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Abstract 

Job recommendation has traditionally 

been treated as a filter-based match or as a 

recommendation based on the features of 

jobs and candidates as discrete entities. In 

this paper, we introduce a methodology 

where we leverage the progression of job 

selection by candidates using machine 

learning. Additionally, our 

recommendation is composed of several 

other sub-recommendations that contribute 

to at least one of a) making 

recommendations serendipitous for the 

end user b) overcoming cold-start for both 

candidates and jobs. One of the unique 

selling propositions of our methodology is 

the way we have used skills as embedded 

features and derived latent competencies 

from them, thereby attempting to expand 

the skills of candidates and jobs to achieve 

more coverage in the skill domain. We 

have deployed our model in a real-world 

job recommender system and have 

achieved the best click-through rate 

through a blended approach of machine-

learned recommendations and other sub-

recommendations. For recommending jobs 

through machine learning that forms a 

significant part of our recommendation, 

we achieve the best results through Bi-

LSTM with attention. 

1    Introduction 

Job recommendation is primarily aimed at 

supporting the discovery of jobs that may interest 

the user. It should be dynamic in order to cater to  

 

 

 

the changing preferences of the user. For 

instance, a person looking for a job at X location 

might not be interested in the location a few years 

down the line. Similarly, a job that is relevant for 

an individual now might not be exciting enough 

in the future because of a possible upskilling. 

Consequently, this puts the onus of accounting 

for such variables on the recommender system to 

always be context-aware and relevant. 

    Jobs have criteria of suitability mentioned in 

the job description that a candidate is supposed to 

satisfy. Some jobs are more definite about the 

criteria than others, which might depend on 

attributes like company and designation. Certain 

features like skills and designations that have 

high dimensionality must be meticulously 

represented for algorithms to use them efficiently. 

Bastian ,et al., (2014) mentioned the importance 

of skills as an identifier of talent Like jobs, 

candidates also have a few attributes associated 

which hints us to the kind of jobs they might 

prefer. For instance, a candidate having 

proficiency in HTML, JavaScript, Node.JS, and 

AWS may prefer a Full Stack Developer job but 

may be lacking the explicit mention of   the   

latter in   the candidate's profile. Candidates also 

have a professional summary that includes 

features like companies, job roles, and duration 

of work. Candidate preferences are not static, and 

they may change as they progress in their career. 

Data describing the progression of candidates 

through their academic and professional careers 

might provide hints of their next steps, and thus it 



can be a good indicator of their motivations and 

preferences. 

    The match between candidates and jobs 

involves a complex amalgamation of the 

attributes of candidates and jobs. The intent is to 

identify the patterns in the data for 

recommending relevant jobs to candidates. The 

prediction of jobs for a candidate is based on 

information derived from the data about 

candidates applying for jobs on a web portal. A 

rule-based recommender system might not be an 

ideal solution as it is bound to miss cases, 

especially the nuances that humans cannot 

comprehend. 

2    Related Work 

Recommender systems have been extensively 

applied to suggest concise items of interest to the 

users and drive higher click-through rates (CTR) 

(Covington, et al., 2016 ; Gomez-Uribe, et al., 

2016; Okura, et al., 2017). Video sharing website 

YouTube and media-services provider Netflix 

extensively use recommender systems to suggest 

videos and movies to their users respectively. 

60% of videos watched on YouTube, and 80% of 

movies watched on Netflix are due to 

recommendations (Covington et al., 2016; 

Gomez-Uribe et al., 2016). In some approaches 

improvements in CTR using recommender 

systems are also favored (Elsafty, et al., 2018). 

Since early literature, recommender systems have 

been broadly categorized into content-based, 

collaborative filtering and hybrid, based on the 

features utilized in model input (Adomavicius 

and Tuzhilin, 2005). Recommender systems are 

often required to solve the cold-start problem 

where there may be insufficient information 

about the user, item or their interactions (Abel, et 

al., 2017; Chen,et al., 2019; Schein, et al., 2002).  

Recommender systems have also been applied in 

the field of recommending jobs to prospective 

employees (Chen, et al., 2019; Jiang,et al., 2019; 

Abel,et al., 2016). Elsafty et al.,(2018) used a 

document-based recommender system with dense 

representations and showed 8% relative increase. 

They used Word2Vec (Mikolov, et al., 2013) and 

Doc2Vec (Le and Mikolov, et al., 2014) to 

extract semantic relationships between jobs using 

job title and job descriptions.   

    Kenthapadi et al.,(2017) in their paper 

discussed the personalized job recommendation 

strategy at LinkedIn. They observed that the job 

recommendation problem has fundamental 

differences with other recommender systems 

involving books, movies, etc. The difference is 

that a job posting results in a very controlled 

number of applications, unlike movies where 

thousands of users can be provided a 

recommendation.   

    RecSys have held competitions to garner the 

attention of researchers in this domain and work 

closely with partners from the industry for 

solving real-world recommendation challenges. 

Challenges around the process of job 

recommendation were hosted during the years 

2016 and 2017 (Abel,et al., 2017; Abel,et al., 

2016). In 2016, Zibriczky et al.(2016) used a 

composition of 11 predictor instances as a 

solution to the challenge. He showed that based 

on forward predictor selection, item-neighbor 

methods and interaction data have great potential 

in improving offline accuracy. In 2017, Volkovs 

et al.,(2017) used a combination of content and 

neighbor-based models in their approach. They 

used user, item and user-item interaction features 

in Deep Neural Networks (DNN) and Gradient 

Boosting Machines (GBM), predicting in the 

output whether a user will positively interact with 

a job.  They observed that due to input sparsity 

and feature ranges training DNNs were slow. 

DNNs were also sensitive to the choice of 

normalization when dealing with sparsity. GBMs 

worked well without any input pre-processing or 

normalization. Volkovs et al.,(2017) also solved 

the cold-start problem of missing user and item 

data through their approach. Liu et al.,(2016) 

showed the use of temporal learning and 

sequence modeling which captured complexities 

of user-item interactions to improve job 

recommendations.  

    Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) have also 

been used to solve the job recommendation 

problem. Zhu et al.,(2018) proposed PJFNN, a 

novel data driven, end-to-end model based on 

CNN. They used a Person-Job Fit Neural 

Network to learn the joint representations of 

Person-Job fitness from historical applications. 

Qin et al.,(2018) used an Ability-aware Person-

Job Fit Neural Network, an ability aware model 



which combines RNN and four hierarchical 

ability aware attention strategies to determine 

Person-Job fit. 

    In our approach, we use sequence modeling 

with attention to capture nuances in the 

progression of job selection by the candidates. 

We pay special attention to skills as found in 

(Bastian ,et al., 2014) and propose novel ways to 

construct two representations of candidate and 

job skills. We also compose our approach using 

blended sub-recommendations that makes the 

final recommendation serendipitous and 

overcomes problems of cold-start in 

recommendations. 

3    Experiments 

Our approach uses a blend of machine learning 

models and other sub-recommendations to 

suggest jobs to candidates. Using machine 

learning models, we attempt to capture 

candidate’s progression of job selection. 

Consequently, using machine learning models 

might also help to capture any latent motivations 

of the candidates while they have interacted with 

jobs. Recommendations from a machine learning 

model produce jobs that the candidate is most 

likely to click or interact with. The dataset to train 

the model was constructed using implicit and 

explicit feedback present in candidate-job 

interactions from our database. Explicit feedback 

is when the candidate clicks on a job to further 

expand its contents or clicks on the apply button 

to apply to a job. Implicit feedback is when a 

recruiter tags a candidate to a job. We can use 

features from candidate and job data as the input 

to any machine learning model and train it to 

predict 1 if the candidate will interact or 0 if the 

candidate won’t interact with the job. We used 

several machine learning approaches as shown in 

Section 3.3 Models. 

    While machine learning methods attempt to 

capture the overall trends in data and the 

progression of job selection by the candidates, we 

found that job recommendations made only using 

machine learning methods are somewhat 

monotonous. For example, while it is common to 

recommend jobs requiring Programming skills to 

a Software Developer, this results in showing too 

many similar jobs. We experimented with several 

strategies to break the monotonicity. To capture 

the sentiment behind what makes a job exciting 

to a candidate, we needed to draw inspiration 

from real life scenarios. First, a candidate might 

ask for job recommendations from their peer 

group. Second, when a candidate applies for a 

job, it probably captures the specific interest of 

the candidate toward the job and similar jobs as 

opposed to the recruiter selecting the candidate 

for the job. We performed several experiments to 

capture the essence of these real life scenarios in 

our methodology and found that adding a small 

percentage jobs from a) jobs applied to by similar 

candidates and b) similar jobs applied to by the 

candidate in question could potentially make the 

recommendations serendipitous and might 

motivate candidates towards choosing jobs that 

excite them. 

    The techniques used in our blended approach 

also naturally solve the job and candidate cold-

start problem. Due to the absence of progression, 

a new candidate may not aptly leverage the 

machine learning model for job 

recommendations, and neither can a new job be 

recommended by the model to any candidate. 

However, a new candidate can be shown jobs 

applied by similar candidates where job 

interaction data is present. Similarly, when 

comparing two jobs, a new job can get suggested 

when creating a recommendation based on 

similar jobs applied to by the candidate. Finally, 

we observed that using our blended approach 

increased the click-through rate (CTR) as a 

consequence of candidates interacting more 

frequently with the recommended jobs on our job 

web portal. 

3.1    Methodology 

The recommender system we developed is 

demonstrated in Figure 1. A candidate logs in to 

the Job Web Portal and their meta-data is 

forwarded to the Recommendation Composer 

Module. The Recommendation Composer Module 

then uses the features of the candidate to build a 

job filter using relaxed parameter values to 

extract a subset of relevant jobs. Consider a 

hypothetical example, if the professional 

experience of the candidate is 4 years, then the 

filter specifies minimum experience as 3 years 

and maximum experience as 5 years.  



 

Figure 1: Proposed job recommendation system 

The Recommendation Composer Module sends 

the job filter to the Querying Module. The 

Querying Module then presents the 

Recommendation Composer Module with the 

results obtained from the databases using the job 

filter. The role of the Querying Module is to 

construct queries according to the filters provided 

to it, fetch the relevant records from the databases 

and present the output in both raw and vectorized 

formats. The vectorized format can be directly 

used as input to machine learning models or for 

other vectorized computations. The raw format 

can be used to compose human readable 

recommendations. The Recommendation 

Composer Module generates sub-

recommendations that are generated by different 

methods. Finally, the Recommendation Composer 

Module composes the final recommendation of 

jobs for the candidate’s viewing. In order to learn 

the progression of job selection by candidates, we 

train a Bi-LSTM with attention model. The final 

recommendation is composed using a blended 

approach defined by the steps below. 

Step 1 Creating a job filter: Create a job filter 

using relaxed values in candidate features. This 

filter is submitted by the Recommendation 

Composer Module to the Querying Module that 

responds with a set of jobs, Jfiltered. All sub-

recommendation methods described in the next 

steps will use this reduced set of jobs, Jfiltered, for 

computational efficiency. 

Step 2 Checking interaction data: Check if the 

candidate has an interaction history. If interaction 

history is present, then go to Step 3. Else go to 

Step 5. 

Step 3 Applying machine learning model: Fetch 

the job interaction history of the candidate. Using 

Jfiltered and the interaction history, the vectorized 

candidate and job features are used to predict the 

recommended jobs using a Bi-LSTM with 

attention model. An initial ranked 

recommendation is created using the decreasing 

order of created-on attribute of the job, Rmachine 

learning. Figure 2 shows the architecture of the 

recommendations composed using Bi-LSTM 

with attention. 

Step 4 Creating recommendations using non-

machine learning methods - Similar Jobs: Using 

Jreduced, find the set of jobs previously applied to 

by the candidate and select similar jobs where the 

cosine similarity score with other jobs is >= 0.70. 

Sort these jobs on the decreasing order of their 

created-on attribute and prepare a job 

recommendation list Rnon-machine learning I. We can 

see here that this step assists in solving the job 

cold-start problem since a new job will be picked 

up if it is similar to the job being compared to. 

Step 5 Creating recommendations using non-

machine learning methods – Similar Candidates: 

Using the candidate vector, select similar 

candidates where the cosine similarity score with 

other candidates is >= 0.80. From Jreduced, fetch 

the jobs applied by the similar candidates, sort 

them on the decreasing order of their created-on 

attribute and prepare a job recommendation list 

Rnon-machine learning II. We can see here that this step 

aids in solving the candidate cold-start problem 

since interaction history of the candidate is not 

required. 

Step 6 Blending Recommendations: There are 

two ways to compose the final recommendation 

in this step. a) If Rmachine learning is non-empty, add 

all the jobs in Rmachine learning to the final 

recommendation, Rfinal. Next, choose 2 jobs from 

Rnon-machine learning I and Rnon-machine learning II 

respectively and insert them at random positions 

in Rmachine learning for every 10 jobs. b) If Rmachine 

learning is empty, alternately add jobs from Rnon-

Candidates 

Job Web Portal 

Querying Module Recommendation 

Composer Module 

Machine 

Learning Models 
 

Uses DB  Jobs DB 



machine learning I and Rnon-machine learning II to Rfinal. It is 

obvious that jobs that the candidate has already 

applied to will not be included in Rfinal. We have 

jumbled the recommendations, thereby 

attempting to break the monotonicity of machine 

learning recommendations. 

Step 7 Accounting for edge cases: This step 

accounts for the edge case where the final 

recommendation, Rfinal, is empty. The probable 

causes could be an independent or combined 

effect of a) new candidates or jobs added to the 

system that are completely new and are distant 

from the threshold values we have assumed in the 

respective cases b) the candidate has already 

applied to all the recommended jobs. In this case, 

we compose the recommendation using overlap 

between the candidate and jobs using Jreduced. We 

use cosine similarities between the skills of the 

candidate and those stated by the jobs and 

perform some fuzzy matching of other candidate-

job features like overlap of experience, industry 

and job-title. Also, a scheduled task periodically 

keeps a count if a job appeared in Jreduced and was 

still not shown to the candidate. When this count 

exceeds the threshold (50) it inserts the respective 

jobs into random positions in the final 

recommendation thereby preventing some cases 

when a job could never get recommended. 
 

  

….       

Candidate and  

Job Embeddings 
Bidirectional LSTM Attention 

Dense 

3.2    Dataset and Feature Selection 

We construct the dataset for our experiments 

using data from our organization’s database. The 

dataset contains 4208 distinct candidates and 

2334 distinct jobs. The latest date of job that any 

candidate has applied for is from March 2019 

and the earliest date of the job that any candidate 

has applied for is from April 2014. We select 

only those candidates who have interacted within 

this time span. The total interactions between the 

candidates and the jobs are 1125776. Interactions 

represent a) recruiter tagging a candidate for a 

job, b) candidate clicking on a job to further 

expand its contents and c) candidate clicking the 

apply button to start their job application process. 

These are all favorable or positive outcomes and 

we assume that collectively, the candidate has 

clicked on these jobs. While searching for a job a 

candidate may be shown jobs which the 

candidate may choose to ignore. These form the 

negative outcomes. For our machine learning 

models, this translates into a classification 

problem where we try to predict a positive (1) 

outcome or a negative (0) outcome generated by 

a user for any given job. The dataset and 

interaction data have been summarized in Table 

1 and Table 2 respectively. 
 

Distinct Candidates 4208 

Distinct Jobs 2334 

Positive Interactions 316498 

Negative Interactions 809278 

Table 1: Dataset summary 

 
  Positive Interactions 

  Recruiter tagged a candidate to a job  215218 

  Candidate expanded a Job 72794 

  Candidate applied to a Job  28486 

  Total  316498 

  Negative Interactions  

Figure 2: Bi-LSTM with Attention architecture for job recommendation  



  Candidate ignored job shown 809278 

Table 2: Interaction Data Summary 

We shortlisted 9 features from each candidate, 11 

features from each job and 1 common feature 

that adds up to a total of 21 features. We split the 

data into 70%, 20% and 10% for training, testing 

and validating sets respectively. To represent 

candidate and job skills in our dataset, the word 

embeddings learned by the Word2Vec model is 

used. The dimensionality of the word vectors is 

20, the training algorithm is continuous Bag-of-

Words, the window size is 5 and min_count is 5. 

A T-SNE plot of the final Word2Vec model with 

some sample skills is shown in Figure 3.  

We observe that while skills are an important 

denominator for matchmaking, sometimes 

semantic information from skills alone might not 

suffice for ideal matchmaking. This is because 

there are several ways in which candidates and 

recruiters define skills and competencies. 

Sometimes one skill may portray a collective 

meaning for several constituent skills. For 

instance, a candidate who mentions Full Stack 

Developer as a skill might have latent 

competencies in Microservices, Web 

Development, Javascript, Angular, etc. 

Similarly, a recruiter posting a job having the 

skill requirements of a Web Developer may also 

be interested in candidates having competencies 

in HTML, Microservices, Javascript and so on. 

We assumed that using Latent Competency 

Group Similarity (defined in the subsequent 

paragraph) between a job and a candidate along 

with skills would assist our machine learning 

models to make better inferences. 

    Competency groups are domain specific 

aggregation of skills. For example, skills such as 

linear regression, natural language processing, 

deep learning, data visualization and so on 

belong to the machine learning competency 

group. Data visualization can also belong to the 

competency group data science, hence a skill can 

appear in multiple competency groups. A 

recruiter can just state machine learning as a 

required skill for a job and a deserving candidate 

could express their skills using one or more 

keywords. We attempt to “reveal” the overlap of 

domains between jobs and candidates using 

competency groups and hence named this as 

Latent Competency Groups. We gathered a team 

of data analysts and subject matter experts to 

create the latent competency groups. Everyone 

involved was compensated for the task. The final 

reviewed latent competencies included 100 

groups.  
 

 

 Figure 3: T-SNE Plot of Word2Vec on Sample Skills  

    We represent the skills of a candidate or a job 

by a vector where each dimension represents a 

latent competency group. For each candidate or 

job, first, a vector V of size 100 is created and 

initialized with 0’s. Each index in this vector 

represents a group. For each skill, the associated 

groups are identified, and 1 is added to the 

corresponding indices in V. Then, the values in V 

are normalized between 0 and 1. Next, Latent 

Competency Group Similarity between a 

candidate and a job is computed which is the 

cosine similarity value of Vc and Vj, where Vc 

represents the candidate latent competency group 

vector and Vj represents the job latent 

competency group vector. 

    The expansion of skills into latent competency 

groups using the above methodology attempts to 

capture latent skills that humans can infer but 

may remain hidden for machine learning models 

due to the brevity used by recruiters and 

candidates while mentioning skills. 

3.3    Models 

Our methodology composes job 

recommendations using several strategies where 

a sub-task is to choose the best machine learning 

model that captures the progression of job 

selection by candidates. We approach this sub-

task as a classification problem where 1 

represents a candidate interacted with a job or a 



recruiter tagged a candidate to a job and 0 

represents jobs that were shown but not 

interacted with by the candidate in our job web 

portal. 

    We experimented with several machine 

learning algorithms that included both tree-based 

approaches and deep neural networks.  
 

Machine 

Learning 

Models 

Hyperparameters 

Random 

Forest 

Criterion: gini 

N_estimators: 300 

XGBoost N_estimators: 500 

Bi-

Directional 

LSTM with 

Attention 

Timesteps: 2 

Hidden Layers: 2 (Nodes: 128, 64) 

Optimizer: Adam 

Dropout: 20% 

Table 3: Machine Learning Model Hyperparameters 

We chose Random Forests and XGBoost that are 

tree-based approaches and these methods 

performed well. However, Bi-LSTM with 

attention gave us more accurate results. We used 

these algorithms from the scikit-learn Python 

module. We used grid search with cross-

validation for choosing the best hyperparameters. 

The hyperparameters we used for the different 

models are shown in Table 3. 

3.4  Using Progression of Job Applications 

by Candidates through Bi-LSTM 

The aim of this experiment was to imitate a 

recruiter who assimilates a candidate’s 

progression for determining relevant jobs for 

them. For instance, as a candidate progresses in 

their career by changing jobs, growing into a 

higher role, moving to a different place, they 

update their resume accordingly. A recruiter, 

perhaps, screens a candidate by trying to 

understand the major advances in their career 

and how the candidate would make a good fit in 

the current role.  

    When a candidate interacts with different jobs 

over time, some of their latent preferences are 

hidden in these interactions. The training data is 

modeled to capture these changing job-

preferences of candidates over time, not to 

mention any explicit changes in candidate’s 

attributes over time, like skills and location, are 

also captured (see Equation 1). In Equation 1, 

during training the Bi-LSTM, CJ1 is a candidate-

job pair where candidate C positively interacts 

with job J1.  C’J2 represents the same candidate 

(with updated attributes) at a later point in time 

and job J2.  The target variable is 1 or 0, 

depending on whether C’ positively or negatively 

interacts with J2 respectively. 

 

CJ1           C’J2                1 / 0          (1) 

 

    Where, 1 – C’ Interacts with J2, 0 – C’ doesn’t 

Interacts with J2 and Timesteps = 2. During 

testing, while predicting whether a candidate will 

positively interact with a job, attributes of the 

last job applied to by the candidate (J1) and the 

attributes of the candidate’s profile (C), at the 

time C positively interacted with J1, forms the 

first timestep. The job in question (J2) and the 

candidate’s current profile (C’) are used to form 

the second timestep. The model predicts if C’ 

will positively or negatively interact with J2. 

    We chose Bi-LSTM since its architecture can 

leverage both past as well as future candidate-job 

interactions (progressions) to learn some of the 

latent job preferences of candidates and predict if 

they will likely interact with given jobs. 

4    Results 

    We used several machine learning algorithms 

to learn the progression of job selection by 

candidates, and the results have been 

summarized in Table 4. The Bi-LSTM with 

attention model gave us the best results. The 

diagram showing the components of the Bi-

LSTM model is shown in . Bi-LSTM provided 

superior results due to its ability to learn 

progression in the form of sequences and use 

interaction information from the past to predict 

future outcomes.  

    We also computed feature importance using 

the Random Forest model. Skills and 

OrganizationID were the most predictive 

candidate features. Skills and Industry Name 

were the most predictive job features. Latent 

Competency Group Similarity was also highly 

predictive. 



    We found that when there were too many jobs 

to recommend, all of which had similar criteria, 

the recommendations became monotonous. It 

motivated us to dive deeper into the job 

application process of the candidates and take 

inspiration from real life scenarios and attempt to 

make our job recommendations serendipitous for 

the candidate. We also needed to address the job 

and candidate cold-start problems. Hence, we 

introduced a blended approach where we used 

non-machine learning based techniques. We 

added a) jobs applied to by similar candidates 

and b) similar jobs applied to by the candidate, in 

small proportions to the recommendations from 

the Bi-LSTM with attention model. The 

complete process of constructing the blended 

recommendation along with the choice of 

similarity comparison method and threshold 

values have been described in Section 3.1 

Methodology. 

    We found significant improvement in our job 

web portal with the blended approach and saw a 

relative increase of 63% in click-through rates 

(CTR). The results are statistically significant by 

chi-square test at p < .01 and the candidate-job 

datasets (pre-model and post-model) belong to 

the same population for key attributes such as 

experience, domain, industry, and function at p < 

.01.   

5    Conclusion and Future Work 

This paper demonstrates a novel blended 

approach that leverages progression of job 

selection by candidates and attempts to make job 

recommendations serendipitous. Using blended   

methods, recommendations    suggested to 

candidates are based on their interaction history 

with jobs, along with jobs that are a) similar to 

the other jobs applied by the candidate and b)  

Figure 4: Bi-LSTM model with Attention 

applied by similar candidates. Our approach 

naturally solves the candidate and job cold-start 

problem in the absence of interaction data. We 

also demonstrated the use of latent competency 

groups which expand the job skill requirements 

and the candidate skills thereby attempting to 

reveal latent competencies and achieve more 

coverage in the skill domain.  Using our 

methodology, we see a relative increase in click-

through rates of candidates visiting our portal 

and applying for jobs. 

    As part of the future work, we plan to use 

features of similar candidates and jobs in 

sequence information. As of now, 

recommendation using similar candidates and 

Model Accuracy 
Precision Recall F1-Score 

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 

Random Forest 91.49 93.96 80.90 95.95 72.58 94.80 76.51 

XGBoost 91.43 94.17 79.04 95.30 75.03 94.73 76.99 

ANN 91.53 93.75 81.09 96.13 72.56 94.93 76.58 

Bi-LSTM with 

Attention 
92.02 95.93 82.42 97.52 75.13 95.72 78.61 

Encoder Decoder 71.63 87.88 34.88 75.32 55.99 42.98 42.98 

Table 4: Results 



jobs forms part of non-machine learning based 

recommendations and the initial results seem 

promising. Finally, it would be interesting to 

extend our methodology to other recommender 

systems. 
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