
Resilient Execution of Data-triggered Applications
on Edge, Fog and Cloud Resources

Prateeksha Varshney†,�, Shriram Ramesh‡,�, Shayal Chhabra†,�, Aakash Khochare∗ and Yogesh Simmhan∗
∗Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India

† Microsoft India R&D Pvt. Ltd., India
‡ Wells Fargo International Solutions Pvt. Ltd., India

Email: prateeksha.varshney@microsoft.com, shriramr@alum.iisc.ac.in, shachhab@microsoft.com,

aakhochare@iisc.ac.in, simmhan@iisc.ac.in

Abstract—Internet of Things (IoT) is leading to the pervasive
availability of streaming data about the physical world, coupled
with edge computing infrastructure deployed as part of smart
cities and 5G rollout. These constrained, less reliable but cheap
resources are complemented by fog resources that offer feder-
ated management and accelerated computing, and pay-as-you-go
cloud resources. There is a lack of intuitive means to deploy
application pipelines to consume such diverse streams, and to
execute them reliably on edge and fog resources. We propose
an innovative application model to declaratively specify queries
to match streams of micro-batch data from stream sources and
trigger the distributed execution of data pipelines. We also design
a resilient scheduling strategy using advanced reservation on
reliable fogs to guarantee dataflow completion within a deadline
while minimizing the execution cost. Our detailed experiments
on over 100 virtual IoT resources and for ≈ 10k task executions,
with comparison against baseline scheduling strategies, illustrates
the cost-effectiveness, resilience and scalability of our framework.

I. INTRODUCTION

The Internet of Things (IoT) is leading to large-scale

deployments of sensing, actuation and computing devices at

the edge of the network as part of the physical infrastructure.

Sensors like smart power meters, pollution monitors, and

surveillance cameras are increasingly part of smart cities [1].

Continuous analytics over observations streaming from such

sensors enable efficient utility management, interventions for

health and safety, and intelligent transportation [2].

Contemporary IoT and smart city applications tend to be

tightly-bound to consume specific sensor data sources. E.g.,

a power utility application may monitor the kWh power load
from sensors cds26kwh and cds74kwh in the IISc campus
neighborhood, and initiate demand curtailment if the load

exceeds a threshold during the peak periods of 9AM–7PM [3].

However, given the vast trove of public observation streams

that change over time, such applications are more useful if

they can specify “what” data streams they wish to consume

and “when” they wish to consume them, rather than “which”

specific sensor streams they should consume. E.g., rather than

statically bind the power utility application above to the kWh

sensor streams cds26kwh and cds74kwh, we should instead

be able to state that the application should trigger for all kWh

� Based on work done as a graduate student at the Indian Institute of
Science, Bangalore, India

power streams in the IISc campus spatial region and during the

9AM–7PM time period. So, the developer should not need to

precisely know the deployed sensors and statically bind to their

stream endpoints, but allow for their automated discovery and
use, based on semantic needs. There has been recent interest

in using declarative queries over IoT event streams to trigger

such applications [4].
Another opportunity for such IoT applications is the avail-

ability of edge computing resources as part of the infrastruc-

ture. Sensor deployments are typically connected through edge

gateways such as Raspberry Pi which offer non-trivial compute

resources. Rather than use them to just move data from the

sensors to the Cloud for processing, their captive compute

capacity can be used to host light-weight applications [5].

However, reliability is a challenge. Further, cities are also

explicitly deploying fog computing resources with server-

class or accelerated resources [6] to handle compute-heavy

applications such as video surveillance, and allow multi-tiered
management of edge devices [7]. Edge and fog are cheap
or free captive resources, and can serve as the first-line of

computing for smart city applications. However, their resource

capacities need to be supplemented on-demand by pay-as-you-

go cloud resources [8]. At the same time, platforms to ease the

development and robust deployment of applications on edge,

fog and cloud are still evolving [9].
In this paper, we leverage the twin-opportunities of ubiqui-

tous data streams and edge and fog computing resources in

smart cities, to ease the specification of declaratively-triggered

applications over such streams, and execute them reliably on

edge, fog and cloud resources. We make these contributions:

1) We propose a novel trigger-based model for dataflow

execution based on declarative queries specified over the

attributes of micro-batch streams generated from wide-

area sensor sources (Sec. II, III).

2) We develop a unique resilient decentralized scheduling
strategy for dynamically instantiated dataflows on unre-

liable edges, and reliable fog and cloud resources, using

advanced slot reservation on the fog, while meeting the

dataflow deadline and minimizing the cost (Sec. IV).

3) We offer detailed experiments on 100+ emulated edge
and fog resources for realistic dataflows with 10k task

executions to validate the lower cost, higher resilience and

473

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00057

20
22

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
78

-1
-6

65
4-

99
56

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

GR
ID

54
58

4.
20

22
.0

00
57

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

scalability of our approach relative to baselines (Sec. V).

In addition, we also discuss related works (Sec. VI) and offer

our conclusions (Sec. VII).

II. SYSTEM AND DATA MODEL

A. System Model

Edge and fog are emerging resource abstractions that com-

plement the well-established cloud computing [8]. Given the

diverse definitions for the edge and fog paradigms, we state

our assumptions on their characteristics [10].

Edge resources are distributed across a metropolitan area

network (MAN) using wired, cellular or ad hoc network

connectivity. They are often co-located with sensors that serve

as sources of data streams. Edges have low-end computing and

memory capacity, e.g., a Raspberry Pi with a multi-core ARM

processor and 1-2 GB RAM. These devices may be unreliable,

e.g., due to mobility, intermittent network, on-field failures,

energy constraints, etc. Typically, these are captive and free

resources as part of a city infrastructure, but finite in number.

They may use containers for application sandboxing.

Fog resources are also distributed across a MAN, but

reliable and connected to a high-speed broadband or cellular

network. They offer a workstation or server-class performance

and optionally have accelerators. They are also captive, finite

and as cheap as or costlier than the edge resources. They may

use containers or hypervisors as the application environment.

Public cloud resources at data-centers are accessible over

the Wide Area Network (WAN). They offer unlimited on-

demand access to reliable virtual machines (VM) with server-

grade CPUs and diverse capacities. Their pay-as-you-go pric-

ing may be costlier or cheaper than fog resources.

Management. Since Edge devices are constrained, we assume

that the edge and fog resources are organized hierarchically to

ease their management. Specifically, the resource and applica-

tion management for each edge is done by its parent Fog, and

a parent fog and all its edge children form a fog partition [7].

This grouping may be based on network or spatial proximity,

or other organizational domains. Any interaction with an edge,

say to schedule a task or to transfer data, is only through its

parent fog which serves as a gateway. We expect the network

performance between edge–parent fog to be high, and from

fog–fog and fog–cloud to be lower.

Definitions. Let rEi ∈ R
E , rFj ∈ R

F and rCk ∈ R
C be

the set of edge, fog and cloud resources, respectively, with

R = R
E ∪R

F ∪R
C as the set of all resources in the system.

C(rFi) ⊂ R
E is the set of edge children for a parent fog

rFi , at a given time. The set RE can vary over time. ε is the

incremental time unit of billing for a resource with a price
function π(rx) that gives the fixed-price for the resource rx
for ε time units. The performance scaling, or compute speed,

of a resource relative to a baseline (slowest) resource r0 is

given as the function ρ(rx), with ρ(r0) = 1. So the time

taken to execute a task on rx will be 1
ρ(rx)

of the time taken

for the task on r0. This can be workload-specific. The network

bandwidth between resources rx and ry is given by βxy and

A
C

D
B E F

μ1 μ2
μ3

μ3 μ5

μ4 μ6
μ7

μ8
μ9

A
C

D
B

E Fμ1 μ2
μ3

μ3
μ5

μ4 μ6

μ7

μ8

μ9E F

A C

D

B E F
μ1 μ2 μ3

μ3 μ5

μ4 μ6

μ7

μ8

μ9E FA B
μ1 μ2

Unroll

Un
ro
ll

Figure 1: Unrolling of input DAG (top-left) into linear

pipelines (top-right) or nested linear pipelines (bottom-left).

the latency by λxy; β = 0 for resources that cannot reach each

other. φxy is the monetary cost for unit data transfer between

two resources. These coefficients allow the scheduler to take

performance and price-aware decisions.

B. Streaming Micro-batch Data Model

The primary input source to our applications is data stream-

ing from sensors, typically connected to an edge and some-

times a fog resource. Rather than target real-time event-based

streaming applications, we instead consider the streaming

micro-batch model [11] used by systems like Spark Stream-

ing [5]. Here, a time or a count window of time-series

observations is accumulated into a micro-batch, which forms

the logical unit of execution, data movement and storage.

These micro-batches themselves may be constantly generated

from the sensor stream, forming a stream of micro-batches.

This model offers better throughput since the data movement,

scheduling and execution overheads are amortized across all

events in that micro-batch, while bounding the latency over-

heads to the micro-batch size. The mechanism of acquiring

data from the streams and forming micro-batches is outside

the scope of this paper [11], [12].

Besides the content formed from the window of obser-

vations, a micro-batch also has several spatio-temporal and
domain attributes. This metatata is crucial for automated

discovery of such data sources and declarative binding of

applications to them. A micro-batch μi is defined as the tuple:

μi = 〈 id, sid, 〈tb, te〉, 〈lat, long〉, 〈key, val〉∗, size, content 〉
where id uniquely identifies the micro-batch, sid identifies

the source from which it was generated, 〈tb, te〉 are the begin

and end timestamps of the contents, 〈lat, long〉 are the spatial

context for the data source, 〈key, val〉∗ are a set of domain-

specific key–value metadata, size is the length in bytes of the

content, and content has the actual micro-batched data.

E.g., the following micro-batch represents 8 observations

accumulated from a temperature sensor cds26temp present

in a campus IoT deployment on Nov 15, 2021. [1].

〈2021-11-15T09:00:00, 2021-11-15T09:05:00〉,
〈13.0165, 77.5706〉, [〈units, C〉, 〈err, 0.05〉], 39,
[27.5,27.5,27.6,27.7,27.7,27.7,27.6,27.7]〉

III. DATA-TRIGGERED APPLICATION MODEL

We propose a deadline-driven dataflow model for applica-

tion composition with a novel triggering of its execution based

474

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

on declarative matching of user queries with distributed micro-

batches. We first specify the dataflow model followed by the

query-based triggering approach.

A. Application Definition

We use the common Directed Acyclic Graph (DAG) as our

application model. Users define their application as a DAG,

D = (T,E), with a set of vertex tasks τj ∈ T and their

dataflow edges 〈τi, τj〉 ∈ E ⊆ T× T. Each task τj consumes

a single micro-batch as input, and produces one micro-batch

as output on completion. An edge 〈τi, τj〉 indicates a data

dependency between tasks – an output micro-batch generated

by the execution of τi will be used as input for the execution

of task τj . Users also provide the scheduler with a baseline
execution time, θj , for each task τj when executed on a base

resource r0, and the expected size of the output micro-batch

from the task, αj , based on prior benchmarking.

While a DAG offers substantial flexibility, most practical

applications tend to be simple linear pipelines with stateless

tasks. This is seen in the growing popularity of microservice

tasks on the cloud defined as short-running and stateless

Functions-as-a-Service (FaaS) and composed as a linear chain

of event-driven computing, and executed using patterns such as

Saga [13]. As a result, we make several practical simplifying

assumptions. Tasks are stateless and a micro-batch is its unit

of execution on a single resource. Aggregation can be done

within events in a micro-batch but not across. In case a task

executing a micro-batch fails due to a resource failure, it is

re-executed for the same micro-batch on another resource.

The dataflow uses interleave semantics, i.e., if edges from

two upstream tasks are incident on a downstream task, the

latter will independently execute once for each output micro-

batch from the two upstream tasks. This downstream path-

independence lets us easily unroll the DAG into linear chains,

converting a task-parallel to a data-parallel execution. E.g., in

Fig. 1, the task E of the input DAG in the top-left executes

twice for inputs μ4 and μ5 and the downstream execution

path for their outputs micro-batch μ6 and μ7 are independent.

This in equivalent to unrolling the DAG into two sequential
pipelines shown on the top-right. A future optimization can

split the common precursor sub-chains hierarchically (Fig. 1,

bottom-left) to avoid duplicate execution of tasks, e.g., A and

B. This approach eases the execution model while limiting

penalties for DAGs without too many branches.

The user also specifies a deadline δ for the execution of the

DAG for a single input micro-batch from its time of arrival. So

all causal micro-batches generated for this input micro-batch

should be executed by the DAG tasks within this deadline, i.e.,

all linear pipelines should complete by this deadline.

B. Application Triggering

Each dataflow’s runtime execution is in the context of a

single micro-batch. A key challenge is to identify micro-batch

streams on which the dataflow should execute. Binding the

dataflow to pre-defined stream endpoints requires a priori
knowledge of all streams, which is difficult in an evolving IoT

environment. Filtering micro-batches with certain attributes as

part of an initial task of a DAG will still pay the cost for

moving the micro-batch to the task even if it does not match.

Similarly, publishing the micro-batch to a central event broker

for filtering causes unnecessary data movement on the WAN.

Instead, we propose a novel declarative model for speci-

fying the characteristics of the input micro-batch, based on

its metadata, for a dataflow. Our runtime then automatically

matches the generated micro-batches from various streams
across the edge and fog layers to trigger a DAG execution

on any micro-batch. Since the micro-batch attributes include

spatial, temporal, sensor and domain attributes, this allows for

fairly complex patterns to be defined easily by the user and

matched at the granularity of each micro-batch. The appli-

cation also implicitly adapts to streams entering and exiting

as they are co-located with the edge resources. Users can

always define a simple query that matches the sensor ID if they

wish to statically bind their application to a specific sensor’s

stream. The matching is light-weight, distributed across fogs
and avoids data movement, with a throughput of 1000s of

micro-batch/sec on just an ARM-based fog.

As part of the DAG submission, users specify a declarative

filter query F = 〈fs, ft, fd〉 where fs, ft and fd are query

predicates defined on the spatial coordinates, time range and

domain properties or sensor id metadata of each micro-batch,

respectively. This filter is active until the DAG is undeployed.

The filters registered for the deployed DAGs are matched

by the query-matching engine, as discussed next, against all

available streams on all the edge and fog resources. So, the

users focus on what to match rather than where the source

is present. Any micro-batch matching the filter triggers the

execution of an instance of the filter’s DAG. The execution

of each input micro-batch for a DAG is independent of other

matched micro-batches. The same micro-batch can be matched

by filters for different DAGs, triggering all of them. There

is no ordering guarantee for different micro-batches for the

same DAG, making micro-batch execution independent of

their generation time. This allows micro-batches to make use

of task, data and pipeline parallelism to the full extent. The

use of micro-batches combined with low-latency matching and

immediate deadline-aware scheduling for execution balances

the throughput and the execution latency, while allowing

maximal utilization of edge and fog resources.

C. Application Execution Engine

We have designed the Cloud, Fog and Edge Execution

(CoFEE) Engine for orchestrating the filter matching, DAG

triggering, schedule planning, and resilient execution of the

user provided dataflows on edge, fog and cloud resources.

Here, we describe its execution model; in the next section,

we propose heuristics for their deadline-aware and resilient

scheduling. The architecture (Fig. 2) consists of edge, fog and

cloud resources (Workers) that are available for task execution.

We also have a separate cloud VM that runs a Master service
for distributed coordination and holding light-weight state.

475

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

Fog PartitionFog Partition
Fog 2

Cloud Worker

Cloud Master

Q U E U E

Fog 1

Scheduler

DAGs & Queries

Data XFR

S h

QE

S L O T SS L O T S

Executor

Scheduler

Edge 1.1Edge 1 1
Executor

Cloud Worker
Scheduler

E t
Data XFR

Edge 1.2Edge 1 2
ExecutorE t

Data XFR

Data XFRD t XF

Sc edu e
Executor

Schedulerd l

Data XFR

S h

QE

S L O T S

Executor

Edge 2.1

Data XFR

Edge 2.2

Data XFR

S

S S

Edge 2 1
Executor

Edge 2 2
Executor

S

S
Register Query

Trigger DAG

Re
qu

es
t B

id
s

Ex
ec

. T
as

k
N

ow

Reserve
Slot

Tim
e

Trigg.

Ex
ec

. D
on

e

1

2

3 5

7

8

8

6

6

6

4 Assign Task Pull μB for exec.

0

Submit DAG
& Query
SuS
&

9 Task Completed

Figure 2: Architecture of CoFEE on Edge, Fog and Cloud

1) Federated Resource Discovery: The cloud and fog work-

ers initially register with the Master. Edge resources bind with

a parent fog when they join the system. The parent is chosen

by querying the Master based on proximity, domain rules or

prior knowledge. The fog schedules tasks and transfers data

for edges in its partition. When an edge goes offline, it may

explicitly inform its parent fog or implicitly drop off by failing

to send heartbeats to it. This federation helps scale to a large

number of edge and fog resources.

2) DAG Registration and Triggering: Sensor services (S
in Fig. 2) generating micro-batch streams may be present on

any edge or fog. DAGs are submitted by the user to the Master

along with its filter query and deadline (Fig. 2 0©). The Master

stores these DAG definitions locally, and registers the query

with a light-weight query-matching engine (QE) running on

each fog (1©). The sensors on the edge or fog stream the meta-
data attributes for micro-batches they generate as events to the

QE on the parent fog. Each event is ≈ 100 bytes in size. The

QE matches the metadata events from sensors in this partition

against the registered queries. We currently support equality

matching for the domain attribute, and equality, intersecting

or contains matching on the spatial and temporal ranges, and

do an AND on the matching predicates. If a micro-batch’s

metadata matches a filter, it triggers the execution of the filter’s

DAG on that micro-batch with the Master (2©). A micro-batch

may match multiple DAGs and trigger multiple executions. By

leveraging the fog for querying, we load balance the query cost

across partitions and avoid the Master being a bottleneck.

3) DAG Scheduling: We discuss finer details of the schedul-

ing heuristics in Sec. IV, but review the approach here. When a

fog matches a micro-batch on its partition and triggers a DAG

(2©), the Master puts the DAG and the micro-batch ID on its

scheduling queue. The Master then unrolls the DAG into linear

pipelines and apportions the DAG’s deadline as sub-deadlines
for the tasks in each pipeline. The source task for each pipeline

is first scheduled, followed by each subsequent task after the

completion of its predecessor.

Scheduling a task follows a inquiry, bid and select cycle.

The Master contacts a subset of under-loaded and cheap fogs

with the task’s baseline execution time, the sub-deadline and

location of the input micro-batch (3©). Each Fog’s Scheduler
responds with a bid if it can execute the task within the

deadline on workers (edges or parent fog) in its partition, and

returns the estimated cost based on its resource pricing. The

Master also gets a bid from the on-demand Cloud worker. It

then selects the cheapest fog partition or the cloud worker

which can successfully execute the task, and assigns the task

to it (4©). When a task completes, the Master is informed of

its output micro-batch ID (8©). The Master then schedules the

next task in the pipeline using a similar cycle. The scheduler

logic of the Master is stateless and can scale concurrently,

while its state and the queue can be replicated for resilience.
4) Data Transfer and Execution: A task that is scheduled

on a fog partition for execution may run on an edge or the

fog, based on the bid. If the input micro-batch to the task is

on a different resource, we use data transfer services running

on each resource to pull the input micro-batch and stage it

locally on the target resource before execution (6©). The data

transfer services of fogs and cloud workers can talk to each

other since they are usually on public networks, but edges on

private networks use their parent fog’s data service to exchange

data. E.g., in Fig. 2, Edge 2.2 pulls an input micro-batch for

a local task from Edge 1.2 through Fog 2 and Fog 1.
5) Resilience: Without loss of generality, only one task

executes on an edge or a fog at a time due to their limited re-

sources, but the execution on a cloud worker can be concurrent

as its capacity and pricing scales linearly. A task executes on

an edge’s Executor service immediately after the fog assigns it

(7©). But an execution on the fog may happen in the future (but

before its sub-deadline) based on an advanced slot reservation
decided by the fog (5©, 8©). The task completion is made

tolerant to edge failures through slot reservation by the parent

fog on itself for fail-over and re-execution (8©), and by caching
the task’s input micro-batch (6©). Once a task completes, the

output micro-batch is stored on the executing resource, the

parent fog informs the Master of the completion, and passes

it the output micro-batch ID to trigger the next task in the

pipeline (9©). These are discussed next in Sec. IV.
6) Implementation: The CoFEE Engine implements all

scheduling and runtime logic as micro-services in Python using

Google RPC and Protobuf. This makes them light-weight and

portable to execute even on low-end edge devices. Specifically,

we have micro-services for the QE, the scheduler, the data

transfer and the task executor, which variously run on edge,

fog and cloud. All edge and fog services run within a container
environment for sandboxing. For simplicity, the task binaries

are pre-installed as part of container or VM image creation.

IV. DEADLINE-AWARE RESILIENT SCHEDULING

The scheduling heuristic that we propose optimizes for (1)
reducing the monetary cost of executing the DAG, (2) while
meeting its deadline, and (3) being resilient to Edge failures.

Building upon the high-level objectives above, the specific

scheduling strategies are discussed in detail next.

A. Inquiry and Selection of Resource upon Trigger
1) Trigger: When a micro-batch from an edge or fog sensor

stream matches a filter query registered with the QE on the

parent fog, it triggers the DAG on the Master with the micro-

batch ID. The Master unrolls the corresponding DAG into

multiple sequential pipelines of tasks.

476

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

The deadline for the entire DAG also applies to each

pipeline. The sub-deadline for each task in the pipeline is

calculated by distributing the DAG’s deadline δ among the

tasks, in proportion to the task’s execution time contribution to

the pipeline [14]. For a pipeline P having tasks [τ1, τ2, ..., τp],
the sub-deadline σi of a task τi is: σi =

θi∑p
j=1 θj

× δ, where

θj is the baseline execution time for a task τj .

2) Inquiry: On a trigger, the Master initiates the inquiry
phase to find the cheapest fog partitions available to execute

the source task for a pipeline. Since there may be 10–100s
of fog partitions, broadcasting the inquiry to all fogs has a

high overhead. But sending the request to more fogs will help

discover the cheapest viable one. To balance between these, the

Master sends an inquiry request to the top-n least-loaded and

cheapest fog partitions. For this, each fog periodically reports

its top-k longest free slots available to the Master. As discussed

next, these free slots are a good proxy for the load on the fog

partition since tasks running on the edge and scheduled on

the fog will reserve these slots. From these, the Master picks

fogs with free slots long enough to execute the task within its

sub-deadline. Among them, it picks the top-n with the lowest

resource cost for the parent fog. This increases the chance of

getting a viable bid, and also prefers cheaper fogs.

The inquiry request is sent to these fogs with details of the

source task τ0 and input micro-batch, 〈τ0, θ0, σ0, μx, αx, rx〉,
which provide the task’s ID, baseline execution time and sub-

deadline, and the micro-batch’s ID, size and the resource it is

present on, based on the initial trigger. The Master waits for a

pre-defined timeout period, tinq , to receive the bid responses

from these n Fogs.

3) Selection: After the timeout period expires or when all n
fogs respond with a bid, whichever is earlier, the Master picks

the viable bid that can complete the task within its deadline

and has the cheapest cost, κmin = minn(κ). It sends that

fog an accept bid message, asking it to proceed with the task

execution; it also sends a reject bid message to the other viable

fogs.

It is possible that none of the fog partitions submit a viable

bid for a task inquiry because their edges or fog are busy

until the task deadline. We implicitly always include a bid

from the Cloud worker in our selection process since it is

always available, on-demand. We first estimate if the Cloud

VM can complete the task within the sub-deadline, considering

the micro-batch transfer time and the task execution time, and

if so, we estimate the cost for execution to form a bid. This

is considered when selecting the cheapest bid from the fogs.

So even if the resource cost for the cloud is cheaper than the

fog, our scheduling heuristics will work. If none of the Fog

partitions submit a bid and if the Cloud VM cannot finish

before the deadline, this task and hence pipeline has failed.

B. Bidding by the Fog for an Inquiry

A fog rFi that receives an inquiry 〈τy, θy, σy, μx, αx, rx〉
checks if it can execute the task τy on the input micro-batch

μx within the sub-deadline on any of its edges, rEj ∈ C(rFi),

or on itself. For this, it first checks these conditions on each

idle edge in its partition not currently executing a task:

ωj +
θy

ρ(rFi)
≤ σy where ωj = tinq + dxj +

θy
ρ(rEj)

This tests if the time taken for: the inquiry and bid phase

to complete, the data transfer dxj from the current micro-

batch location at rx, the task execution on the edge and also

the task re-execution on the fog parent if the edge fails, all

together fall within the sub-deadline σy . Here, ωj gives the

latest completion time on the edge; if the edge fails to complete

the task by this time, we will re-execute it on the fog. We use

estimates of the inter-resource bandwidths βxi and βij between

the resource rx hosting the micro-batch to this parent fog rFi
and from this parent fog to the local edge rEj , and similarly

their latencies λxi and λij , combined with the micro-batch

size αx, to estimate the incoming micro-batch transfer time as

dxj =
(
λxi +

αx

βxi

)
+

(
λji +

αx

βij

)
. The task execution time is

scaled by the relevant processing speed ρ(·) of the resources.

For every edge device r̂Ej which satisfies the above con-

dition, the fog computes the expected maximum cost, κj , for

running the task. This is the cost of executing the task on that

edge, and the probabilistic cost of having to execute the task

on the fog if the edge fails to complete it by the deadline.

κj =
(
kE+

⌈ θy
ρ(r̂Ej)·ε

⌉·π(r̂Ej)
)
+
(
kF+P (r̂Ej)·

⌈ θy
ρ(rFi)·ε

⌉·π(rFi)
)

The first part is the cost on the edge, including monetary cost
for data transfer, kE = αx×(φxi+φij), and the task execution
cost based on the execution time, the billing increment ε, and

price of the edge π(·). The second part is the probabilistic

cost on the fog, which is similar, but includes the probability

of failure of the edge, given by P (r̂Ej). This probability can

be a fixed value provided for the edge, or calculated from its

Mean Time Between Failure (MTBF). kF = αx × φji is the

cost to copy the input micro-batch to the parent fog from the

edge – we always cache a copy of the input micro-batch on

the parent fog to allow for re-execution if the edge fails. These

micro-batch transfer times and costs are adjusted accordingly

if it is already present in the local fog partition.

The fog returns the candidate edge with the cheapest ex-

pected maximum cost back to the Master. However, we still

need to check if the parent fog has the capacity to re-execute

the task if the edge fails. For this, we use a slot reservation

strategy discussed next. If none of the edges can meet the

deadline, or if the fog cannot reserve a future re-execution

slot, we check if the fog can run the task directly and meet

the sub-deadline; if so, we return its cost to the Master, and

if not we return an empty bid to the Master.

C. Advanced Slot Reservation for Fogs

It may be possible to delay executing a task after its

submission and still complete it within its sub-deadline. We

use this intuition to enable re-execution of a task on the parent

fog if it fails on an edge. As concurrent tasks can execute on

different edges of the partition and may fail simultaneously,

we must ensure that all of them can re-execute on the parent

fog within their sub-deadline. Further, tasks may also be

477

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

Edge 1 τ1
Edge 2 τ2

Fog τ1 τ2τ3
Task τ2 fails on edge. Fog re-executes τ2 at start of its backup slot.

Task τ3 runs directly on
fog in a primary slot

Timeline t ω1 ω3 ω2 δ3 δ2δ1

Advance reservation slots on fogAssignment of tasksτ1 τ2 τ3

Task τ1 finishes on Edge 1.
Release backup slot.

Slide τ2 to fit τ3

Figure 3: Task reservation and execution in a Fog partition

directly run on the fog. So we need to carefully plan the tasks

scheduled on the fog to avoid over-allocation of its resources

and guarantee the completion of tasks assigned to its partition.

We use the concept of advanced slot reservation on the fog

to provide these guarantees [15]. Slots are slices of resource
time within the fog’s future timeline that can be reserved for

specific tasks to execute. Slots reserved for re-executing failed

tasks from the edge are backup slots that may or may not be

used, while those reserved for running tasks directly on the

fog are primary slots that will be used.

Once the fog identifies the candidate edges for an inquiry to

run task τy , we sort them in increasing order of their κ cost.

Incrementally, for each edge, r̂Ej , we check the parent fog for

contiguous free slots of length
θy

ρ(rFi)
, starting from the latest

completion time on the edge, ωj , and till the sub-deadline σy .

If so, the fog can re-execute the task on itself during this slot

before the deadline even if the edge fails. We reserve these

slots as backup slots for the task, and return the edge and its

cost to the Master as a viable option.

To check for such contiguous slots rapidly, we maintain the

free slots of the fog in an interval tree data structure and search

for the worst-fit free slot that is viable. Say [t, t′] is the relative

start and end time intervals for the largest free slot. We test

if max(ωj , t) +
θy

ρ(rFi)
≤ t′ and max(ωj , t) +

θy
ρ(rFi)

≤ σy , i.e.,

can we complete the task re-execution before the interval’s end

time and before the task’s sub-deadline. The space complexity

for the tree is O(n) where n is the number of free or reserved

slots, and the time complexity for most operations is O(log n).

If contiguous slots that meet this task’s requirement are not

available, the fog tries to reschedule existing slot reservations
to widen the contiguous free slots, while ensuring that the

task sub-deadlines for these prior reservations are still met.

Intuitively, we use a defragmentation heuristic that attempts

to consolidate consecutive reserved slots to enlarge the free

slot. First, we select the largest available free slot, say, [t, t′],
between [ωy, σy] and slide the slot reservation for some task

τz that immediately succeeds it as far to the future as possible,

without violating its sub-deadline, σz , or overlapping with its

subsequent reservation. This will increase the t′ for the free

slot, and hence widen the free interval, (t′ − t). If this slot is

still not large enough for τy , we attempt to slide the preceding
reserved slot for a task τw as far to the past as possible without

dropping below its edge completion time, ωw, or overlapping

with its preceding reservation. This will decrease t and widen

the free slot. Lastly, we try to do both. This is repeated from

the largest to the smallest free slot until one meets our needs.

If the slot reservation for a task is successful during an

inquiry, the fog returns a viable bid to the Master. But this

reservation is temporary. If the bid is accepted by the Master,

it becomes permanent; if the bid is rejected, the slot reservation

is canceled. Also, if a task completes on an edge, its backup

slot reservation is removed and available for future requests.

Example. Fig 3 illustrates this reservation process. Initially

all the edges are free. When an inquiry for task τ1 comes with

deadline δ1, the fog selects the cheapest free edge, Edge 1 for

its execution from now till ω1. The fog reserves a backup slot
on itself from time range [ω1, ω1+t1] for this task, where t1 is

the task execution duration on the fog. Similarly, task τ2 that

arrives next is assigned to Edge 2 since Edge 1 is in use and

Edge 2 is the next cheapest. It is initially reserved a backup

slot on the fog from [ω2, ω2 + t2]. Now when τ3 arrives, all

edges are busy and the fog tries to reserve a primary slot to

directly run it. Since no slot is large enough to fit τ3 before its

deadline δ3, we slide the slot for τ2 to the right but before its

deadline δ2 to be able to allocate τ3 a slot. When τ1 completes

execution on the edge, its backup slot on the fog is released.

D. Reliable Execution of the Task

When a task is assigned to the fog after the Master accepts

its bid, the parent fog makes the slot reservation for the task

permanent. If required, the fog initiates transfer of the input

micro-batch from the host resource to the edge the task will

execute on; the fog caches a copy on itself for task re-execution

or for direct execution. If the task is assigned to an edge,

the fog invokes the task on the edge. If the task completes

successfully by its deadline, the fog notifies the Master the

output micro-batch ID and deletes the backup slot.

A timer on the fog fires if we reach the start timestamp of

a reserved slot. This can be a primary or a backup slot. If a

primary, the fog invokes the relevant task on the cached input

micro-batch to directly execute it within its sub-deadline and

returns the output micro-batch ID to the Master. If a backup

slot, the edge has failed to complete the task execution on the

micro-batch before its sub-deadline, either because the edge

failed or due to under-performance – a successful completion

on the edge would have deleted this backup slot. The fog then

re-executes this task using its cached input micro-batch, and

responds back to the Master. Importantly, no active notification

from the edge is required for re-execution if it fails.

E. Scheduling Downstream Tasks

The above steps are also applicable for successive tasks in

a pipeline, with the difference being in how they are triggered.

Once the source (or later) task completes execution, the edge,

fog or cloud that executed it notifies the Master , and passes

the output micro-batch ID and its location. This is equivalent

to getting a trigger from the QE, except that we schedule the

next task of an ongoing pipeline for the initial micro-batch.

Note that multiple copies of a pipeline can be executing for

the same DAG but on different input micro-batches. Once the

last task for a pipeline has executed before its deadline, the

478

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

pipeline has completed; once all pipeline branches for a DAG

have completed for an input micro-batch, the DAG execution

has completed.

F. Discussion

Using the fog for backup slots allows us to use cheaper

edge resources reliably without paying for the fog resource

if it is not used. If the edge capacities are all used up, we

schedule directly on the fog by reserving primary slots at any

point before the task’s sub-deadline, to avoid going to the

cloud. If edges are highly reliable, the backup slots are rarely

used; but their existence guarantees task completion. But the

fog cannot use these backup slots for directly executing other

tasks and this can lead to under-utilization. We can extend

the heuristic to allow over-subscription of fog slots during

reservations by a certain ratio χ = allowed load
available capacity

> 1, i.e.,

reserve the same backup slots for up to χ tasks. The choice

of χ can be decided based on the edge reliability or dynamic

conditions. This allows the fog to be fully utilized, and avoids

running tasks on the Cloud. But the trade-off is that it increases

the chance of a failed task from an edge also failing on the

fog if its over-allocated backup slot was used by another edge

task that simultaneously failed. The χ ratio helps the user

decide this trade-off.

V. EXPERIMENTAL EVALUATION

A. System Setup

We use the VIoLET IoT emulation Environment [16] to

accurately mimic the behavior of an edge, fog and cloud

deployment. VIoLET uses Docker containers hosted on VMs

to replicate the compute and network performance of IoT

resources. We configure 111 containers representing 100 Rasp-
berry Pi edges, 5 Jetson TX1 fogs and 6 16-core cloud
resources, along with one cloud VM running the Master. Each

fog partition has one fog and 15–25 edges. These are hosted

on 7 Azure D32 VMs, each with a 32-core Xeon CPU and

128GB RAM, and match the cumulative compute capacity of

the 111 resources. The relative compute performance (ρ) of

edge, fog and cloud are 1:8:50, based on real benchmarks.

The per core-hour billing cost for the cloud is set realis-

tically to 10¢/hr, with the fog and edge being 10% and 20%
cheaper, when normalized for performance. This gives the

resource cost for edge as 0.167¢/hr, Fog as 1.467¢/hr. We use a

1 sec billing increment. The bandwidth and latency between

Fog–Fog and Fog–Cloud is 100 Mbps/5 ms, and for Fog–

Edge as 60 Mbps/1 ms. The bid timeout is set to tinq = 1 sec
and the number of fogs to inquire is n = 2.

B. Application Workload

We use 30 DAGs sourced from permutations of the RI-

oTBench IoT dataflow workload [17]. Each DAG has 2–7
unrolled pipelines (Fig. 4b). We use 8 synthetic tasks with

baseline execution time of θ = 10–60 edge-secs, and their

execution time on a resource linearly scales based on its per-

formance scaling. These tasks are mapped to the RIoTBench

DAG tasks with a Gaussian distribution (Fig. 4a). The median

(a) Task exec.
time histogram

(b) Pipelines per
DAG

(c) Critical path
time

(d) DAG exec.
time

Figure 4: IoT Application Workload Characteristics.

critical path time for a DAG is 204 secs and the total time to

execute all its tasks is 537 secs (≈ 9 min to run a DAG on

an edge (Figs. 4c, 4d)). Synthetic micro-batches with sizes

uniformly from 500–1500 KB are generated from virtual

sensors on edges. Their attributes match the filter query’s

“hit-rate” (micro-batches triggered/sec, and hence load on the

system) for each experiment.

C. Baseline Scheduling Strategies

We compare our proposed scheduling strategy with three

baseline algorithms to evaluate their costs and ability to

complete the DAGs by the deadline.

1) Cloud-Only (CO) Baseline: In this simple algo-

rithm [18], the edge and fog only generate micro-batches

from sensors and transfer them. Every task that is triggered is

executed only on the Cloud worker. Sufficient VM capacity is

ensured to execute the peak number of concurrent tasks that

are present. This makes it fast and reliable but at a higher cost.
The micro-batch still needs to move from its source resource

to the Cloud. This is reflected in the execution time and the

resource cost.

2) Local Fog Partition (LFP) Baseline: This greedy algo-

rithm executes all tasks in a DAG on the same fog partition

containing the source micro-batch. Within the partition, it

picks the cheapest available edge where the task can complete

within its deadline. The parent fog is chosen only if all the

edges are busy or cannot complete the task within the deadline,

and the fog is free. There is no future slot reservations on

the fog. A task (and pipeline) fails if the edge executing it

fails or if inadequate resources are currently available in the

fog partition for scheduling it. This localizes the scheduling
decision and reduces the data movement to the partition, but
may be unreliable as the task deadline is not efficiently used.

3) Fog Service Placement Problem (FSPP) Baseline: This

adapts the deadline-aware application scheduling from [19].

Tasks arriving with deadlines on a fog partition’s queue are

accumulated in a 1 sec window, solved as an Integer Linear

Programming (ILP) scheduling problem using IBM CPLEX,

and placed on local edges, the fog, the cloud, or a neighboring

fog partition. Triggered Triggered DAGs are uniformly spread

across the fogs, unrolled, and their tasks placed on the fog

queue when ready. Only one task executes on a resource at

479

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

(a) Total Cost (left bar) &
Avg. Cost for successful
pipelines (right dot)

(b) Pipeline success rate
(green) & failure (red)
rate

(c) Ratio of triggered
tasks scheduled on Edge,
Fog & Cloud)

Figure 5: Performance of the schedulers with reliable edges

a time, and the execution time on a resource depends on its

performance scaling.

While CoFEE, CO and LFP actually trigger, schedule the

DAGs and and execute their tasks for the micro-batch streams

within VIoLET containers, we simulate this workload for the

FSSP scheduler and estimate the task completion and costs.

D. Execution Cost Analysis with Reliable Edges

In these experiments, we evaluate the ability of CoFEE to

complete all the DAGs for micro-batches they are triggered

for, within the deadline and at a lower cost, compared to

the baseline CO, LFP and FSPP schedulers. We deploy the

30 DAGs on the 100 edge, 5 fog and 6 cloud workers

with the default pricing. Here, we assume that all resources

including edge are always reliable. We configure the DAG

filter queries such that the cumulative micro-batch triggering
rate is 15 micro-batches/min, with a uniform probability on

the edge source that generated the matching micro-batch and

target DAG that it triggers. This translates to an average
application load of 100% of the total edge and fog resource

capacities, considering the basic scheduling overheads. We

assign a deadline that is 110% of the critical path duration

for each DAG when executing on edge resources, i.e., 10%
extra. We allow CoFEE to over-allocate the slot reservations

(χ > 1) such that the full fog capacity can be used for primary

slots, and it can support backup slots for the cumulative edge
capacity in its partition. The experiments run for 20 mins,

and a total of ≈ 2740 tasks are executed per run.

Figs. 5 show the various metrics for CoFEE and the base-

lines. The total monetary cost for executing all the triggered

DAGs is shown in Fig. 5a, left Y axis bar. LFP has the smallest

total cost, followed by CoFEE, FSPP and CO. LFP appears

to be 35% cheaper than CoFEE. However, when we consider

the success rate in Fig. 5b that shows the fraction of pipelines

that completed within the deadline, LFP a 34.5% failure rate

while CoFEE and CO successfully complete all their tasks.

This reduced load due to failures leads to a proportionally

lower total cost for LFP. FSPP is 19% cheaper than CO but

almost twice as expensive as CoFEE, and exhibits a 13.5%
failure rate. The cost per successful pipeline execution (Fig. 5a,

right Y axis red dot) for CoFEE is similar to LFP and 50%
cheaper than CO and FSPP, with the latter two comparable.

(a) Total (bar) and Aver-
age (dot) pipeline cost

(b) Pipeline Success and
Failure rates

(c) Tasks completed on
Edge, Fog & Cloud

(d) Total (bar) and Aver-
age (dot) pipeline cost

(e) Pipeline Success and
Failure rates

(f) Tasks completed on
Edge, Fog & Cloud

Figure 6: Performance of CoFEE and LFP on unreliable edges,

with MTBF of 100mins (top row) and 40mins (bottom row).

Fig. 5c shows the fraction of all triggered tasks that ran

on each resource type for the three algorithms. CoFEE intel-

ligently uses all three types – edge, fog and cloud – to offer

100% completion within the deadline and at a low cost. Only

3.3% of its tasks run on the cloud while 27.3% on the fog

and the rest 69.4% on edge resources. As designed, the cloud

worker is used only when the edge and fog do not have the

capacity to complete the task within its deadline. There are

no edge failures in this setup. Though the average count of

DAGs triggered match the cumulative capacities of the edge

and fog, the random generation of micro-batch causes load

spikes which the cloud handles. While LFP lowers costs by

only using the local edge and fog, its reliability is lower by

not using the cloud, other fog partitions or future fog slots.

Like CoFEE, FSPP also uses all three resource types but runs

28.7% of the tasks on the cloud vs. only 3.3% for CoFEE.

E. Application Resiliency Analysis with Unreliable Edges

One of the key benefits of CoFEE is its ability to schedule

applications with a high degree of resilience, even when the

edge resources are fault-prone. Its advanced slot reservation

heuristics on reliable fogs help achieve this. In these experi-

ments, we evaluate the effectiveness of CoFEE in successfully

completing DAG executions when edges have a low and high
rate of failures. We compare this against the LFP baseline;

the CO baseline is not pertinent since it will always complete

successfully on the cloud irrespective of the edge failures.

The experiment setup is similar to the above with some key

differences. We use two configurations of MTBF for the Edge

resources, 100 mins (M100) and 40 mins (M40). This means

that with 100 edges and an experiment runtime of 20 mins,

we expect 20 edge failures (≈ 1/min) for M100 and 50 edge

failures (≈ 2.5/min) for M40. The edges fail independently
based on a uniform probability across time that matches these

MTBFs. We have a mean application load that is 100% of the

cumulative capacities of the edge, which initially generates

480

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

a cumulative of 10 micro-batches/min. This is smaller than

earlier, where the application load could also saturate the fog

for direct execution. Now, we expect to use the parent fog for

backup slots that will be used due to edge failures. Since the

edges are the source of the micro-batch, the loss of an edge

proportionally reduces the application load and the compute

capacity of the system, maintaining the average load at ≈
100% of the available edges. We retain a DAG deadline of

110% of its critical path using only edge resources.

Fig. 6 plots the various metrics for these two scenarios;

M100 is on the top row and M40 on the bottom row. In Figs. 6a

and 6d, we report the resource cost to execute tasks that are

part of pipelines that eventually complete successfully (light

blue) and the extra cost for tasks that execute for pipelines

that finally failed and hence wasted (dark blue).

As before, LPF has a lower total cost for execution in both

cases (Figs. 6a and 6d), explained by its large number of

failures (Figs. 6b and 6e). The fraction of pipelines that fail for

LFP has not increased from earlier even though edges fail in

this setup. The failure rate for M40 is marginally higher than

M100, 26.9% vs. 23.9%, and both are lower than 34.5% seen

above. But unlike the previous setup where the application

load was 100% of both edge and fog capacities, now it is

only at 100% of the edge capacities. This lower load causes

fewer failures. The failure rate difference between M100 and

M40 is small. In its attempt to greedily schedule the tasks on

a current free resource rather than use the deadline slack to

defer the execution, LFP is often unable to find a free edge

or fog. A small number of additional edge failures does not

make this situation much worse. But the extra cost wasted by

LFP on tasks of failed pipelines is higher for M40 than M100

since there is a greater chance of progress being lost for M40.

CoFEE is able to successfully complete all DAGs in the

M100 setup, and all but 5 of the 580 pipelines even in the

M40 setup (Figs. 6b and 6e). In the latter, three of the failures

happen because the fog was over-booked and executing a

primary task during the backup slot, when the edges failed.

Two failures happened because the edge was selected for

execution but failed before the execution was started.

We see from Figs. 6c and 6f that CoFEE makes greater

use of cloud workers as the unreliable edges increase, running

4.1% and 11.3% of tasks on the cloud for M100 and M40.

This partly explains the higher cost expended. As the failure

rate increases, the edge cost spent on failed tasks also grows

(Figs. 6a and 6d). ≈ 12% and ≈ 24% of the total cost is

wasted for M100 and M40. However, unlike LFP, these tasks

eventually succeed by re-executing on the fog. That said, the

mean cost per pipeline remains close to LFP that exclusively

schedules on only edge and fog resources.

F. Scalability Experiments

Lastly, we examine the ability for the CoFEE runtime and

scheduler to scale with the rate at which the DAGs that are

triggered for execution. This reflects both the light-weight

nature of our micro-service based implementation and also

the limited runtime overheads for the scheduling algorithm.

(a) Total (bar) and Average (dot)
pipeline cost

(b) Task Throughput per Minute

Figure 7: Scalability of CoFEE scheduler and runtime.

We use a workload identical to the reliable edge experiments

in Sec.V-D, which we call 1×WL. We then double the rate

at which the micro-batches are generated while halving the

execution time per task in the 30 DAGs. This maintains the

application computation load on the cumulative edge and fog

resources at 100%, and yet doubles the number of tasks that

are scheduled per second. We also increase the DAG deadline

to 125% since some of the scheduling costs have a fixed time

overhead. With shorter tasks, a larger fraction of the critical

path time is used for these. This workload is called 2×WL.

Fig. 7a plots the total cost for running these two workloads

using CoFEE (bar on left Y axis). While the actual com-

pute load for both these workloads are identical the 2×WL

workload has a marginally higher total execution cost than

the 1×WL workload. The key reason for this is the billing

granularity of 1 sec. For the smaller tasks, it is more likely that

the billing round-up will cause excess payment for resources

that are not used, and this accumulates across the 9154 tasks

that are executed for 2×WL. The average per-pipeline cost

(red dot on right Y axis) is half for 2×WL as that of 1×WL.

This is as expected as the tasks are half as long. Fig. 7b shows

a violin plot distribution of the number of tasks scheduled per

minute by the Master. The median task scheduling throughput

for 2×WL is about twice that of 1×WL at ≈ 6 tasks/sec.
With higher rates of task generation, there is also more

variability in the rate of tasks.

In summary, the scalability of the system is limited by DAG

triggering and task scheduling. QE can match > 1000 micro-

batch-queries per second, per fog, and weakly-scales with the

fog and stream counts. The ≈ 360 tasks/min supported by our

scheduler can improve by batching task scheduling requests

to amortize the inquiry–bid–selection cost between cloud and

fogs. These should allow us to scale to 1000s of streams.

VI. RELATED WORK

There is an emerging body of work on scheduling of

applications on the edge, fog and cloud ecosystem. Existing

conceptual works deal with basic architectures, Application

Programming Interfaces (APIs), and data communication [20].

In contrast, the question of how to effectively trigger, distribute

and schedule streaming IoT applications across edge, fog and

cloud resources has garnered less attention.

481

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

Publish-subscribe brokers allow queries to be registered

with topics. Published events that match the queries are routed

to the subscriber [21]. Brokers like MQTT are commonly

used to route streams from sensors to application consumers

through a well-defined topic for each sensor [22]. But if every

(large) micro-batch is sent as an event to a Cloud broker, it

defeats the goal of moving compute to the data on the edge.

If no queries match the micro-batch, the data movement has

been unnecessary. If just the metadata is sent, we still spend

the round-trip latency for triggering. Our application triggering

design approaches a federated publish-subscribe model, with

the subscriber initiating the execution of a DAG. Complex
Event Processing (CEP) has been used for analytics over

sensor events [4]. Here, we adopt it within the QE engine

to match the micro-batch metadata and trigger DAGs.

Function as a Service (FaaS) offer a “serverless” application

model on the Cloud to execute simple stateless functions over

input events [13]. Users also define a resource requirement.

Invocations to these functions can then be seamlessly scaled

by the provider on multiple VMs. FaaS are also offered on

the edge by Azure IoT Edge [23]. Our stateless tasks resemble

FaaS but offer dataflow composition, and leverage data locality

and lower pricing when deciding where to run the function.

Research literature has examined programming models for

mobile edge, and on-demand fog and cloud resources along

with a scheduling strategy [24]. Here, the applications are

strictly wired as a tree, typically rooted in the cloud, and

the tasks are deployed prescriptively at specific edge or fog

hierarchy levels. We allow placement of tasks on any resource,

based on deadline and cost optimization. They perform elastic

resource acquisition when a fog is overloaded, and spatially

repartition the process state, but do not consider the cost and

deadline. CoFEE imposes a makespan deadline constraint with

edge and fog having bounded capacities.

There is a large body of work on scheduling applications on

edge, fog and cloud [25]. Some consider scheduling strategies
on fog and cloud [26] for a Bag of Tasks (BoT), where cloud

resources are billed while the fog is free. They use fog to

execute as many tasks as possible with two minimization goals

– the delay to propagate data to the cloud, and the cost. They

extended this for scheduling DAGs with deadlines on fog and

cloud using ILP [19], which we empirically compare against

in Sec. V. Here, if a fog partition is not able to accept a task,

it off-loads it to a neighboring fog. Reliability is a non-goal.

We instead consider a global view of all available resources

and solicit bids to select the cheapest one. Our fog and edge

resources are billed, albeit cheaper than the cloud.

Some papers use hard deadlines – more appropriate for

mission-critical execution on streaming data – and maximize

resource usage on free fogs [27]. We use micro-batch and soft

deadlines for tunable latency and throughput. Our edge and fog

resources have usage costs, and the edge is unreliable. Energy
constraints are also considered in scheduling. Deng, et al. [28]

investigate the power-delay trade-off as a metric for workload

allocation in fog and cloud. They schedule transactional tasks

on few fog and cloud resources to minimize their power usage

while meeting the delay constraint. Others [29] map IoT tasks

on Fog and Cloud resources using network bandwidth, latency

and energy as constraints. In this paper, we consider energy

to be subsumed by the pricing of the edge and fog.

There exists literature on distributed dataflow runtime and

middleware for edge and/or fog and/or cloud computing [12],

[30]. However, they do not focus on application triggering and

advanced scheduling. Some also consider migration of tasks

and VMs for reliability and locality [31]. We instead focus on

light-weight task-level re-execution.

Several dimensions such as flexible dataflow triggering,

hybrid resource reliability, and decentralized planning are

missing from existing scheduling literature. We address these

concerns here. We propose a novel declarative data-triggered

approach for instantiating DAGs. These are scheduled on un-

reliable edge, and reliable fog and cloud resources to minimize

the execution cost, and we use advanced slot reservations to

meet the deadline and operate at scale.

VII. CONCLUSIONS

In this paper, we have presented a novel declarative model

for matching micro-batches generated by evolving stream

sources with dataflows that are interested in consuming them,

allowing developers to intuitively trigger their applications

for sources based on their description ("what") rather than

their endpoint ("where"). Our micro-batch model balances

throughput against latency to scale to 1000s of streams. We

have proposed a scheduling strategy to minimize execution

costs on unreliable edges, and reliable fog and cloud resources

using a federated bid–inquiry price discovery mechanism that

scales with the resource count. It is also able to ensure reliable

dataflow completion before its deadline using advanced slot

reservations on the fogs. Our CoFEE platform implements

these and is validated through comparative experiments on 30
DAGs, 10k task runs and > 100 edge, fog and cloud resources.

As future work, we plan to examine models that avoid com-

plete unrolling of the DAG for efficiency. We also plan better

recovery strategies based on keeping track of the execution

lineage of tasks to avoid having to cache micro-batches, and

to support triggering over micro-batch generated in the past.

More detailed experimental setups will be useful as well.

ACKNOWLEDGEMENT

This work was supported by grants from the Depart-

ment of Science & Technology, India under the Internet of

Things (IoT) Research of Interdisciplinary Cyber Physical

Systems (ICPS) Programme. We thank the members of the

DREAM:Lab at IISc, including Prashanthi S.K. and Deep-

subhra Guha Roy, for their feedback on the CoFEE platform

and the paper.

REFERENCES

[1] Y. Simmhan, P. Ravindra, S. Chaturvedi, M. Hegde, and R. Ballamajalu,
“Towards a data-driven iot software architecture for smart city utilities,”
Software: Practice and Experience, vol. 48, no. 7, pp. 1390–1416, 2018.

[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog computing: A
platform for internet of things and analytics. Springer, 2014, pp. 169–
186.

482

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

[3] S. Aman, M. Frincu, C. Chelmis, M. Noor, Y. Simmhan, and V. K.
Prasanna, “Prediction models for dynamic demand response: Require-
ments, challenges, and insights,” in 2015 IEEE International Conference
on Smart Grid Communications (SmartGridComm). IEEE, 2015, pp.
338–343.

[4] P. Kolios, C. Panayiotou, G. Ellinas, and M. Polycarpou, “Data-driven
event triggering for iot applications,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 1146–1158, 2016.

[5] H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream
processing frameworks for iot applications in smart cities,” Journal of
Big Data, vol. 6, no. 1, pp. 1–24, 2019.

[6] B. Amrutur, V. Rajaraman, S. Acharya, R. Ramesh, A. Joglekar,
A. Sharma, Y. Simmhan, A. Lele, A. Mahesh, and S. Sankaran, “An
open smart city iot test bed: street light poles as smart city spines,”
in Proceedings of the Second International Conference on Internet-of-
Things Design and Implementation, 2017, pp. 323–324.

[7] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier
fog computing with large-scale iot data analytics for smart cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 677–686, 2017.

[8] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto et al.,
“A manifesto for future generation cloud computing: Research directions
for the next decade,” ACM computing surveys (CSUR), vol. 51, no. 5,
pp. 1–38, 2018.

[9] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[10] P. Varshney and Y. Simmhan, “Demystifying fog computing: Charac-
terizing architectures, applications and abstractions,” in 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), 2017,
pp. 115–124.

[11] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1–17, 2018.

[12] P. Ravindra, A. Khochare, S. P. Reddy, S. Sharma, P. Varshney, and
Y. Simmhan, “Echo: An adaptive orchestration platform for hybrid
dataflows across cloud and edge,” in International Conference on
Service-Oriented Computing. Springer, 2017, pp. 395–410.

[13] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
serverless computing and function-as-a-service (faas) in industry and
research,” Tech. Rep., 2017.

[14] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Gener. Comput. Syst., vol. 29, no. 1, Jan. 2013.

[15] L. Ramakrishnan, C. Koelbel, Y.-S. Kee, R. Wolski, D. Nurmi, D. Gan-
non, G. Obertelli, A. YarKhan, A. Mandal, T. M. Huang et al., “Vgrads:
enabling e-science workflows on grids and clouds with fault tolerance,”
in Proceedings of the conference on high performance computing
networking, storage and analysis, 2009, pp. 1–12.

[16] S. Baheti, S. Badiger, and Y. Simmhan, “Violet: An emulation environ-
ment for validating iot deployments at large scales,” ACM Transactions
on Cyber-Physical Systems, vol. 5, no. 3, pp. 1–39, 2021.

[17] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: A real-time iot
benchmark for distributed stream processing platforms,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 21, 2017.

[18] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future generation computer systems, vol. 29, no. 1, pp. 158–169, 2013.

[19] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware
fog service placement,” in IEEE International Conference on Fog and
Edge Computing (ICFEC), 2017, pp. 89–96.

[20] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Chapter 4: Fog computing: principles, architectures, and applications,”
in Internet of Things, R. Buyya and A. Vahid Dastjerdi, Eds. Morgan
Kaufmann, 2016, pp. 61–75.

[21] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[22] A. Banks and R. Gupta, “Mqtt version 3.1.1,” OASIS standard, vol. 29,
2014.

[23] Microsoft, “Deploy azure functions as iot edge modules,” https://
docs.microsoft.com/en-us/azure/iot-edge/tutorial-deploy-function, 2021.

[24] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proceedings of the second ACM SIGCOMM
workshop on Mobile cloud computing, 2013, pp. 15–20.

[25] P. Varshney and Y. Simmhan, “Characterizing application scheduling
on edge, fog, and cloud computing resources,” Software: Practice and
Experience, vol. 50, no. 5, pp. 558–595, 2020.

[26] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provi-
sioning for iot services in the fog,” in IEEE International Conference on
Service-Oriented Computing and Applications (SOCA), 2016, pp. 32–39.

[27] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, 2018.

[28] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, 2016.

[29] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[30] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet, “Revisiting
service-oriented architecture for the iot: a middleware perspective,” in
International Conference on Service-Oriented Computing. Springer,
2016, pp. 3–17.

[31] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards virtual
machine migration in fog computing,” in IEEE International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.

483

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 19,2022 at 08:21:12 UTC from IEEE Xplore. Restrictions apply.

