
Towards Distributed Coordination for Fog Platforms
Tobias Pfandzelter, Trever Schirmer, David Bermbach

Technische Universität Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group

{tp,ts,db}@mcc.tu-berlin.de

Abstract—Distributed fog and edge applications communicate
over unreliable networks and are subject to high communica-
tion delays. This makes using existing distributed coordination
technologies from cloud applications infeasible, as they are built
on the assumption of a highly reliable, low-latency datacenter
network to achieve strict consistency with low overheads. To help
implement configuration and state management for fog platforms
and applications, we propose a novel decentralized approach that
lets systems specify coordination strategies and membership for
different sets of coordination data.

Index Terms—fog computing, edge computing, service orches-
tration

I. INTRODUCTION

To leverage fog and edge computing, fog application and
data distribution platforms have been proposed that shift the
burden of managing the heterogeneous, distributed infrastruc-
ture. As shown in Figure 1, these platforms manage the repli-
cation and orchestration of services, e.g., function instances in
a FaaS platform [1]–[4], and data, e.g., application state [5]–
[7]. A key requirement here is the coordination among fog
nodes for exchange of configuration and management data,
e.g., access control, monitoring data, naming, or routing, not
unlike coordination in a distributed cloud system. Existing
distributed application coordination methods and systems,
e.g., etcd1 or Apache Zookeeper2, rely on highly available dat-
acenter networks to achieve equally highly available, strictly
consistent coordination with low overhead. In contrast to cloud
data centers, fog resources are typically distributed over wide
geographical areas and communicate over the Internet instead
of dedicated (private) networks, making the existing cloud
coordination approaches infeasible: As a result of CAP [8]
and PACELC [9], the frequent network partitions lead to
service disruption, making the platform unavailable. In addi-
tion, the high communication delay between distant fog and
edge resources would lead to considerable latency for both
centralized and decentralized strictly consistent coordination,
either as a result of the long path between a client and central
server, or of the path distance between participants. Finally,
fog systems usually comprise thousands of servers in the edge,
cloud, and in-between – orders of magnitudes more than in
cloud systems. These sites are also heterogeneous in their
capabilities, from single-board edge computers to clusters of
cloud virtual machines [10].

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 415899119.

1https://etcd.io/
2https://zookeeper.apache.org/

Application
Replica

Service
Replica

Function
Replica

Data
Replica

Fig. 1. A fog platform manages the replication of application components
by abstracting from the underlying geo-distributed and heterogeneous fog
infrastructure.

Two factors control different quality of service (QoS) as-
pects of coordination approaches, such as availability and
access latency: (i) how coordination state is exchanged, i.e.,
synchronously or asynchronously, or which participant may
start an update [11], and (ii) who participates in the update
exchanges, i.e., the set of nodes that have copies of the
coordination data or must reach consensus on an update. While
these factors also apply in cloud applications, their impact in a
fog environment is decidedly different, e.g., node membership
must also take network distance into account.

The tradeoffs at play here make a one-size-fits-all solution
infeasible for fog environments. The optimal choice depends,
among others, on the type of data, data access patterns,
the (geo-)distribution of clients accessing the data, and QoS
requirements. In this paper, we thus propose a fog coordination
approach that lets developers make these choices per set of
coordination data, requiring few changes to the platforms and
applications.

II. RELATED WORK

With an increased research interest in fog computing, nu-
merous fog platforms for application and data management
have been proposed that mostly adapt global, strictly consistent
coordination from cloud platforms. FBase [6], [7] uses a cen-
tralized naming service for configuration and access control,
similarly to the use of Chubby [12] in the GFS [13] and
BigTable [14] data store systems. In the FBase implementation,

ar
X

iv
:2

20
3.

07
93

4v
1 

 [
cs

.D
C

] 
 1

5 
M

ar
 2

02
2



this naming service is based on Apache Zookeeper. Foger-
netes [15] extends Kubernetes to the fog using a centralized
master that handles configuration. While these approaches
allow strictly consistent configuration management without a
performance impact for constrained edge devices, the long
delay for reads and writes can impact access latency, and any
network partition can make the system unavailable.

An alternative approach is a decentralized configuration
management. Eberhardt et al. [16] propose using conflict-free
replicated data types (CRDTs) to distribute configuration data
for Docker containers. Similarly, Jeffery et al. [17] propose
replacing central configuration in Kubernetes with an even-
tually consistent, distributed approach. Using CRDTs, write
latency is reduced as conflicts are resolved lazily. Although
decentralized approaches scale well, they also require global
synchronization and data exchange, which can be bandwidth-
intensive. Furthermore, the eventual consistency can be prob-
lematic for some use-cases, e.g., access control, where a user
might expect a permission change to be final.

III. DISTRIBUTED CONFIGURATION

As we have motivated, in fog platform coordination, dif-
ferent data types require a different tradeoff between latency
and consistency. In contrast to choosing only either strict or
eventual consistency, our approach lets systems specify how
a set of configuration or state data is managed. Additionally,
we propose the notion of coordination memberships, where
data is only coordinated within a subset of all fog sites in
order to limit update dissemination in the geo-distributed fog
environment. Here, we use the concept of fog nodes, a virtual
group of machines all running in the same fog location. Our
plan is to implement this approach with a middleware.

A. Coordination Strategy

Fog platforms require coordination on different types of
control data: Naming data that globally identifies different fog
nodes, nodes that replicate a certain service, coordination on
data sharding in light of high node churn, or client permissions.
For these different types of control data, it is desirable to be
able to specify a coordination strategy to increase consistency
where necessary to ensure correct system operation, or to
decrease consistency to achieve a lower latency. We propose
between two such strategies, namely:

1) Eventual Consistency with CRDTs: Using CRDTs to
manage configuration data allows nodes to write changes
without consulting other nodes in the system. This reduces
request latency and keeps the system available in case of
network partitions. While the observed configuration state is
guaranteed to converge in the absence of errors and updates,
data will often be stale. This may be achieved with lazy,
intermittent synchronization or gossip among nodes.

2) Strict Consistency with Consensus: Reaching consensus
on configuration updates incurs a significant communication
delay in a geo-distributed system and might even be impossible
when the network is partitioned. This is desirable in cases
where the correct operation of the system depends on strictly

node 
coordination

Fog Node A

Fog Node B

Fog Node C

M2

M1

M3

Application Replica Set

replica set 
coordination

system
coordination

Fig. 2. We identify three levels on which fog nodes require coordination:
(i) global system coordination among all nodes, required, e.g., for naming;
(ii) coordination within a replica set to coordinate, e.g, access control for a
service replica; and (iii) node coordination among multiple machines of the
same node, e.g., a cluster of datacenter instances.

consistent coordination. We may achieve strict consistency by
using a consensus protocol among nodes or even with a central
coordinator (essentially, a primary copy approach [11]).

B. Coordination Levels

Limiting the number of participants for both CRDT message
distribution and majority quorums can improve performance
and reduce network usage. We thus introduce different levels
of coordination, as shown in Figure 2: (i) the system level, (ii)
the replica set level, and (iii) the node level. With replica set,
we here refer to the group of fog machines jointly managing
an application-level replica, e.g., all copies of a data item in
the case of a fog storage system, or all instances of a function
in case of a FaaS platform.

1) System Coordination: Some data, such as naming data,
which must be globally unique and known by all nodes in
the system, require coordination among the entire fog system.
As a result, a high communication delay can be expected
that imposes a high overhead for consensus with higher write
ratios and increases the message dissemination cost for update
broadcasts.

2) Replica Set Coordination: Other data is only relevant
for members of a replica set, e.g., replica control data. Such
data could be access control lists for a replicated application
or membership data for the replica set. In some cases, where a
replica set comprises geographically close nodes, limiting the
coordination for this data to a specific set of fog nodes can
even reduce the network delay for this coordination group.
Note that the membership of a replica set can change, e.g.,
when a data replica is migrated to a different location.

3) Node Coordination: A fog node comprises one or more
physical machines running in the same location, e.g., a micro-
datacenter on the edge. Within such a fog node, there will
often be coordination needs, e.g., when individual machines
run different application code. In this case, the node machines
must coordinate in order to appear as one node to other nodes.



P
la
tf
or
m

Write

Determine Strategy and 
Relevant Fog Nodes

Middleware

Response Consensus 
among 
Members

CRDT 
Updates

Fig. 3. The coordination middleware takes write requests from the application
and determines the relevant fog nodes based on the configured level for a
data type. Depending on the configured consistency, a CRDT update is sent
immediately (red) or consensus is reached with other members (blue).

C. Architecture

We propose to implement our approach as a coordination
middleware that can be used by different fog applications
or platforms. Initially, the application’s data types must be
configured, i.e., coordination strategies and levels are defined
for each coordination data set. Figure 3 illustrates the update
process: When a write is performed, the middleware first
determines the relevant fog nodes for that update depending on
membership. We assume that replica set membership is also
stored in this coordination middleware or can be inferred from
system configuration data. For data types that are configured
with eventual consistency, the update is propagated to those
nodes as a CRDT update in an asynchronous manner. Where
strict consistency is required, a consensus is reached with the
relevant nodes before the update is persisted. The middleware
will serve read requests from a local cache, where, e.g.,
CRDT updates from other nodes are applied. If required, a
read quorum for strictly consistent data items may also be
established. Alternatively, only a subset of the set of member
nodes may be chosen, e.g., only the cloud nodes for system
coordination, or following a leader-follower approach for node
coordination.

IV. CONCLUSION & FUTURE WORK

In this paper, we have proposed a new architecture for
distributed coordination in fog platforms. We have motivated
why different types of data require different tradeoffs between
consistency and latency. Further, we have shown different
levels of coordination, from system to node configuration
and state management, which limits message passing and
consensus participants for geo-distributed fog platforms. As a
middleware, an implementation of this approach can be used
by different fog and edge platforms without changes to their
architecture.

It also opens a number of interesting future research direc-
tions: We plan to evaluate the impact of consistency tuning on
both correctness and performance of different fog platforms
to find out which kinds of data can benefit from relaxed

consistency guarantees. Of course, the middleware may be
extended for other coordination strategies. Furthermore, fog
overlay networks may be used for deduplication of CRDT
update messages to limit the network cost of an update broad-
cast. Finally, we also plan to explore inferring coordination
strategies and levels from data access to allow an integration
of the coordination middleware without explicit configuration
of data types.

REFERENCES

[1] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada, “Fog function: Serverless
fog computing for data intensive IoT services,” in Proceedings of
the 2019 IEEE International Conference on Services Computing (SCC
2019), Jul. 2019, pp. 28–35.

[2] L. Baresi and D. Filgueira Mendonça, “Towards a serverless platform
for edge computing,” in Proceedings of the 3rd IEEE International
Conference on Fog Computing (ICFC 2019), Jun. 2019, pp. 1–10.

[3] L. Baresi, D. F. Mendonça, and G. Quattrocchi, “PAPS: A framework
for decentralized self-management at the edge,” in Proceedings of the
17th International Conference on Service-Oriented Computing (ICSOC
2019), Oct. 2019, pp. 508–522.

[4] A. Bocci, S. Forti, G.-L. Ferrari, and A. Brogi, “Secure FaaS orches-
tration in the fog: how far are we?” Computing, vol. 103, no. 5, pp.
1025–1056, 2021.

[5] S. H. Mortazavi, B. Balasubramanian, E. de Lara, and S. P. Narayanan,
“Pathstore, a data storage layer for the edge,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services (MobySys 2018), Jun. 2018, p. 519.

[6] J. Hasenburg, M. Grambow, and D. Bermbach, “Towards a replication
service for data-intensive fog applications,” in Proceedings of the 35th
ACM Symposium on Applied Computing, Posters Track (SAC 2020),
Mar. 2020, pp. 267–270.

[7] ——, “FBase: A Replication Service for Data-Intensive Fog Applica-
tions,” Tech. Rep., 2019.

[8] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, pp. 51–59, 2002.

[9] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story,” Computer, vol. 45, no. 2, pp.
37–42, 2012.

[10] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat,
and S. Tai, “A research perspective on fog computing,” in Proceedings
of the 15th International Conference on Service-Oriented Computing
(ICSOC 2017) Workshops, Aug. 2018, pp. 198–210.

[11] F. Pedone, M. Wiesmann, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
Proceedings of the 20th IEEE International Conference on Distributed
Computing Systems (ICDCS 2000), Apr. 2000, pp. 464–474.

[12] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI 2006), Sep. 2006, pp. 335–350.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
Operating Systems Review, vol. 37, no. 5, pp. 29–43, 2003.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems, vol. 26, no. 2, pp. 4:1–4:26, 2008.

[15] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge, “Fogernetes: Deploy-
ment and management of fog computing applications,” in Proceedings of
the 2018 IEEE/IFIP Network Operations and Management Symposium
(NOMS 2018), Apr. 2018, pp. 1–7.

[16] J. Eberhardt, D. Ernst, and D. Bermbach, “Smac: State management
for geo-distributed containers,” in Proceedings of the 2nd IEEE Inter-
national Workshop on Container Technologies and Container Clouds
(WoC 2016), Apr. 2016.

[17] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting kubernetes for
the edge,” in Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking (EdgeSys 2021), Apr. 2021, pp. 7–
12.


	I Introduction
	II Related Work
	III Distributed Configuration
	III-A Coordination Strategy
	III-A1 Eventual Consistency with CRDTs
	III-A2 Strict Consistency with Consensus

	III-B Coordination Levels
	III-B1 System Coordination
	III-B2 Replica Set Coordination
	III-B3 Node Coordination

	III-C Architecture

	IV Conclusion & Future Work
	References

