
Using Multi-Resolution Data to Accelerate Neural
Network Training in Scientific Applications

Kewei Wang∗, Sunwoo Lee‡, Jan Balewski†, Alex Sim†, Peter Nugent†,
Ankit Agrawal∗, Alok Choudhary∗, Kesheng Wu†, and Wei-keng Liao∗

∗ECE Department, Northwestern University
{kwf5687, ankitag, choudhar, wkliao}@ece.northwestern.edu

†Lawrence Berkeley National Laboratory
{balewski, asim, penugent, kwu}@lbl.gov
‡ University of Southern California

sunwool@usc.edu

Abstract—Neural networks are powerful solutions to many
scientific applications; however, they usually suffer from long
model training times due to the typical data size and model size
being large. Research has been focused on developing numerical
optimization algorithms and parallel processing to reduce the
training time. In this work, we propose a multi-resolution strategy
that can reduce the training time by training the model with
the reduced-resolution data samples at the beginning and later
switching to the original resolution data samples. This strategy
is motivated by the fact that many scientific applications run
faster when using a coarse version of the problem, for example,
data whose resolution is reduced statistically. When applying
the idea to neural network training, coarse data can have a
similar effect on the learning curves at the early stage as the
dense data but requires less time. Once the curves no longer
improve significantly, our strategy switches to using the data in
original resolution. We use two real-world scientific applications,
CosmoFlow and DeepCAM, to evaluate the proposed mixed-
resolution training strategy. Our experiment results demonstrate
that the proposed training strategy effectively reduces the end-to-
end training time while achieving a comparable accuracy to that
of the training only with the original data. While maintaining
the same model accuracy, our multi-resolution training strategy
reduces the end-to-end training time up to 30% and 23% for
CosmoFlow and DeepCAM, respectively.

Index Terms—Deep Learning, Transfer Learning, Multi-
resolution Data

I. INTRODUCTION

Many scientific applications have successfully used deep
learning to solve their data analysis tasks [1]–[5]. One common
challenge in deep learning is to shorten the long training
time for the neural networks, which can be hours or days.
To have a reasonable training time, researchers have proposed
various techniques. For example, there are many approaches
for speeding up the training procedure by improving scalabil-
ity, such as large-batch training [6], [7], exploiting different
forms of parallelism [8], asynchronous training [9], reducing
communication during training [10], [11], and so on. Other
approaches focus on the statistical efficiency of optimization
algorithms to reduce the number of training iterations, such as
AdaGrad [12], Adam [13], AdamW [14] and variance-reduced
SGD [15], [16]. In this work, we approach the issue of long

training time from a different angle. We exploit a physics
principle to enable an effective transfer learning procedure to
provide an alternative strategy.

In this paper, we propose a multi-resolution training strategy
(MRT) that reduces both computation and communication
time when training the neural network model in parallel.
The strategy trains the model using reduced-resolution data
samples first and later switches to the original-resolution data.
Training the model with coarse-resolution data takes a shorter
time than the original data because each training sample size
is reduced, resulting in less computation cost. Once the loss
curve stops improving, we switch back to use the original
resolution data to continue the training. At the end when the
training converges, a comparable accuracy can be achieved
as if the model is trained entirely using the original data.
We take the continuity in scientific problems to generate
coarser versions of the input data and demonstrate that simple
strategies for reducing data resolution could work well. To
construct a model for training the coarse data, we present
a working choice of sub-network transfer which requires a
small adjustment on the model architectures. We also propose
a switching mechanism that triggers the switch based on the
changes of training loss in a given time window to decide
when to switch from the coarse to the dense data.

Our training strategy is motivated by multigrid strategies
in scientific computing [17], [18]. The data from scientific
problems often are the discretization of some physical quan-
tities, such as temperature and pressure from an atmospheric
application, DeepCAM [19], dark matter mass distribution in
CosmoFlow [3]. In these cases, the physical quantity could be
discretized at different resolutions; a coarse resolution would
lead to smaller arrays while a denser resolution leads to
larger arrays. Various multigrid strategies have been proposed
to take advantage of the multiple resolutions of the same
physics quantities [17], [18]. The main idea behind these
strategies is that a scientific problem could be solved with
less computational effort at a coarse resolution, though the
solution might have more uncertainty. For iterative methods,
such coarse data can potentially be used at the beginning of



the iterations until the intermediate solution reaches a similar
value as the one when using the dense data only. The time to
reach such a point is expected to be smaller. The same idea
can be applied to neural network training if we can transfer
the model trained with coarse data at the beginning to train
with dense data.

We evaluate the multi-resolution training strategy using two
real-world scientific applications, CosmoFlow and DeepCAM,
from the MLPerf HPC v0.7 training benchmark suite [20],
[21]. Both applications have large multi-channel datasets and
suffer from expensive computational time during the training.
Our experiments were carried out on two supercomputers,
Summit at Oak Ridge National Laboratory (ORNL) and Cori
at National Energy Research Scientific Computing (NERSC).
The goal of the multi-resolution strategy is to reduce the end-
to-end model training time while keeping the same validation
accuracy as the model trained with the original data. We empir-
ically verify that our training strategy can effectively transfer
knowledge from the low-resolution data through network-
based transfer learning. The transferred knowledge from the
pre-trained model successfully boosts the training efficiency
of the original model. Compared to training on the original
model, we observe an end-to-end training time improvement
of up to 30% and 23% for CosmoFlow and DeepCAM
without losing accuracy. In addition, we present the scaling
performance results of running the training in parallel on 32
to 128 GPUs, with the timing breakdown of I/O, training,
and inter-process communication. We also study the impact
of different switching points from coarse to dense data on
the total training time. Our experimental results demonstrate
that the proposed strategy can successfully reduce end-to-end
training time without losing model accuracy.

II. BACKGROUND AND RELATED WORK

A. Continuity in Scientific Applications

In many scientific applications, the data are usually physical
quantities discretized in the space or time domain. Thus, there
is inherent continuity among the data elements. Consequently,
it is possible to generate a coarser version of the datasets by
simply sampling fewer numbers of data elements or by taking
averages of neighbor elements. In this work, we consider a
few representative coarsening schemes.

In scientific computing, there are many other strategies to
make use of this continuity. For example, Suisalu et al. [18]
solve cosmology problems using multigrid methods. A similar
multigrid method is also used to solve climate modeling
problems [17]. Note that the multigrid procedures have a
strong mathematical foundation. These previous works show
effective use-cases of multigrid methods. We adopt this core
idea to large-scale deep learning to accelerate neural network
training.

B. Transfer Learning

Transfer learning techniques have shown to be effective in
many deep learning applications [22]–[24]. Transfer learning

techniques are usually designed to get useful knowledge trans-
ferred across different domains. When using neural networks
for transfer learning, they are first pre-trained in the source
domain, and then either a part of the model or the whole model
is re-trained on the destination domain datasets. For example,
ImageNet is usually used in computer vision tasks to pre-
train the model before further fine-tuning for the downstream
tasks [25], [26]. When the target dataset is small, fine-tuning
the whole model might cause overfitting [27]. Thus, the few
input side layers can be frozen while the rest are fine-tuned.
Various works have studied which and how many layers should
be frozen during fine-tuning [27], [28]. In this paper, we
borrow the neural network-based transfer learning approaches
to transfer knowledge from the low-resolution task to the
original task for the purpose of speeding up overall training.

C. Synchronous SGD with Data Parallelism

Many machine learning applications use stochastic gradient
descent or its variants to solve domain-specific optimization
problems. Mini-batch SGD iteratively utilizes a random subset
of training data points to compute the gradients for adjusting
model parameters. To reduce the training time, researchers
have proposed many parallel training algorithms. Synchronous
SGD representing the synchronous-parallel version of mini-
batch SGD is the most conventional algorithm. With data
parallelism, each mini-batch is evenly distributed to workers.
Each worker processes the assigned data to compute the gra-
dients independently. Then, the gradients are averaged across
all the workers using inter-process communication. We use
synchronous SGD with data parallelism that provides the op-
timal statistical efficiency compared to other communication-
efficient algorithms that can potentially harm the accuracy.

D. CosmoFlow

CosmoFlow is a project that develops a deep learning tool
for analyzing cosmology data. It is included in the MLPerf
HPC Training benchmark [20], an industry-standard perfor-
mance benchmark for evaluating Machine Learning perfor-
mance on large-scale HPC systems. Mathuriya et al. proposed
adopting a 3D convolutional neural network to estimate the
initial condition of the universe based on the 3D simulations
of the distribution of matter [3], [21]. This application incor-
porates large multi-dimensional data samples containing 3D
cubes of size 1283 with four redshift channels. The large size
of the CosmoFlow dataset makes it computationally expensive
to train over many iterations.

E. DeepCAM

The Community Atmospheric Model is a global atmosphere
model for simulating long-term climate trends in the earth’s
atmosphere [19]. One way to validate such a simulation is to
extract critical atmospheric events such as atmospheric rivers
and tropical cyclones. DeepCAM is a test benchmark for
using deep learning to identify such events from a CAM5
simulation dataset [19]. The data samples in the test dataset
are defined as 2D meshes of the earth’s surface, and labels



are provided for each mesh point when an event of interest
is present. This test problem is also included in the MLPerf
HPC Training benchmark. The dataset of DeepCAM contains
meshes of size 768 x 1152 with 16 variables at each mesh
point. With such massive data volume and a large encoder-
decoder segmentation architecture, the application DeepCAM
is computationally challenging.

III. MULTI-RESOLUTION TRAINING

The proposed multi-resolution training strategy (MRT)
draws inspiration from the multigrid solution strategies; that is,
solving the coarser version of a problem could help in solving
the denser version of the same problem. In addition, there
is an observation that when neural networks are trained on
images, the first layer features resemble each other regardless
of the exact dataset [29]. For features transferred from different
tasks, it is shown that learned features are better than random
initialization, even for distant tasks [27]. Thus, we expect that
the transferred weights from the model trained on a lower
resolution dataset of the same task can be beneficial to the
training on the dense dataset.

Given a scientific dataset with large data samples, training a
neural network can be time-consuming. The training time can
be largely reduced by reducing the size of training samples by
reducing their data resolution. However, if we train the neural
network with low-resolution data only, the generalization
performance will be affected, causing higher validation loss
and lower accuracy. To efficiently utilize the low-resolution
data to train the neural network while not hurting the model’s
generalization performance, we propose adopting a two-stage
training procedure.

Training procedure – Given a deep learning modelM, i.e.,
a function M(xi, yi, w) : Rn → Rm mapping n-dimensional
input samples X to m-dimensional labels Y with parameters
(weights) w, we use the original dataset with samples X and
labels Y as the dense dataset. Firstly, we preprocess the input
samples X into coarse samples Xc and labels Y into Yc as the
coarse dataset. Then, in the first training stage, we construct
the coarse modelMc based onM and train the neural network
with the coarse dataset, Xc and Yc, for Tc iterations. After
having the coarse model Mc pre-trained with the coarse set
Xc, we pass the weights of partial layers fromMc to initialize
the original modelM, the dense model. The rest layers in the
dense model are initialized with random weights. Then, in the
second training stage, we employ the dense dataset X and Y
to fine-tune the dense model M for T iterations.

A. Creating Coarse Training Dataset

Given a set of training samples, we reduce their resolutions
uniformly to create a new dataset. We refer to this dataset as
the coarse dataset Xc and the original dataset as the dense
dataset X for the rest of the paper. Various techniques for
data reduction have been proposed, such as dimensionality
reduction and numerosity reduction. Considering to transfer
the partial network model pre-trained with the coarse dataset
to continue to train with the dense model, we keep the same

(a) CosmoFlow (b) DeepCAM

Fig. 1. Schematic of convolutional neural network used in CosmoFlow and
DeepCAM. The layer that is different between the dense and the coarse model
is marked in yellow. The input sample sizes and the output sizes of the last
convolutional layer of the dense and the coarse model are shown on the left
and right columns, respectively.

number of dimensions of the data samples and adopt a simple
strategy to reduce the data resolution. For each data dimension,
we keep the number of channels unchanged if they represent
different figures and reduce the size of other dimensions based
on their scientific features. For example, a training sample xi
from the CosmoFlow dataset is a 4D array, where the first three
dimensions denote the 3D matter distribution, and the last one
consists of 4 channels representing 4 different redshifts. In this
example, we reduce the data resolution along the first three
dimensions of each sample by averaging every 23 neighbors
of a data point. The resulting coarse sample is referred to
as xci. As for the DeepCAM dataset, climate variables are
stored on 1152 x 768 spatial grids in the data sample xi. There
are 16 pixel-wise variables for each spatial grid containing
wind speed, temperature, pressure, precipitation, etc. Thus, for
each climate variable, we calculate the average values of each
adjacent 2 x 2 spatial grid to create a coarse sample xci. Note
that the size of labels can be related or unrelated to the size
of data samples. In this case, we keep the same labels Y for
the coarse dataset as the dense dataset.

B. Model Architecture for Multi-Resolution Training

We adjust the original model in order to train with coarse
data. In the rest of the paper, we refer to the original model
to be trained with the original resolution data as the dense
model,M, and the adjusted model to be trained with reduced-
resolution data as coarse mode, Mc. With the smaller input
size, the output size of the last convolutional layer also
becomes smaller. Recent work on transfer learning suggests
parameters in the neural network usually converge from the



input side to the output side layers [30]. Thus, when construct-
ing the coarse model Mc based on the dense model M, we
keep the structures of the input side layers the same and only
adjust the output side layers. As typical convolutional neural
networks are composed of alternate convolution layers and
pooling layers with or without several fully connected layers
at the end [31], we accordingly categorize them into two types:
with or without fully connected layers. For models consisting
of convolution layers at the input side and fully connected
layers at the output side, we only adjust the size of the weights
of the first fully connected layer without adding extra layers.
For example, for the model architecture of the CosmoFlow
in Figure 1 (a), as shown on the right side, using the coarse
sample xci causes the output size of the last convolutional
layer to be smaller than the one in the dense model, which is
shown on the left side. Thus, we keep the size of weights in
the convolutional layers and the output side fully connected
layers marked in orange unchanged and only adjust the size
of weights of the fully connected layer marked in yellow for
the coarse model Mc.

For fully convolutional networks, the output size of the
last layer reduces as the input sample size becomes smaller.
Thus, we add an extra upsampling layer at the output side
to adjust outputs to match the size of the labels Y . For
example, DeepCAM implements a convolutional encoder-
decoder segmentation model, which is shown in [19]. From
the simplified structure shown in figure 1 (b), we can see that
with a coarse sample as the input, the size of the output of
the decoder is proportionally reduced. Thus, we add an extra
upsampling layer at the output side in the coarse model to fill
the new grids with values from the nearest neighbors. Without
making changes to the labels, we use the same loss function
for both the coarse and the dense model.

C. Switching Mechanism

Using the transfer learning techniques, we pass the weights
of convolution layers from the pre-trained coarse model Mc

to initialize the corresponding layers in the dense model M.
The weights of the rest of the layers are randomly initialized.
For example, in the CosmoFlow case, the weights of all
convolution layers are transferred from the coarse model to the
dense model, while the weights of all fully connected layers
are randomly initialized. In our implementation, after training
the coarse model on GPUs, we first load the coarse model onto
the CPUs. Then, the transferred weights are copied from the
coarse model to the dense model. Finally, the dense model is
offloaded onto the GPUs to be further trained with the dense
dataset.

In transfer learning, people sometimes fine-tune all param-
eters in the model or freeze some top (output side) layers. In
our multi-resolution training, because the pre-trained coarse
model was trained using data Xc containing less information
compared to the original set X , freezing layers may affect the
generalization performance. Thus, we fine-tune all the weights
in the dense modelM using the dense set X without freezing
any layers.

In multi-resolution training, finding a proper switching point
is important. We need to decide how many epochs to train on
the coarse model Mc before switching to the dense model
M. Without sufficient training, transferred weights may have
little effect on the dense model. However, training in the first
stage for too long can add much extra cost to the overall
training time. Thus, we propose a switching mechanism to
decide when to switch from training on the coarse model to
the dense one. Specifically, we look for the turning point of
the training loss curve by measuring the reduction of minimum
loss in consecutive epochs. When the reduction in the recent
T epochs is smaller than the current threshold ε, we stop
the training on the coarse set Xc and switch the model. The
threshold ε is set based on the peak magnitude of the loss
function, which can be tuned to adapt to different tasks and
datasets.

D. Parallelization

Under settings described earlier, we adopt synchronous
SGD with data parallelism in our training. For each iteration,
one mini-batch is evenly assigned to all processes to compute
the gradients locally. Once the data has been processed, all
the workers use inter-process communication to average the
gradients, done by all-reduce communications. Then, all the
workers use the synchronized gradients to update their local
models. Thus, the communication cost is proportional to the
size of the model and the number of GPUs.

It is common to shuffle the training samples per epoch.
We restrict the inter-process shuffling to reduce expensive
I/O costs. Given N training samples, B as the global batch
size, and P as the number of processes, we evenly divide
samples into P groups and randomly assign each process
with one group of samples per epoch. Then, each individual
process randomly reads B

P samples from the assigned samples
at each iteration. In Section IV, we will further analyze the
parallelization performance.

IV. EVALUATION

In this section, we evaluate the performance of our multi-
resolution training strategy using two real-world scientific
applications: CosmoFlow and DeepCAM. All the experiments
are conducted on two supercomputers: Summit at ORNL and
Cori at NERSC, with different hardware configurations.

A. Experimental Setup

We conduct experiments on two large-scale HPC platforms,
Cori and Summit. Cori is a Cray XC40 supercomputer that
has 18 nodes for GPU machines. Each node has two sockets
of Intel Xeon Gold 6148 (Skylake) CPUs, 8 NVIDIA V100
GPUs, and 384 GB memory space. Summit is an IBM AC922
system that consists of 4,608 nodes. Each node has two sockets
of IBM Power9 CPUs, 6 NVIDIA V100 GPUs, and 512 GB
memory space.

For CosmoFlow, we use IBM Watson Machine Learning
Community Edition 1.7.0-3, which supports TensorFlow 2.1.0
and Horovod 0.19.0 on Summit. On Cori, we use TensorFlow



2.2.0 and Horovod 0.19.0. For DeepCAM, we follow the
source code from MLPerf HPC reference implementations at
[32] using PyTorch. We use PyTorch 1.7.1 and Distributed-
DataParallel (DDP) from Apex on Summit and Cori. Our
experiments use 32 to 128 GPUs and have one MPI rank per
GPU allocated (i.e., 6 ranks per node on Summit and 8 ranks
per node on Cori).

On Cori, the Lustre parallel file system is used to store the
datasets. On Summit, our datasets are stored on Alpine, which
is a POSIX-based IBM Spectrum Scale parallel file system.

Model architectures – We use the adapted neural network
models based on the ones provided in the MLPerf HPC bench-
mark suite. For CosmoFlow, we use a modified version of Liv-
ermore Big Artificial Neural Network (LBANN), consisting
of 7 3-D convolutional layers followed by 3 fully connected
layers. For DeepCAM, we use the modified DeepLabv3+
network, which consists of an Xception network [33] as an
encoder, atrous spatial pyramid pooling (ASPP) [34] blocks,
and a decoder.

When switching from the coarse model to the dense model,
based on III-C, we transferred the learned weights of con-
volution layers from the coarse model. For CosmoFlow, the
weights of fully connected layers are randomly initialized.
Then, the dense models are trained on the dense dataset by
fine-tuning all trainable parameters.

B. Performance Results of CosmoFlow

CosmoFlow is a deep learning tool for Cosmology data
analysis. The training data of CosmoFlow are simulated
3-dimensional distributions of masses with different initial
conditions. For each initial condition, there are 4 channels
representing the evolved universe with 4 red-shift values.
Each sample represents the simulated problem domain, which
represents the universe by binned into a cube of size 512 x
512 x 512. Then, the cubes are further reshaped into 128 x
128 x 128 x 4 by concatenating the binned cubes from 4
red-shifts on channel dimension. Given the mass distributions,
CosmoFlow estimates 4 initial conditions of the universe.
Thus, each sample size is 128 x 128 x 128 x 4, and the label
size is 4. There are 80 HDF5 files and each file contains 128
samples, which are split into 80% training, 10% validation,
and 10% test sets. These files are generated from the same
source files as CosmoFlow from the MLPerf HPC training
benchmark suite.

In the MLPerf HPC benchmarks, the CosmoFlow model is
trained with the standard SGD optimizer. The loss function
is Mean Square Error (MSE), and the initial learning rate is
0.001, which is dropped to 2.5× 10−4 and 1.25× 10−4 at 32
and 64 epochs. The global batch size is set to 64. The target
quality used in the MLPerf HPC benchmark is mean-absolute-
error (MAE) < 0.124.

We adjusted the settings and trained the model using Adam
optimizer [13]. We set the global batch size to 256 and used
0.002 as the initial learning rate. The learning rate is decayed
twice with a factor of 0.1 at 50 and 75 epochs. We evaluate
our multi-resolution training method over training with the

original dataset with CosmoFlow on Summit using 32 and 64
GPUs. Given data samples with the size 128 x 128 x 128 x 4,
we divide the cubes of size 128 x 128 x 128 into small cubes
of size 2 x 2 x 2 and replace the small cubes with the sum of
8 values in them to get the coarse samples of size 64 x 64 x
64 x 4. The best-tuned model using the original dataset could
achieve the validation loss (MSE) of 0.0025 and validation loss
(MAE) of 0.023. Thus, we set 0.0025 as the target validation
loss (MSE) to decide when to stop the training.

TABLE I
THE VALIDATION LOSS, TRAINING EPOCH, TOTAL TRAINING TIME (ON
CORI AND SUMMIT) FOR COSMOFLOW WITH 32 GPUS. THE TIMINGS

ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY 30% OVER
THE BASELINE (DENSE).

Dataset Validation
loss (MSE)

Number of
epochs

Total time
(Cori)

Total time
(Summit)

Coarse 0.0066 85 145.35 148.75
Dense 0.0025 88 1073.60 858.00

MRT 0.0025 55 (coarse) +
54 (dense) 752.85 622.75

TABLE II
THE VALIDATION LOSS, TRAINING EPOCH, TOTAL TRAINING TIME (ON
CORI AND SUMMIT) FOR COSMOFLOW WITH 64 GPUS. THE TIMINGS

ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY 27% OVER
THE BASELINE (DENSE).

Dataset Validation
loss (MSE)

Number of
epochs

Total time
(Cori)

Total time
(Summit)

Coarse 0.0066 85 102.00 90.95
Dense 0.0025 88 561.44 483.12

MRT 0.0025 55 (coarse) +
54 (dense) 410.52 355.31

We refer to baseline case as the original neural network
models trained with only the dataset in the original resolution,
i.e., dense data. Tables I and II show the performance of
the baseline, training only with the coarse dataset, and our
proposed multi-resolution training strategy (MRT) in terms of
validation loss, the number of training epochs, and the total
training time on both Cori and Summit. We average the results
over five random seeds for each training strategy. First, as we
expected, training only with the coarse dataset takes a much
shorter time than training with the original dataset. However,
with the best-tuned hyper-parameters, the end validation loss
is 0.0064, which cannot achieve a similar one as the baseline.
Because the coarse dataset is generated by summing up the
adjacent elements, it does not contain enough information
for more accurate predictions. Second, we can see that the
proposed multi-resolution training strategy reduces the training
time by 29.87% on Cori and 27.42% on Summit. This end-
to-end training time comparison clearly shows how effectively
our proposed training strategy speeds up the neural network
training.

Figure 2 shows the training and validation loss curves of
the baseline and our proposed MRT strategy. From figure



Fig. 2. The learning curves of CosmoFlow of the baseline and our proposed MRT strategy. The global batch size is 256 and the learning rate is 0.002. We
used Adam optimizer. Using Mean Squared Error (MSE) metric, the achieved validation loss is 0.0025.

(a) Summit (b) Cori

Fig. 3. Comparison of the training timing breakdown for CosmoFlow between baseline and the proposed MRT strategy on Summit (a) and Cori (b).

2, first, we can see that the loss curves of MRT have a
spike when switching the model. Because the fully connected
layers are newly initiated, and the input data is different, the
model takes a few epochs to adjust to the data samples with
different resolutions. Second, comparing the curves of the
second training stage of MRT with the first half curves of
the baseline, after training for about 20 epochs, both losses of
our proposed strategy become smaller than the corresponding
values in the baseline. This shows that transferred knowledge
from the coarse model boosts the training with the dense
dataset after switching the model without affecting the end
validation accuracy.

TABLE III
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON

SUMMIT. THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm

time
Comp
time

Average
epoch time

32 Coarse 0.04 0.23 1.48 1.75
Dense 0.00 0.44 9.31 9.75

64 Coarse 0.00 0.28 1.07 1.35
Dense 0.04 0.59 4.86 5.49

Scaling performance – The two supercomputers, Summit
and Cori, have different hardware configurations. With differ-
ent settings of GPUs, we expect different computation times
per GPU. Also, different communication networks and file
system settings can affect the communication time and the

I/O time. Thus, we measure and present the performance of
CosmoFlow on both supercomputers. We use the same hyper-
parameter settings and train both models with three random
seeds to calculate the mean values.

1) Summit GPU Nodes: Figure 3 compares the end-to-end
training time for CosmoFlow between the baseline and our
strategy using 32 and 64 processes on Summit. The model does
not fit into fewer than 32 GPUs. Thus, we present the scaling
performance from 32 processes (GPUs). The training time on
the coarse model is marked in yellow. The figure shows that
training on the coarse model only takes a small portion of
time. When using 64 GPUs on Cori, the learned knowledge
helps largely reduce the training time on the dense model
(344.52 sec) to achieve the target validation loss compared
to the baseline (561.44 sec). Therefore, the total training time
of our proposed training strategy ends up being shorter than
the baseline.

Table III presents the scaling performance of CosmoFlow
on Summit GPU nodes. First of all, as data samples are
prefetched for each epoch, most of the I/O time for training
with the coarse or the dense dataset is overlapped with the
computation time. For the dense model, when increasing the
number of GPUs to 64, partial I/O cost is exposed due to
reduced computation time. Second, though the input data size
becomes 1/8 for the coarse model, the sizes of the weights of
convolutional layers and the last two fully connected layers
are the same. The weight size of the first fully connected
layer becomes 1/8 for the coarse model. Thus, the average



communication cost per epoch of the coarse model is around
half of training with the dense set. When using 64 GPUs, the
communication cost increases as more processes are involved
in the synchronization at each iteration. Third, we can see
that the computation time significantly reduces when training
on the coarse dataset. Because of the small input data size,
training with the coarse dataset has much lower computation
cost.

TABLE IV
THE AVERAGE EPOCH TIMING BREAKDOWN FOR COSMOFLOW ON CORI.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm

time
Comp
time

Average
epoch time

32 Coarse 0.09 0.13 1.49 1.71
Dense 1.27 0.21 10.72 12.20

64 Coarse 0.05 0.19 0.96 1.20
Dense 0.37 0.19 5.67 6.38

2) Cori GPU Nodes: We perform the same CosmoFlow
experiments on Cori. Table IV and figure 3 (b) show the perfor-
mance results of CosmoFlow on Cori. The timing breakdown
shows similar performance results compared to the results on
Summit. Note that due to different hardware configurations,
the computation time of the dense model on Cori is longer
than that on Summit, while it is the opposite for the coarse
model results. Thus, the training time of the coarse model
takes a smaller portion of the total time than that on Summit.

C. Performance Results of DeepCAM

DeepCAM is a deep learning tool for the segmentation of
extreme weather phenomena. The model is trained with the
CAM5 dataset, which contains simulated climate variables
stored on an 1152 x 768 spatial grid. For each grid, the sample
contains 16 channels representing water vapor, precipitation,
pressure, etc. The grid-level mask labels are generated with
the Toolkit for Extreme Climate Analysis and a flood fill
algorithm. They correspond to 3 classes: Tropical Cyclone
(TC), Atmospheric River (AR), and background (BG) class.
So, each sample size is 1152 x 768 x 16, and the corresponding
label size is 1152 x 768. The CAM5 dataset has 63K samples
in total, which are split into 80% training, 10% validation, and
10% test samples.

Following the same settings used in the MLPerf HPC
Training v0.7 benchmark [21], we trained a modified version
of DeepLabv3+ network on the CAM5 dataset using LAMB
optimizer [35], the layer-wise adaptive optimizer for large-
batch training. For the segmentation accuracy, we use the
intersection over union (IoU) metric, which measures how
much the given two regions are overlapped with each other.
In the original publication describing this application [19], the
IoU accuracy achieved is 73%. In the MLPerf HPC Training
v0.7 benchmark [21], DeepCAM is trained until reaching
the quality target, 0.82 of the validation IoU between the
predictions and the targets. We adopt the same target validation
accuracy to train the model until the validation accuracy

reaches 0.82. Because of the class imbalance, DeepCAM uses
the weighted cross-entropy loss. Due to the GPU memory
limitation, we use 2 as the local batch size for the dense model.
For the baseline and our proposed MRT strategy, we present
results with the best-tuned hyper-parameter settings. We use
0.001 as the initial learning rate and decay the learning rate by
a factor of 10. We evaluate the performance on Summit and
Cori using 64 and 128 GPUs. With the size of the original set
as 1152 x 768 x 16, we preprocess the samples to the coarse
dataset with the size 576 x 384 x 16.

TABLE V
THE VALIDATION ACCURACY, TRAINING STEP, THE TOTAL TIME ON CORI,
AND THE TOTAL TIME ON SUMMIT FOR DEEPCAM WITH 64 GPUS. THE
TIMINGS ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY

23% OVER THE BASELINE (DENSE).

Dataset Validation
accuracy

Number of
iterations

Total time
(Cori)

Total time
(Summit)

Coarse 0.75 4500 2301.29 2318.26
Dense 0.82 8900 4924.79 4324.53

MRT 0.82 1888 (coarse) +
5100 (dense) 3787.59 3450.74

TABLE VI
THE VALIDATION ACCURACY, TRAINING STEP, THE TOTAL TIME ON CORI,
AND THE TOTAL TIME ON SUMMIT FOR DEEPCAM WITH 128 GPUS. THE

TIMINGS ARE ALL IN SECONDS. MRT REDUCES THE TRAINING TIME BY
18% OVER THE BASELINE (DENSE).

Dataset Validation
accuracy

Number of
iterations

Total time
(Cori)

Total time
(Summit)

Coarse 0.75 4500 1326.16 1552.50
Dense 0.82 4500 2507.44 2159.24

MRT 0.82 1652 (coarse) +
2800 (dense) 2047.04 1913.47

The computational efficiency is affected if we keep using a
small local batch size when training with the coarse dataset.
Thus, very limited time reduction is gained compared to using
the dense dataset. Reduced sample sizes allow a larger number
of samples assigned to one worker, so we increase the local
batch size to 8 when training with the coarse set. We use 250
as the patience and 0.001 as the improvement threshold on
training loss to decide when to switch the model. When the
improvement in training loss is smaller than the threshold for
a number of iterations as the patience, we switch the model
at the end of the current training epoch.

Table V and Table VI present the validation accuracy, the
number of training iterations, the training time comparison
among the baseline, the training only with the coarse dataset,
and our proposed MRT strategy. First, since less information
is included in the coarse samples for a specific geographic
region, the best validation accuracy that can be achieved with
the coarse dataset is reduced to 0.75. Second, we can see that
our training strategy achieves the same accuracy with 23.09%
reduced end-to-end training time on Cori and 20.20% reduced
time on Summit compared to the baseline. It indicates that our



Fig. 4. The training and validation accuracy (IoU) curves of DeepCAM of the baseline and our proposed MRT strategy. The global batch size is 128 and the
learning rate is 0.001. We used LAMB optimizer. Using the Intersection over Union (IoU) metric, the achieved validation accuracy is 0.82.

(a) Summit (b) Cori

Fig. 5. Comparison of the training timing breakdown for DeepCAM between baseline and the proposed MRT strategy on Summit (a) and Cori (b).

method not only boosts the training efficiency of regression
problems like CosmoFlow but also improves the performance
of pixel-level segmentation problems.

Figure 4 shows the training and validation accuracy cal-
culated with IoU of the baseline and our proposed training
strategy. The training accuracy is measured for every 10
iterations (steps), and the validation accuracy is for every 100
iterations. Similar to the curves of CosmoFlow, there is a spike
when switching between the coarse and the dense models.
Comparing the baseline with the second phase of training
with the MRT strategy, we can see that both the training and
validation accuracy curves of our proposed MRT strategy are
higher than the baseline. Also, with the proposed strategy, the
same accuracy is achieved with fewer training iterations. These
results demonstrate that our proposed training strategy reduces
the end-to-end training time without losing accuracy.

TABLE VII
THE AVERAGE EPOCH TIMING BREAKDOWN FOR DEEPCAM ON SUMMIT.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm

time
Comp
time

Average
epoch time

64 Coarse 3.15 8.24 110.19 121.58
Dense 8.23 30.69 421.23 460.15

128 Coarse 2.29 10.38 68.75 81.42
Dense 4.89 16.19 205.88 226.96

Scaling performance – We also study the scaling perfor-

mance of the DeepCAM application on Summit and Cori.
Compared to CosmoFlow, DeepCAM has a significantly larger
model. Thus, we expect a different performance impact of
our proposed training strategy on DeepCAM. Note that the
model does not fit the memory space when using fewer than
64 GPUs; thus, we scale up the training to 128 GPUs.

1) Summit GPU nodes: Figure 5 presents the scaling per-
formance of DeepCAM on Summit. We can see how our
proposed method affects the end-to-end training time. Training
with the coarse dataset has a much cheaper average epoch time
than training with the dense dataset. Though training with
the coarse dataset brings extra cost, the wall-clock time is
reduced due to the reduced training steps on the dense dataset
to achieve the same validation accuracy. Table VII shows
the timing breakdown of the average training time per epoch
for both the coarse and the dense datasets. We can see that
the computation time and exposed I/O time are significantly
reduced for the coarse model. Because in the coarse model,
the input samples are 1/4 size of the dense samples, which
reduces the computation cost. The communication time of the
coarse model is also reduced compared to the time of the dense
model, which corresponds to what we expected. Since the local
batch size increases when using the coarse dataset, the number
of iterations per epoch is reduced accordingly. Considering that
the structure of layers with trainable weights is not changed
between two models, the amounts of gradients averaged per
iteration are the same. However, due to fewer synchronizations
conducted for the coarse model, the communication time



(a) (b)

Fig. 6. (a) The learning curves of CosmoFlow on the coarse model. (b) The end-to-end training times for different epoch numbers when switching the model.

(a) (b)

Fig. 7. (a) The learning curves of DeepCAM on the coarse model. (b) The end-to-end training times for different iteration numbers when switching the
model.

becomes shorter.

TABLE VIII
THE AVERAGE EPOCH TIMING BREAKDOWN FOR DEEPCAM ON CORI.

THE TIMINGS ARE ALL IN SECONDS.

Number
of GPUs Dataset I/O

time
Comm

time
Comp
time

Average
epoch time

64 Coarse 2.19 3.66 114.84 120.69
Dense 8.96 19.14 495.92 524.02

128 Coarse 2.39 8.92 58.25 69.55
Dense 4.09 12.78 246.69 263.56

2) Cori GPU nodes: We compare the performance of
DeepCAM adopting the same settings on Cori. Figure 5 (b)
presents the scaling performance of DeepCAM on Cori. The
end-to-end training time shows similar performance results to
that on Summit GPU nodes. Table VIII presents the timing
breakdown of training with the coarse and the dense model
on Cori. Similar analysis has been given with the observation
of the same trend of the largely reduced time on the coarse
model.

D. Impact of Switching Point

Picking a proper epoch number to switch from the coarse to
dense model is critical to the end-to-end training time. In order
to study the impact of the model switch points, we repeated
the entire training 10 times, each using a different switching
epoch number. This experiment is used to compare against
the automatic switching approach that uses a threshold and

patience on the training loss. In our case, we set the patience
to 5 epochs and the improvement threshold to 0.001.

Figure 6 (b) shows the end-to-end training times of Cos-
moFlow when switching from coarse to dense models at
a given epoch number. The curve points out that the best
end-to-end training time (the lowest value) is achieved when
switching at epoch 60, corresponding to the switching point
calculated based on the patience and threshold. From the loss
curves shown in Figure 6 (a), we can see both the training and
validation losses become relatively flat at around epoch 60. In
addition, we observe that when the switching epoch number
is smaller than 30, the cost of dense model training is much
higher than others. This is because the coarse model does not
receive enough training, resulting in the learned features with
little effect on the training for the dense model. When the
switching epoch number is larger than 80, the end-to-end time
also dramatically increases. This is because the training and
validation losses do not decrease after epoch 80. Continuing
the training of the coarse model beyond that prolongs the time
to convergence for the dense model. Figure 7 shows the loss
curves of training on the coarse model and end-to-end training
times of DeepCAM when switching at different numbers of
iterations. We can see similar patterns of the training times
at different switching points. These results demonstrate that
measuring the loss improvement in consecutive epochs and
switching the model when the improvement is smaller than a
preset threshold for a number of epochs as the patience can
lead to the switching point with a relatively shorter end-to-end



training time.

V. CONCLUSION

In the paper, we discussed that given a scientific dataset that
can be represented as different resolutions, how to take ad-
vantage of this feature to reduce neural network training time.
We proposed a multi-resolution training strategy that transfers
knowledge from the coarse dataset to accelerate the training
on the original problem. We applied our proposed strategy
to two real-world scientific applications. Our experimental
results demonstrate that the proposed multi-resolution training
can reduce the end-to-end training time while maintaining
the model accuracy. Considering data of different resolutions
can be generated from the original data, further exploring the
interactions between data of different resolutions and utilizing
more than two resolutions can be interesting future work.

ACKNOWLEDGMENT

This work is supported in part by U.S. Department of En-
ergy under award numbers DE-SC0021399, DE-SC0019358,
and the National Institute of Standards and Technology award
number 70NANB19H005. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science
User Facility located at Lawrence Berkeley National Lab-
oratory, operated under Contract No. DE-AC02-05CH11231
using NERSC awards ASCR-ERCAP0021094 and ASCR-
ERCAP0021411. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge Na-
tional Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

REFERENCES

[1] A. Piccione, J. Berkery, S. Sabbagh, and Y. Andreopoulos, “Physics-
guided machine learning approaches to predict the ideal stability
properties of fusion plasmas,” Nuclear Fusion, vol. 60, no. 4, p.
046033, mar 2020. [Online]. Available: https://doi.org/10.1088/1741-
4326/ab7597

[2] A. Agrawal and A. Choudhary, “Deep materials informatics: Appli-
cations of deep learning in materials science,” MRS Communications,
vol. 9, no. 3, pp. 779–792, 2019.

[3] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[4] D. George and E. Huerta, “Deep neural networks to enable real-time
multimessenger astrophysics,” Physical Review D, vol. 97, no. 4, p.
044039, 2018.

[5] T. Kurth, J. Zhang, N. Satish, E. Racah, I. Mitliagkas, M. M. A. Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov et al., “Deep learning
at 15pf: supervised and semi-supervised classification for scientific data,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–11.

[6] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J. Hsieh,
“Large-batch training for lstm and beyond,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–16.

[7] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

[8] N. Dryden, N. Maruyama, T. Moon, T. Benson, M. Snir, and B. Van Es-
sen, “Channel and filter parallelism for large-scale cnn training,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–20.

[9] Y. Ma, F. Rusu, K. Wu, and A. Sim, “Adaptive elastic training for sparse
deep learning on heterogeneous multi-gpu servers,” 2021.

[10] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1709–
1720, 2017.

[11] M. Chen, Z. Yan, J. Ren, and W. Wu, “Standard deviation based
adaptive gradient compression for distributed deep learning,” in 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). IEEE, 2020, pp. 529–538.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[14] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[15] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” Advances in neural information
processing systems, vol. 26, pp. 315–323, 2013.

[16] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “Sarah: A
novel method for machine learning problems using stochastic recursive
gradient,” in International Conference on Machine Learning. PMLR,
2017, pp. 2613–2621.

[17] S. R. Fulton, P. E. Ciesielski, and W. H. Schubert, “Multigrid methods
for elliptic problems: A review,” Monthly Weather Review, vol. 114,
no. 5, pp. 943–959, 1986.

[18] I. Suisalu and E. Saar, “An adaptive multigrid solver for high-resolution
cosmological simulations,” Monthly Notices of the Royal Astronomical
Society, vol. 274, no. 1, pp. 287–299, 1995.

[19] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[20] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “Mlperf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[21] S. Farrell, M. Emani, J. Balma, L. Drescher, A. Drozd, A. Fink, G. Fox,
D. Kanter, T. Kurth, P. Mattson et al., “Mlperftm hpc: A holistic
benchmark suite for scientific machine learning on hpc systems,” arXiv
preprint arXiv:2110.11466, 2021.

[22] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270–279.

[23] D. Jha, K. Choudhary, F. Tavazza, W.-k. Liao, A. Choudhary, C. Camp-
bell, and A. Agrawal, “Enhancing materials property prediction by
leveraging computational and experimental data using deep transfer
learning,” Nature communications, vol. 10, no. 1, pp. 1–12, 2019.

[24] V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A. Choud-
hary, and A. Agrawal, “Cross-property deep transfer learning framework
for enhanced predictive analytics on small materials data,” Nature
communications, vol. 12, no. 1, pp. 1–10, 2021.

[25] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in International conference on machine learning.
PMLR, 2014, pp. 647–655.

[26] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models trans-
fer better?” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2661–2671.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” arXiv preprint arXiv:1411.1792,
2014.

[28] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spot-
tune: transfer learning through adaptive fine-tuning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4805–4814.



[29] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[30] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and
interpretability,” arXiv preprint arXiv:1706.05806, 2017.

[31] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artificial
Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[32] “Mlperf hpc benchmark suite,” 2021. [Online]. Available:
https://github.com/mlcommons/hpc

[33] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[34] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[35] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimiza-
tion for deep learning: Training bert in 76 minutes,” arXiv preprint
arXiv:1904.00962, 2019.


