński [2020].
The paper addresses the design and evaluation of a technology-agnostic framework for autonomic management of
cloud-native applications, which allows dynamic and on-the-fly reconfiguration. They also compare the proposed
framework vs. SM from a design standpoint and identify SM limitations in terms of observability, communication
patterns and automated control.

Furthermore, Larsson, L., et al. enhance the resiliency capability of SM-based architectures by adding an adaptive and
application-agnostic inter-service response caching mechanism Larsson et al. [2021]. Their proposal is implemented
as gRPC interceptors taking care of estimating response longevity and caching. With this enhanced mechanism, they
achieve 40% traffic reduction and successful caching for about 80% responses.

On the other hand, Mendonça, N. C., et al. investigate cloud-native self-adaptive SM frameworks by revisiting the
history of architectural connectors. These connectors are classified into five different generations, where the fifth one
corresponds to the fully-fledged service communication platform, i.e., SM Mendonça and Aderaldo [2021]. The authors
argue that none of these generations provide direct support for changing connector’s behavior at runtime. They envision
software connectors supporting self-adaptation capabilities and allowing operators to customize the logic based on
application constraints. They are, at the time of writing, building a prototype of a self-adaptive SM called KubowMesh.

In contrast to the prior knowledge presented in this section, our work focuses on a more thorough evaluation of today’s
SM design for the specific context of MEC and its different types of workloads, based on its design drivers, and
functional and non-functional characteristics. As a result of our work, we identify additional challenges and devise
future research directions in this area; especially, for differentiated QoS support as a new feature of a MEC-specialized
SM.
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3 Evaluation Criteria from MEC and its Workloads

In the following subsections, we identify and analyze characteristics and requirements from MEC infrastructure
and its different types of application workloads, as the criteria we use in Section 5 for evaluating SoTA SM. The
identified characteristics and requirements are used to build profile models for MEC workloads and infrastructure,
which are respectively depicted in figures 3 and 4. These diagrams are inspired by SysML requirement diagrams4, a
general-purpose architecture modeling language for software requirement engineering.

To build the model depicted in Figure 3, we categorize application workloads into three different types of profiles
based on their performance requirements: Mission-critical Applications, Bandwidth-demanding Applications and
Latency-sensitive Applications. For each of these profiles we identify performance constraints and their associated
requirements. Note that we mainly focus on third-party applications that would most likely be provided by non-telco
enterprises, i.e., we do not focus on the considerations from cloud-native network functions as such. To build the MEC
Infrastructure profile depicted in Figure 4, we identify MEC design constraints, design problems and their implicated
requirements.

3.1 Mission-critical Applications

Mission-critical applications perform essential operations for their users and may have extremely high-cost or irreparable
losses in case of failure, therefore they have high demands in terms of reliability. In general, users expect to have a
high degree of dependability on such applications; thus, there is very low or zero tolerance against application errors
or downtime. To deal with such requirements, the applications and the underlying system need to support very high
availability, reliability and resiliency/survivability which may be, e.g., achieved based on redundancy and replication
strategies (see Figure 3). Examples of such applications are remote operation and control of transport systems.

3.2 Bandwidth-demanding Applications

Bandwidth-demanding applications require the network to transfer high volume of data at very high rates. To achieve
those demands, network links need to have enough capacity and advanced mechanisms for traffic management especially
when such links are shared with other application loads. An important and complex aspect of this type of applications is
the dynamicity of the bandwidth consumption imposed by variable traffic loads and even more, the case of bursty load
in which the bandwidth demand is instantaneously spiked up leading to resource starvation (see Figure 3). Examples of
such applications are data collection and processing from IoT sensors.

3.3 Latency-sensitive Applications

Latency-sensitive applications require very low delays since they have very low time frames in which responses are
expected. In general, they require high application responsiveness. The end-to-end time constraint can be defined in
units of milliseconds or even hundreds of microseconds. To deliver such high responsiveness, these applications need to
be supported by real-time software and networks. A key aspect to be supported is reliable/bounded latency; in such case
it is important to reduce or eliminate jitter (see Figure 3). Examples of such applications are cloud gaming, AR/VR and
industrial remote control.

3.4 Mobile Edge Cloud Infrastructure

Highly distributed cloud offers several advantages in terms of e.g., augmented overall computational capacity for
large-scale application deployments and geographical redundancy for diverse failover scenarios. When compared to CC,
the individual EC sites can also be considered more resource-constrained. Furthermore, EC presents higher resource
and performance heterogeneity.

MEC nodes are located in proximity with access network nodes, and thus end-users; this translates into lower
transport delays and less network congestion. Distributed cloud allows applications to perform better. MEC can
host performance-demanding workloads from third-party application developers or content providers, but can also
host Cloud-native Network Functions (CNF) from network providers/operators. To provide optimized QoS, the MN
implements differentiated QoS assurance mechanisms based on, e.g., traffic flows, network slicing and Service Function
Chaining (SFC) for optimized traffic steering.

However, to provide enhanced end-to-end performance guarantees, it is not enough to merely deploy EC data centers
geographically closer to the MN’s points of presence. It is also required to have tight integration, awareness, alignment

4https://sysml.org/sysml-faq/what-is-requirement-diagram.html, What is a SysML Requirement diagram?, accessed 2021-10-12
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Figure 3: Evaluation Criteria: Characteristics and requirements of different types of performance-demanding applica-
tions.

and coordination between both technology domains, the MN and the EC. Performance-demanding applications impose
the need for more holistic traffic management approaches, with federation and interoperability considerations.

On the other hand, MN traffic can be considered highly diverse and highly dynamic, not only in terms of the traffic load
itself but also due to the need of providing mobility support. Mobile end-users expect to have seamless, uninterrupted,
non-degraded Quality of Experience (QoE), even upon mobility events. Figure 4 summarizes MEC’s characteristics
and requirements.

4 Service Mesh Characteristics and Design Drivers

In this section, we identify functional and non-functional characteristics of SoTA SM and its associated design drivers
which we use to build the block diagrams depicted in figures 5 and 6. In Section 5, these design characteristics are
evaluated based on the criteria identified in Section 3.

To build the functional diagram depicted in Figure 5, we categorize collected design features into conditions/options
of control, actuation mechanisms and observability mechanisms. In the case of the diagram depicted in Figure 6,
we identify non-functional characteristics and for each of them we specify the mean or mechanism on which such
characteristic relies on. We also identify design drivers and their associated use-cases.

Note that we do not perform a comparison across existing SM implementations; we rather collect, to the best of our
knowledge, the full set of features of SoTA SM design. To a great extent, our analysis is based on features from Istio
since it is one of the most well-adopted, mature and feature-full implementations of SM, in particular due to its support
for multi-cluster, multi-network deployment models needed in the MEC context. However, we also consider features
from other well-adopted SM implementations such as Linkerd, Consul and Kuma plus additional features that are not
currently supported by such implementations, i.e., the ones proposed by the research community.

4.1 Functional Characteristics

In terms of traffic management, SM provides a set of functional features related to traffic control and observability.
For actuation mechanisms, SM supports functionalities such as traffic routing, traffic mirroring, traffic splitting, load
balancing, rate limiting, circuit breaking, retries and inter-service response caching (see Figure 5). For observability
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Figure 4: Evaluation Criteria: Characteristics and requirements of Mobile Edge Cloud infrastructure.

mechanisms, SM offers functionalities such as traffic performance monitoring, distributed request tracing, endpoint
health checks and outlier detection (see Figure 5).

As condition/options of control, SM supports timeouts and failover/fallback options for circuit breaking. Traffic policies
can be specified and enforced in a hop-by-hop basis, either by considering request origin information or destination
information (see Figure 5). For origin-oriented conditions, Istio for example supports options such as origin service
labels, origin namespace, session information and request parameters or headers. For destination-oriented conditions,
Istio supports options such as destination service labels, destination namespace, request endpoint and request port.

4.2 Design Drivers and Non-functional Characteristics

SM enables the reduction of duplicated code implementing common logic for traffic management based on the
sidecar proxy pattern. The sidecar proxy pattern allows traffic management to be application agnostic, i.e., agnostic
to the language in which the application is developed and, to some extent, the logic of the application itself. In
contrast, a proxy-less approach for SM is proposed in Subhraveti et al. [2017]. For cloud-native applications built
on the microservice-based architecture, a SM provides a way to compose a large number of discrete services into a
centrally managed application. SM constitutes a highly manageable infrastructure layer enabling service-to-service
communication, a relevant aspect of network softwarization.

One of the main design drivers of well-adopted SM implementations is related to DevOps practices. SM allows the
decoupling of concerns between the application developer and the application operator. In this way, the configuration
and maintenance of the service-to-service communication is not tied to the application code itself. Furthermore, SM
supports more advanced functionality for Continuous Integration - Continuous Delivery/Deployment (CI/CD) such as
A/B testing, blue/green and canary deployments.

In terms of traffic control and observability, SM supports flexible configurability thanks to the fine granularity levels
that are supported in the definition of policy-based control conditions and actions. Policies are defined by following
the so-called match-action abstraction, in which once a condition of control is met, a pre-defined action is matched
and applied. More than just a cloud-native architectural pattern for traffic management, SM provides platform-level
abstractions for easing and unifying traffic management of microservice-based applications.
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Figure 5: Functional characteristics of SoTA Service Mesh. Actuators in yellow and red are basic traffic control
mechanisms, the ones in purple are related to reliability concerns, and the ones in green are related to bandwidth
concerns.

Moving into more architectural matters, SM management, control and enforcement logics are decoupled into a
Management Plane (MP), a Control Plane (CP) and a Data Plane (DP), respectively (see Figure 2). The MP, a.k.a.
operational plane, is in charge of managing multiple SMs in a federated way. The MP can provide functionalities such
as unified configuration and observability; discovery, interoperability and federation of multiple and heterogeneous
SMs; and lifecycle management for SM and its applications, all under a single API.

The CP manages and configures the different components of the DP. It allows validation, ingestion, processing and
distribution of configuration policies. It also monitors policy updates and propagates them to the DP components during
runtime. The DP is usually composed by a set of lightweight proxies that are automatically injected and deployed along
microservice instances, i.e., the sidecar proxy pattern. In more distributed deployment models, ingress, egress and/or
east-west gateways are also part of the DP. DP components mediate communication on behalf of microservices and
perform enforcement of traffic policies.

Actuation logic is generally applied in an on/off basis. Recent research proposals study softer/smoother actuation
mechanisms Sedghpour et al. [2021]. In terms of communication protocol support, SM implementations have limited
support for Layer 4 / Layer 7 (L4/L7) communication protocols, i.e., L4 TCP, and L7 HTTP and gRPC.

As for network virtualization and abstraction matters, SM rely on the concept of network overlays such as the Container
Network Interface (CNI). Furthermore, due to the sidecar proxy pattern, the traffic control and observability logic is run
as a coupled process in user-space.

In terms of extensibility, Envoy-based DP components support WebAssembly (WASM) based extensions allowing
flexible programmability of the proxy logic. On the other hand, many of the observability features of SM are based on
external addons that can easily be inserted or removed.

In terms of deployment flexibility, Istio is one of the more mature implementations since it considers different dimensions
related to various deployment models5: i. the cluster, ii. the network, iii. the CP, iv. the SM and v. the tenancy
dimensions. Figure 6 summarizes SM’s design drivers and non-functional characteristics.

5https://istio.io/latest/docs/ops/deployment/deployment-models/, Istio: Deployment Models, accessed 2021-10-20
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Figure 6: Design drivers and non-functional characteristics of SoTA Service Mesh

5 Qualitative Evaluation of Service Mesh-based Traffic Management

This section discusses the main results of the systematic and qualitative analysis we performed by comparing the
evaluation criteria from MEC and its workloads presented in Section 3 vs. the characteristics and design drivers of
SoTA SM presented in Section 4. This section also highlights limitations, tradeoffs and future research directions for
the MEC-specialized SM we envision.

5.1 Efficient Service Mesh Architecture

Performance-demanding application workloads, in particular latency-sensitive applications, require the traffic manage-
ment logic to be designed with minimum latency overhead. Similarly, resource-constrained individual edge clusters
require minimum resource consumption. There are several aspects from the non-functional characteristics of SM that
represent evident performance and resource costs.

Service mesh interface As we mentioned before, the SMI initiative aims at providing a minimum set of core features
targeting today’s SM use-cases in the context of generic IT application workloads running in more CC environments.
In this sense, this initiative aims at providing a standard interface towards external cloud-native technologies, e.g.,
Kubernetes, to interact with different implementations of SM and to support federation across SM instances.

Nevertheless, current SM design lacks holistic or system-wide considerations related to the different domains and
dimensions part of MEC; in particular, the design and standardization of a proper interface towards the MN to adequately
implement functionalities such as end-to-end seamless mobility support or MN-aligned QoS assurance. To the best of
our knowledge, we are the first ones to highlight this SM challenge.

Communication patterns and protocols SM is mainly oriented towards the fourth generation of application con-
nectors Mendonça and Aderaldo [2021], in which application components mainly communicate via RESTful APIs.
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The vast majority of generic IT application workloads today follow such communication pattern. However, this aspect
represents a limitation in terms of supported communication patterns, which is also recognized by Kosińska, J. et al.
Kosińska and Zieliński [2020]. Emerging application workloads may require more performant communication patterns
such as the delayered approaches that work at the system call level.

SM supports connection-oriented and reliable protocols such as HTTP and TCP which are more appropriate for generic
IT applications. This is due to the fact that traditional IT application workloads are mainly characterized by their
reliability requirements. However, such protocols may not be adequate for latency-sensitive applications since they
may suffer delay-causing issues such as Head-of-Line (HOL) blocking. Protocols with lower transport delays such as
QUIC, UDP and RTP are preferred by latency-sensitive applications. Antichi, G., et al. also acknowledge this limitation
Antichi and Rétvári [2020].

Decoupled/split logic There are intrinsic mechanisms part of the SM design intended to provide abstractions from
the underlying system complexities. One of them is the decoupling of the traffic management into a MP, a CP and
a DP, which is in part driven by the need of separation of concerns. Another related aspect is the fragmentation of
SMs into L4/L7 class and L2/L3 class. On the other hand, SM relies on cloud-native network overlays. Such divide-
and-conquer approaches have implications in terms of variable performance overheads that may not be appropriate for
performance-demanding workloads; this issue is also identified by Antichi, G, et al. Antichi and Rétvári [2020].

Sidecar proxy pattern The sidecar proxy pattern is widely adopted by SM to provide unified control and observability
logic with very fine granularity. However, this approach has been criticized due to the implicated latency overhead that
is present especially for traffic exchange across co-located microservice instances. The sidecar proxy pattern also brings
performance overheads due to context switching between user-space and kernel-space. Antichi, G., et al. also recognize
this challenge Antichi and Rétvári [2020]. The added delays are exacerbated for longer and more complex microservice
chains characteristic of MEC workloads.

The sidecar proxy pattern also incurs resource consumption overhead due to the fact that the traffic management logic
is replicated at a per- microservice instance level. Such extra resource consumption may not be appropriate for edge
clusters due to their resource constraints. As pointed out by Dobaj, J., et al. Dobaj et al. [2019], both latency and
resource overheads represent inherent scalability concerns associated with the SM architecture.

Furthermore, the fact that proxies are injected per- microservice instance creates dependencies between the sidecar
proxies and the application in terms of life cycle management, which may not be appropriate for highly dynamic
management of traffic and SM infrastructure due to its limited flexibility.

On the other hand, since proxies implement both the actuation and instrumentation logic, this may represent a non-
desired coupling between traffic control and observability, especially for automated traffic control, since such logics
may have bi-directional performance implications.

The level of granularity required for traffic management of performance-demanding applications may not need to be the
same than the one for generic IT applications. Especially, due to a tradeoff between the very fine granularity supported
by SM for traffic control and observability vs. the incurred latency overhead of the sidecar proxies allowing such
granularity levels.

In the case of Istio version 1.11.4, every couple of proxies adds about 2.65 ms to the 90th percentile latency. In the DP,
an Envoy proxy uses 0.35 vCPU and 40 MB memory for 1000 req/s. In the CP, Istiod (Istio’s daemon consolidating
control plane functionality into a single binary) uses 1 vCPU and 1.5 GB of memory6.

Linkerd’s own implementation of proxies, a Rust-based micro-proxy, is designed by considering performance require-
ments, thus service-to-service communication takes less than 1/5th the maximum extra latency taken by Istio while
consuming 1/9th the memory and 1/8th the CPU when compared to Istio’s DP7.

AppSwitch has been used as an Istio plugin to test performance enhancements. Results indicate an enhancement of over
18 times in the 50th percentile latency compared to vanilla Istio8. A similar proxy-less approach is recently starting to
get adopted by Cilium9 based on eBPF, a kernel technology supporting custom programs to be run in kernel-space.
However, the aforementioned performance metrics for Istio, Linkerd and AppSwitch are not comparable since they

6https://istio.io/latest/docs/ops/deployment/performance-and-scalability/, Istio Performance and Scalability, accessed 2021-11-28
7https://linkerd.io/2021/05/27/linkerd-vs-istio-benchmarks/, Benchmarking Linkerd and Istio, accessed 2021-11-04
8https://istio.io/latest/blog/2018/delayering-istio/, Delayering Istio with AppSwitch: Automatic application onboarding and

latency optimizations using AppSwitch, accessed 2021-11-01
9https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh, How eBPF will solve Service Mesh - Goodbye Sidecars, accessed

2021-12-10
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are not performed under the same conditions nor consider conditions characteristic of MEC setups. Nonetheless,
performance enhancements from the kernel-space approaches need to be carefully evaluated in large-scale and highly
distributed environments.

Table 1 summarizes all of these challenges. To the best of our knowledge, we are the first ones to highlight the challenges
in the table that do not have associated any reference.

Table 1: Limitations associated with efficient Service Mesh architecture

Functional/ Non-
functional Charac-
teristic

Limitations

Service mesh inter-
face

Lack of holistic interface design for end-to-end integration
between the MN and the EC domains

Communication
patterns and protocols

Limited communication pattern support; mainly for the
4th generation of application connectors Kosińska and
Zieliński [2020]
Lack of support for faster/telco-grade communication pro-
tocols and standards Antichi and Rétvári [2020]

Decoupled/split logic

Decoupled MP, CP and DP logic may introduce perfor-
mance overheads due to the need of network-based com-
munication across planes
L2/L3 SM and L4/L7 SM represent a split approach of the
communication stack which may introduce performance
overheads Antichi and Rétvári [2020]
Network overlay may introduce performance issues with
variable delay overheads

Sidecar proxy pattern

Limited scalability and resource overhead due to repli-
cated proxy logic per- microservice instance Dobaj et al.
[2019]
Per-hop latency overhead even for communication across
co-located microservice instances Antichi and Rétvári
[2020]
Context-switching overhead since sidecar proxy logic is
run in user-space Antichi and Rétvári [2020]
Latency and resource overhead due to inadequate granu-
larity level in control and observability logics
Dependent and inflexible life-cycle management of prox-
ies and microservice instances
Performance coupling between observability and actuation
logics since both are implemented in a common sidecar
proxy
Lack of quantification of performance costs associated
with sidecar vs. sidecar-less approaches on large-scale
applications hosted on edge cloud

5.2 Differentiated QoS Assurance Support in Service Mesh

Performance demands of emerging applications require more efficient traffic steering mechanisms with stronger QoS
assurance support. The fact that SM is not designed for deep EC is reflected in the lack of awareness, alignment,
coordination and integration with the QoS assurance mechanisms proposed for the MN domain. Antichi, G., et al. also
identify a general lack of support for QoS assurance Antichi and Rétvári [2020].

Dependability-centric traffic control In terms of traffic control, most of the condition-based traffic actuation
mechanisms supported by SM (see Figure 5) are intended to address reliability requirements of generic IT applications.
This represents a good initial set of features for applications with strong dependability needs such as mission-critical
applications. However, the traffic management needs from bandwidth-demanding applications and, most of all, the ones
from latency-sensitive applications are not considered by such traffic control mechanisms. To the best of our knowledge,
we are the first ones to highlight this SM challenge.
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There is a lack of holistic and differentiated QoS assurance mechanisms for the different types of application require-
ments of MEC workloads in alignment with the QoS assurance mechanisms of the MN and with awareness of the
dynamic traffic performance through the MN path. Ways to address such limitations are end-to-end SFC for MEC
application workloads similar to the ones proposed in Dab et al. [2020a]Dab et al. [2020b], but rather based on L4/L7
SM. Other more appropriate actuation mechanisms may include prioritization of traffic and support for dynamic traffic
shaping.

General-purpose multi-tenant isolation SM considers both hard- and soft- multi-tenant isolation requirements of
generic IT workloads in its deployment models and in its condition-based traffic control logic. However, there is no
thorough consideration regarding isolation of the delivered performance to avoid performance implications across
workloads with diverse characteristics and requirements. We consider that support for performance-oriented multi-tenant
isolation similar to the concepts of network slicing would be needed in the MEC context. To the best of our knowledge,
we are the first ones to highlight this SM challenge.

Zero-downtime rolling updates Today’s SM provides a set of actuation mechanisms such as traffic mirroring, traffic
splitting and traffic redirection (see Figure 5) intended to be used for zero-downtime rolling updates across application
versions10. We envision that such actuation mechanisms can be exploited with a different purpose in MEC workloads.
As mentioned before, one of the main challenges of MEC is the highly dynamic traffic conditions such as the ones
generated upon mobility events. Actuators originally designed for providing zero-downtime application rollouts can be
leveraged to provide seamless mobility support with minimum QoE degradation. To the best of our knowledge, we are
the first ones to highlight this SM opportunity.

Human-oriented traffic observability In terms of traffic observability, the instrumentation and data collection
mechanisms implemented in the SM are mainly intended to be used by human system operators. Nevertheless,
such proposed mechanisms may not necessary be appropriate for automated traffic management. To the best of our
knowledge, we are the first ones to highlight the following SM challenges.

The per-hop, per-endpoint granularity associated with traffic performance metrics may not be appropriate for differenti-
ated QoS assurance since it does not consider aggregated performance estimations at the level of end-to-end service
chains.

Furthermore, the frequency of performance metric collection may not be fast enough to appropriately detect and react
upon fast changing traffic load conditions. In the case of Prometheus, for example, it is recommended not to have a
scraping interval lower than 15s due to Kubelet’s resource usage metric resolution. Envoy’s traffic performance metrics
can be flushed into stats sinks with a minimum interval of 1ms; however, it is unknown if Prometheus would scale well
upon high traffic load and large-scale deployments.

To perform automated traffic control, other system metrics need to be considered from different parts of the application
and the underlying execution environment Kosińska and Zieliński [2020]. On the other hand, the way in which traffic
observability is provided via external addons, as in Istio, offers poor configurability of the observability logic.

Table 2 summarizes all of these challenges. To the best of our knowledge, we are the first ones to highlight the challenges
in the table that do not have associated any reference.

5.3 Autonomous Service Mesh

Intelligence, automation and autonomy are desired characteristics of cloud-native traffic management approaches
to cope with the strong traffic performance guarantees MEC workloads require. There is a need for having more
abstracted, automated and autonomous mechanisms to efficiently adapt not only the ongoing traffic but also the
SM architecture itself to the highly dynamic conditions characteristic of emerging applications and their underlying
execution environment.

Flexible configurability Today’s SM offers very fine granularity in terms of traffic control policies and it also supports
many dimensions of configurability in their deployment models to provide the very flexible configurability required by
generic IT use-cases. Nevertheless, SM frameworks are still considered complex to operate; such levels of flexibility
tamper their adoption due to the inherent degrees of complexity, as mentioned by Dobaj, J., et al. Dobaj et al. [2019].

10https://blog.sebastian-daschner.com/entries/zero-downtime-updates-istio, Zero-Downtime Rolling Updates With Istio, accessed
2021-09-01
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Table 2: Limitations associated with QoS assurance support in Service Mesh

Functional/ Non-
functional Charac-
teristic

Limitations

Dependability-centric
traffic control

Limited dependability-centric design with focus on relia-
bility requirements
Unawareness of diverse application performance require-
ments
Lack of differentiated traffic routing logic based on appli-
cation requirements
Lack of actuation, conditions of control and observability
mechanisms for other purposes than merely reliability
support
Lack of traffic shaping mechanisms for bandwidth-
demanding applications
Lack of traffic prioritization mechanisms for latency-
sensitive applications

General-purpose
multi-tenant isolation

No support for performance-oriented, multi-tenant isola-
tion

Zero-downtime
rolling updates

Lack of seamless mobility support with minimum QoE
degradation

Human-oriented
traffic observability

Intended to be for human operator’s visualization
Inappropriate level of granularity in performance metrics,
not at the service chain level required for QoS assurance
Lack of end-to-end performance estimation
Limited frequency of metric collection, not appropriate
for very dynamic changes in metrics values
Inflexible and cumbersome configurability of metric col-
lection due to poor integration with external addons
Performance metrics are limited to traffic monitoring and
tracing; they need to be complemented with system per-
formance metrics Kosińska and Zieliński [2020]

Despite all efforts to make traffic management easier, we consider that current levels of abstractions are just the first
step towards higher levels of autonomy in SM. Automation and autonomy could offer higher levels of abstraction with
more human-intuitive mechanisms than the ones provided by policy-based traffic management, for example.

Complexity abstractions The match-action abstraction has historically been used by human network operators. Such
traffic control mechanism is more suitable for rule-based systems dealing with relatively less dynamic and simpler traffic
conditions. However, this mechanism may not be appropriate to build more advanced, automated and autonomous
traffic management approaches which need to address the strong performance demands of future workloads under
highly dynamic conditions.

Furthermore, different approaches used for complexity abstractions such as network overlays and the sidecar proxy
pattern imply certain performance costs. There is a need to quantify the associated performance cost vs. performance
gains of automated/autonomous traffic management mechanisms. To the best of our knowledge, we are the first ones to
highlight the mentioned SM challenges.

Decoupled policy propagation The SM CP takes care of propagating policy updates to the different components of
the DP to deal with changes in traffic control stipulated by human operators. However, such decoupled mechanism
may not be able to support frequent policy reconfigurations associated with automated/autonomous traffic management
in scalable and performant ways. Highly dynamic reconfigurations may lead to network bottlenecks when the CP
propagates frequent updates across DP components. To the best of our knowledge, we are the first ones to highlight this
SM challenge.

Human-oriented management plane Today’s SM MP only takes care of SM operational matters with very poor
levels of automation and autonomy. As recognized by Antichi, G., et al. Antichi and Rétvári [2020], we also envision
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Table 3: Limitations associated with autonomous Service Mesh

Functional/ Non-
functional Charac-
teristic

Limitations

Flexible
configurability

Complex to operate which tamper their adoption Dobaj
et al. [2019]
Fine granularity level in configuration imply performance
overheads
Lack of higher levels of abstraction e.g., intent-driven
configuration

Complexity
abstractions

Match-action abstraction limited to rule-based systems
and not appropriate for autonomous management
Complexity abstractions imply performance costs; there
is a need to evaluate performance cost vs. performance
gain of higher abstraction levels

Decoupled
policy propagation

Not designed to support frequent policy reconfigurations
in scalable and performant ways

Human-oriented
management plane

SM management plane limited to human-oriented opera-
tional matters
Lack of self-adaptable functionality and architecture Men-
donça and Aderaldo [2021]Antichi and Rétvári [2020]

Reactive
traffic control

Actuation and condition mechanism limited to on/off, lack
of softer/smoother control mechanisms Mendonça and
Aderaldo [2021]Sedghpour et al. [2021]
Lack of analytics and inference layers with more predic-
tive and proactive logics Li et al. [2019]

a SM capable of supporting architectural adaptability and on-the-fly configuration of communication protocols and
patterns in response to highly dynamic and diverse requirements of MEC workloads.

Reactive traffic control Traffic control mechanisms supported by today’s SM implementations are reactive; the
actuation logic is triggered upon the detection of a set of conditions in an on/off fashion. There is a lack of proactive
and smooth actuation mechanisms which may be enabled by the introduction of, for example, analytics and inference
layers Li et al. [2019]. Mendonça, N., et al. also state that none of the current SM solutions support general-purpose
self-adaptation capabilities Mendonça and Aderaldo [2021]. Saleh Sedghpour, M. R., et al. also identify the lack of
adaptable traffic control mechanisms such as smooth circuit breaking actuation logic Sedghpour et al. [2021].

Table 3 summarizes all of these challenges. To the best of our knowledge, we are the first ones to highlight the challenges
in the table that do not have associated any reference.
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