
 Job Recommendation: Leveraging Progression of Job Applications

Amber Nigam

Georgia Institute of Technology, PeopleStrong

anigam9@gatech.edu

Aakash Roy

PeopleStrong

aakash.roy@peoplestrong.com

Arpan Saxena

TCS

arpansaxena17may@gmail.com

Hartaran Singh

PeopleStrong

hartaran.singh@peoplestrong.com

Abstract

Job recommendation has traditionally

been treated as a filter-based match or as a

recommendation based on the features of

jobs and candidates as discrete entities. In

this paper, we introduce a methodology

where we leverage the progression of job

selection by candidates using machine

learning. Additionally, our

recommendation is composed of several

other sub-recommendations that contribute

to at least one of a) making

recommendations serendipitous for the

end user b) overcoming cold-start for both

candidates and jobs. One of the unique

selling propositions of our methodology is

the way we have used skills as embedded

features and derived latent competencies

from them, thereby attempting to expand

the skills of candidates and jobs to achieve

more coverage in the skill domain. We

have deployed our model in a real-world

job recommender system and have

achieved the best click-through rate

through a blended approach of machine-

learned recommendations and other sub-

recommendations. For recommending jobs

through machine learning that forms a

significant part of our recommendation,

we achieve the best results through Bi-

LSTM with attention.

1 Introduction

Job recommendation is primarily aimed at

supporting the discovery of jobs that may interest

the user. It should be dynamic in order to cater to

the changing preferences of the user. For

instance, a person looking for a job at X location

might not be interested in the location a few years

down the line. Similarly, a job that is relevant for

an individual now might not be exciting enough

in the future because of a possible upskilling.

Consequently, this puts the onus of accounting

for such variables on the recommender system to

always be context-aware and relevant.

 Jobs have criteria of suitability mentioned in

the job description that a candidate is supposed to

satisfy. Some jobs are more definite about the

criteria than others, which might depend on

attributes like company and designation. Certain

features like skills and designations that have

high dimensionality must be meticulously

represented for algorithms to use them efficiently.

Bastian ,et al., (2014) mentioned the importance

of skills as an identifier of talent Like jobs,

candidates also have a few attributes associated

which hints us to the kind of jobs they might

prefer. For instance, a candidate having

proficiency in HTML, JavaScript, Node.JS, and

AWS may prefer a Full Stack Developer job but

may be lacking the explicit mention of the

latter in the candidate's profile. Candidates also

have a professional summary that includes

features like companies, job roles, and duration

of work. Candidate preferences are not static, and

they may change as they progress in their career.

Data describing the progression of candidates

through their academic and professional careers

might provide hints of their next steps, and thus it

can be a good indicator of their motivations and

preferences.

 The match between candidates and jobs

involves a complex amalgamation of the

attributes of candidates and jobs. The intent is to

identify the patterns in the data for

recommending relevant jobs to candidates. The

prediction of jobs for a candidate is based on

information derived from the data about

candidates applying for jobs on a web portal. A

rule-based recommender system might not be an

ideal solution as it is bound to miss cases,

especially the nuances that humans cannot

comprehend.

2 Related Work

Recommender systems have been extensively

applied to suggest concise items of interest to the

users and drive higher click-through rates (CTR)

(Covington, et al., 2016 ; Gomez-Uribe, et al.,

2016; Okura, et al., 2017). Video sharing website

YouTube and media-services provider Netflix

extensively use recommender systems to suggest

videos and movies to their users respectively.

60% of videos watched on YouTube, and 80% of

movies watched on Netflix are due to

recommendations (Covington et al., 2016;

Gomez-Uribe et al., 2016). In some approaches

improvements in CTR using recommender

systems are also favored (Elsafty, et al., 2018).

Since early literature, recommender systems have

been broadly categorized into content-based,

collaborative filtering and hybrid, based on the

features utilized in model input (Adomavicius

and Tuzhilin, 2005). Recommender systems are

often required to solve the cold-start problem

where there may be insufficient information

about the user, item or their interactions (Abel, et

al., 2017; Chen,et al., 2019; Schein, et al., 2002).

Recommender systems have also been applied in

the field of recommending jobs to prospective

employees (Chen, et al., 2019; Jiang,et al., 2019;

Abel,et al., 2016). Elsafty et al.,(2018) used a

document-based recommender system with dense

representations and showed 8% relative increase.

They used Word2Vec (Mikolov, et al., 2013) and

Doc2Vec (Le and Mikolov, et al., 2014) to

extract semantic relationships between jobs using

job title and job descriptions.

 Kenthapadi et al.,(2017) in their paper

discussed the personalized job recommendation

strategy at LinkedIn. They observed that the job

recommendation problem has fundamental

differences with other recommender systems

involving books, movies, etc. The difference is

that a job posting results in a very controlled

number of applications, unlike movies where

thousands of users can be provided a

recommendation.

 RecSys have held competitions to garner the

attention of researchers in this domain and work

closely with partners from the industry for

solving real-world recommendation challenges.

Challenges around the process of job

recommendation were hosted during the years

2016 and 2017 (Abel,et al., 2017; Abel,et al.,

2016). In 2016, Zibriczky et al.(2016) used a

composition of 11 predictor instances as a

solution to the challenge. He showed that based

on forward predictor selection, item-neighbor

methods and interaction data have great potential

in improving offline accuracy. In 2017, Volkovs

et al.,(2017) used a combination of content and

neighbor-based models in their approach. They

used user, item and user-item interaction features

in Deep Neural Networks (DNN) and Gradient

Boosting Machines (GBM), predicting in the

output whether a user will positively interact with

a job. They observed that due to input sparsity

and feature ranges training DNNs were slow.

DNNs were also sensitive to the choice of

normalization when dealing with sparsity. GBMs

worked well without any input pre-processing or

normalization. Volkovs et al.,(2017) also solved

the cold-start problem of missing user and item

data through their approach. Liu et al.,(2016)

showed the use of temporal learning and

sequence modeling which captured complexities

of user-item interactions to improve job

recommendations.

 Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN) have also

been used to solve the job recommendation

problem. Zhu et al.,(2018) proposed PJFNN, a

novel data driven, end-to-end model based on

CNN. They used a Person-Job Fit Neural

Network to learn the joint representations of

Person-Job fitness from historical applications.

Qin et al.,(2018) used an Ability-aware Person-

Job Fit Neural Network, an ability aware model

which combines RNN and four hierarchical

ability aware attention strategies to determine

Person-Job fit.

 In our approach, we use sequence modeling

with attention to capture nuances in the

progression of job selection by the candidates.

We pay special attention to skills as found in

(Bastian ,et al., 2014) and propose novel ways to

construct two representations of candidate and

job skills. We also compose our approach using

blended sub-recommendations that makes the

final recommendation serendipitous and

overcomes problems of cold-start in

recommendations.

3 Experiments

Our approach uses a blend of machine learning

models and other sub-recommendations to

suggest jobs to candidates. Using machine

learning models, we attempt to capture

candidate’s progression of job selection.

Consequently, using machine learning models

might also help to capture any latent motivations

of the candidates while they have interacted with

jobs. Recommendations from a machine learning

model produce jobs that the candidate is most

likely to click or interact with. The dataset to train

the model was constructed using implicit and

explicit feedback present in candidate-job

interactions from our database. Explicit feedback

is when the candidate clicks on a job to further

expand its contents or clicks on the apply button

to apply to a job. Implicit feedback is when a

recruiter tags a candidate to a job. We can use

features from candidate and job data as the input

to any machine learning model and train it to

predict 1 if the candidate will interact or 0 if the

candidate won’t interact with the job. We used

several machine learning approaches as shown in

Section 3.3 Models.

 While machine learning methods attempt to

capture the overall trends in data and the

progression of job selection by the candidates, we

found that job recommendations made only using

machine learning methods are somewhat

monotonous. For example, while it is common to

recommend jobs requiring Programming skills to

a Software Developer, this results in showing too

many similar jobs. We experimented with several

strategies to break the monotonicity. To capture

the sentiment behind what makes a job exciting

to a candidate, we needed to draw inspiration

from real life scenarios. First, a candidate might

ask for job recommendations from their peer

group. Second, when a candidate applies for a

job, it probably captures the specific interest of

the candidate toward the job and similar jobs as

opposed to the recruiter selecting the candidate

for the job. We performed several experiments to

capture the essence of these real life scenarios in

our methodology and found that adding a small

percentage jobs from a) jobs applied to by similar

candidates and b) similar jobs applied to by the

candidate in question could potentially make the

recommendations serendipitous and might

motivate candidates towards choosing jobs that

excite them.

 The techniques used in our blended approach

also naturally solve the job and candidate cold-

start problem. Due to the absence of progression,

a new candidate may not aptly leverage the

machine learning model for job

recommendations, and neither can a new job be

recommended by the model to any candidate.

However, a new candidate can be shown jobs

applied by similar candidates where job

interaction data is present. Similarly, when

comparing two jobs, a new job can get suggested

when creating a recommendation based on

similar jobs applied to by the candidate. Finally,

we observed that using our blended approach

increased the click-through rate (CTR) as a

consequence of candidates interacting more

frequently with the recommended jobs on our job

web portal.

3.1 Methodology

The recommender system we developed is

demonstrated in Figure 1. A candidate logs in to

the Job Web Portal and their meta-data is

forwarded to the Recommendation Composer

Module. The Recommendation Composer Module

then uses the features of the candidate to build a

job filter using relaxed parameter values to

extract a subset of relevant jobs. Consider a

hypothetical example, if the professional

experience of the candidate is 4 years, then the

filter specifies minimum experience as 3 years

and maximum experience as 5 years.

Figure 1: Proposed job recommendation system

The Recommendation Composer Module sends

the job filter to the Querying Module. The

Querying Module then presents the

Recommendation Composer Module with the

results obtained from the databases using the job

filter. The role of the Querying Module is to

construct queries according to the filters provided

to it, fetch the relevant records from the databases

and present the output in both raw and vectorized

formats. The vectorized format can be directly

used as input to machine learning models or for

other vectorized computations. The raw format

can be used to compose human readable

recommendations. The Recommendation

Composer Module generates sub-

recommendations that are generated by different

methods. Finally, the Recommendation Composer

Module composes the final recommendation of

jobs for the candidate’s viewing. In order to learn

the progression of job selection by candidates, we

train a Bi-LSTM with attention model. The final

recommendation is composed using a blended

approach defined by the steps below.

Step 1 Creating a job filter: Create a job filter

using relaxed values in candidate features. This

filter is submitted by the Recommendation

Composer Module to the Querying Module that

responds with a set of jobs, Jfiltered. All sub-

recommendation methods described in the next

steps will use this reduced set of jobs, Jfiltered, for

computational efficiency.

Step 2 Checking interaction data: Check if the

candidate has an interaction history. If interaction

history is present, then go to Step 3. Else go to

Step 5.

Step 3 Applying machine learning model: Fetch

the job interaction history of the candidate. Using

Jfiltered and the interaction history, the vectorized

candidate and job features are used to predict the

recommended jobs using a Bi-LSTM with

attention model. An initial ranked

recommendation is created using the decreasing

order of created-on attribute of the job, Rmachine

learning. Figure 2 shows the architecture of the

recommendations composed using Bi-LSTM

with attention.

Step 4 Creating recommendations using non-

machine learning methods - Similar Jobs: Using

Jreduced, find the set of jobs previously applied to

by the candidate and select similar jobs where the

cosine similarity score with other jobs is >= 0.70.

Sort these jobs on the decreasing order of their

created-on attribute and prepare a job

recommendation list Rnon-machine learning I. We can

see here that this step assists in solving the job

cold-start problem since a new job will be picked

up if it is similar to the job being compared to.

Step 5 Creating recommendations using non-

machine learning methods – Similar Candidates:

Using the candidate vector, select similar

candidates where the cosine similarity score with

other candidates is >= 0.80. From Jreduced, fetch

the jobs applied by the similar candidates, sort

them on the decreasing order of their created-on

attribute and prepare a job recommendation list

Rnon-machine learning II. We can see here that this step

aids in solving the candidate cold-start problem

since interaction history of the candidate is not

required.

Step 6 Blending Recommendations: There are

two ways to compose the final recommendation

in this step. a) If Rmachine learning is non-empty, add

all the jobs in Rmachine learning to the final

recommendation, Rfinal. Next, choose 2 jobs from

Rnon-machine learning I and Rnon-machine learning II

respectively and insert them at random positions

in Rmachine learning for every 10 jobs. b) If Rmachine

learning is empty, alternately add jobs from Rnon-

Candidates

Job Web Portal

Querying Module Recommendation

Composer Module

Machine

Learning Models

Uses DB Jobs DB

machine learning I and Rnon-machine learning II to Rfinal. It is

obvious that jobs that the candidate has already

applied to will not be included in Rfinal. We have

jumbled the recommendations, thereby

attempting to break the monotonicity of machine

learning recommendations.

Step 7 Accounting for edge cases: This step

accounts for the edge case where the final

recommendation, Rfinal, is empty. The probable

causes could be an independent or combined

effect of a) new candidates or jobs added to the

system that are completely new and are distant

from the threshold values we have assumed in the

respective cases b) the candidate has already

applied to all the recommended jobs. In this case,

we compose the recommendation using overlap

between the candidate and jobs using Jreduced. We

use cosine similarities between the skills of the

candidate and those stated by the jobs and

perform some fuzzy matching of other candidate-

job features like overlap of experience, industry

and job-title. Also, a scheduled task periodically

keeps a count if a job appeared in Jreduced and was

still not shown to the candidate. When this count

exceeds the threshold (50) it inserts the respective

jobs into random positions in the final

recommendation thereby preventing some cases

when a job could never get recommended.

….

Candidate and

Job Embeddings
Bidirectional LSTM Attention

Dense

3.2 Dataset and Feature Selection

We construct the dataset for our experiments

using data from our organization’s database. The

dataset contains 4208 distinct candidates and

2334 distinct jobs. The latest date of job that any

candidate has applied for is from March 2019

and the earliest date of the job that any candidate

has applied for is from April 2014. We select

only those candidates who have interacted within

this time span. The total interactions between the

candidates and the jobs are 1125776. Interactions

represent a) recruiter tagging a candidate for a

job, b) candidate clicking on a job to further

expand its contents and c) candidate clicking the

apply button to start their job application process.

These are all favorable or positive outcomes and

we assume that collectively, the candidate has

clicked on these jobs. While searching for a job a

candidate may be shown jobs which the

candidate may choose to ignore. These form the

negative outcomes. For our machine learning

models, this translates into a classification

problem where we try to predict a positive (1)

outcome or a negative (0) outcome generated by

a user for any given job. The dataset and

interaction data have been summarized in Table

1 and Table 2 respectively.

Distinct Candidates 4208

Distinct Jobs 2334

Positive Interactions 316498

Negative Interactions 809278

Table 1: Dataset summary

 Positive Interactions

 Recruiter tagged a candidate to a job 215218

 Candidate expanded a Job 72794

 Candidate applied to a Job 28486

 Total 316498

 Negative Interactions

Figure 2: Bi-LSTM with Attention architecture for job recommendation

 Candidate ignored job shown 809278

Table 2: Interaction Data Summary

We shortlisted 9 features from each candidate, 11

features from each job and 1 common feature

that adds up to a total of 21 features. We split the

data into 70%, 20% and 10% for training, testing

and validating sets respectively. To represent

candidate and job skills in our dataset, the word

embeddings learned by the Word2Vec model is

used. The dimensionality of the word vectors is

20, the training algorithm is continuous Bag-of-

Words, the window size is 5 and min_count is 5.

A T-SNE plot of the final Word2Vec model with

some sample skills is shown in Figure 3.

We observe that while skills are an important

denominator for matchmaking, sometimes

semantic information from skills alone might not

suffice for ideal matchmaking. This is because

there are several ways in which candidates and

recruiters define skills and competencies.

Sometimes one skill may portray a collective

meaning for several constituent skills. For

instance, a candidate who mentions Full Stack

Developer as a skill might have latent

competencies in Microservices, Web

Development, Javascript, Angular, etc.

Similarly, a recruiter posting a job having the

skill requirements of a Web Developer may also

be interested in candidates having competencies

in HTML, Microservices, Javascript and so on.

We assumed that using Latent Competency

Group Similarity (defined in the subsequent

paragraph) between a job and a candidate along

with skills would assist our machine learning

models to make better inferences.

 Competency groups are domain specific

aggregation of skills. For example, skills such as

linear regression, natural language processing,

deep learning, data visualization and so on

belong to the machine learning competency

group. Data visualization can also belong to the

competency group data science, hence a skill can

appear in multiple competency groups. A

recruiter can just state machine learning as a

required skill for a job and a deserving candidate

could express their skills using one or more

keywords. We attempt to “reveal” the overlap of

domains between jobs and candidates using

competency groups and hence named this as

Latent Competency Groups. We gathered a team

of data analysts and subject matter experts to

create the latent competency groups. Everyone

involved was compensated for the task. The final

reviewed latent competencies included 100

groups.

 Figure 3: T-SNE Plot of Word2Vec on Sample Skills

 We represent the skills of a candidate or a job

by a vector where each dimension represents a

latent competency group. For each candidate or

job, first, a vector V of size 100 is created and

initialized with 0’s. Each index in this vector

represents a group. For each skill, the associated

groups are identified, and 1 is added to the

corresponding indices in V. Then, the values in V

are normalized between 0 and 1. Next, Latent

Competency Group Similarity between a

candidate and a job is computed which is the

cosine similarity value of Vc and Vj, where Vc

represents the candidate latent competency group

vector and Vj represents the job latent

competency group vector.

 The expansion of skills into latent competency

groups using the above methodology attempts to

capture latent skills that humans can infer but

may remain hidden for machine learning models

due to the brevity used by recruiters and

candidates while mentioning skills.

3.3 Models

Our methodology composes job

recommendations using several strategies where

a sub-task is to choose the best machine learning

model that captures the progression of job

selection by candidates. We approach this sub-

task as a classification problem where 1

represents a candidate interacted with a job or a

recruiter tagged a candidate to a job and 0

represents jobs that were shown but not

interacted with by the candidate in our job web

portal.

 We experimented with several machine

learning algorithms that included both tree-based

approaches and deep neural networks.

Machine

Learning

Models

Hyperparameters

Random

Forest

Criterion: gini

N_estimators: 300

XGBoost N_estimators: 500

Bi-

Directional

LSTM with

Attention

Timesteps: 2

Hidden Layers: 2 (Nodes: 128, 64)

Optimizer: Adam

Dropout: 20%

Table 3: Machine Learning Model Hyperparameters

We chose Random Forests and XGBoost that are

tree-based approaches and these methods

performed well. However, Bi-LSTM with

attention gave us more accurate results. We used

these algorithms from the scikit-learn Python

module. We used grid search with cross-

validation for choosing the best hyperparameters.

The hyperparameters we used for the different

models are shown in Table 3.

3.4 Using Progression of Job Applications

by Candidates through Bi-LSTM

The aim of this experiment was to imitate a

recruiter who assimilates a candidate’s

progression for determining relevant jobs for

them. For instance, as a candidate progresses in

their career by changing jobs, growing into a

higher role, moving to a different place, they

update their resume accordingly. A recruiter,

perhaps, screens a candidate by trying to

understand the major advances in their career

and how the candidate would make a good fit in

the current role.

 When a candidate interacts with different jobs

over time, some of their latent preferences are

hidden in these interactions. The training data is

modeled to capture these changing job-

preferences of candidates over time, not to

mention any explicit changes in candidate’s

attributes over time, like skills and location, are

also captured (see Equation 1). In Equation 1,

during training the Bi-LSTM, CJ1 is a candidate-

job pair where candidate C positively interacts

with job J1. C’J2 represents the same candidate

(with updated attributes) at a later point in time

and job J2. The target variable is 1 or 0,

depending on whether C’ positively or negatively

interacts with J2 respectively.

CJ1 C’J2 1 / 0 (1)

 Where, 1 – C’ Interacts with J2, 0 – C’ doesn’t

Interacts with J2 and Timesteps = 2. During

testing, while predicting whether a candidate will

positively interact with a job, attributes of the

last job applied to by the candidate (J1) and the

attributes of the candidate’s profile (C), at the

time C positively interacted with J1, forms the

first timestep. The job in question (J2) and the

candidate’s current profile (C’) are used to form

the second timestep. The model predicts if C’

will positively or negatively interact with J2.

 We chose Bi-LSTM since its architecture can

leverage both past as well as future candidate-job

interactions (progressions) to learn some of the

latent job preferences of candidates and predict if

they will likely interact with given jobs.

4 Results

 We used several machine learning algorithms

to learn the progression of job selection by

candidates, and the results have been

summarized in Table 4. The Bi-LSTM with

attention model gave us the best results. The

diagram showing the components of the Bi-

LSTM model is shown in . Bi-LSTM provided

superior results due to its ability to learn

progression in the form of sequences and use

interaction information from the past to predict

future outcomes.

 We also computed feature importance using

the Random Forest model. Skills and

OrganizationID were the most predictive

candidate features. Skills and Industry Name

were the most predictive job features. Latent

Competency Group Similarity was also highly

predictive.

 We found that when there were too many jobs

to recommend, all of which had similar criteria,

the recommendations became monotonous. It

motivated us to dive deeper into the job

application process of the candidates and take

inspiration from real life scenarios and attempt to

make our job recommendations serendipitous for

the candidate. We also needed to address the job

and candidate cold-start problems. Hence, we

introduced a blended approach where we used

non-machine learning based techniques. We

added a) jobs applied to by similar candidates

and b) similar jobs applied to by the candidate, in

small proportions to the recommendations from

the Bi-LSTM with attention model. The

complete process of constructing the blended

recommendation along with the choice of

similarity comparison method and threshold

values have been described in Section 3.1

Methodology.

 We found significant improvement in our job

web portal with the blended approach and saw a

relative increase of 63% in click-through rates

(CTR). The results are statistically significant by

chi-square test at p < .01 and the candidate-job

datasets (pre-model and post-model) belong to

the same population for key attributes such as

experience, domain, industry, and function at p <

.01.

5 Conclusion and Future Work

This paper demonstrates a novel blended

approach that leverages progression of job

selection by candidates and attempts to make job

recommendations serendipitous. Using blended

methods, recommendations suggested to

candidates are based on their interaction history

with jobs, along with jobs that are a) similar to

the other jobs applied by the candidate and b)

Figure 4: Bi-LSTM model with Attention

applied by similar candidates. Our approach

naturally solves the candidate and job cold-start

problem in the absence of interaction data. We

also demonstrated the use of latent competency

groups which expand the job skill requirements

and the candidate skills thereby attempting to

reveal latent competencies and achieve more

coverage in the skill domain. Using our

methodology, we see a relative increase in click-

through rates of candidates visiting our portal

and applying for jobs.

 As part of the future work, we plan to use

features of similar candidates and jobs in

sequence information. As of now,

recommendation using similar candidates and

Model Accuracy
Precision Recall F1-Score

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Random Forest 91.49 93.96 80.90 95.95 72.58 94.80 76.51

XGBoost 91.43 94.17 79.04 95.30 75.03 94.73 76.99

ANN 91.53 93.75 81.09 96.13 72.56 94.93 76.58

Bi-LSTM with

Attention
92.02 95.93 82.42 97.52 75.13 95.72 78.61

Encoder Decoder 71.63 87.88 34.88 75.32 55.99 42.98 42.98

Table 4: Results

jobs forms part of non-machine learning based

recommendations and the initial results seem

promising. Finally, it would be interesting to

extend our methodology to other recommender

systems.

References

Mathieu Bastian, Matthew Hayes Hayes, William

Vaughan, Sal Uryasev and Christopher Lloyd.

2014. LinkedIn skills: large-scale topic extraction

and inference. In Proceedings of the 8th ACM

Conference on Recommender systems (pp. 1-8).

ACM.

Paul Covington, Jay Adams and Emre Sargin. 2016.

Deep neural networks for youtube

recommendations. In Proceedings of the 10th

ACM conference on recommender systems (pp.

191-198). ACM.

Carlos A. Gomez-Uribe and Neil Hunt. 2016. The

netflix recommender system: Algorithms, business

value, and innovation. ACM Transactions on

Management Information Systems (TMIS), 6(4),

13.

Shumpei Okura, Yukihiro Tagami, Shingo Ono

and Akira Tajima. 2017. Embedding-based news

recommendation for millions of users.

In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining (pp. 1933-1942).

ACM.

Ahmed Elsafty, Martin Riedl and Chris Biemann.

2018.Document-based Recommender System for

Job Postings using Dense Representations.

In Proceedings of the 2018 Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Volume 3 (Industry Papers) (pp.

216-224).

Alexander Tuzhilin and Gediminas Adomavicius.

2005. Toward the next generation of recommender

systems: A survey of the state-of-the-art and

possible extensions. IEEE Transactions on

Knowledge & Data Engineering, (6), 734-749.

Fabian Abel, Yashar Deldjoo, Mehdi Elahi and Daniel

Kohlsdorf. 2017. Recsys challenge 2017: Offline

and online evaluation. In Proceedings of the

Eleventh ACM Conference on Recommender

Systems (pp. 372-373). ACM.

Dawei Chen, Cheng Soon Ong and Aditya Krishna

Menon. 2019. Cold-start playlist recommendation

with multitask learning. arXiv preprint

arXiv:1901.06125.

Andrew I. Schein, Alexandrin Popescul, Lyle H.

Ungar and David M. Pennock. 2002. Methods and

metrics for cold-start recommendations.

In Proceedings of the 25th annual international

ACM SIGIR conference on Research and

development in information retrieval (pp. 253-

260). ACM.

M Jiang, Y Fang, H Xie, J Chong and M Meng. 2019.

User click prediction for personalized job

recommendation. World Wide Web, 22(1), 325-

345.

K Kenthapadi, B Le and G Venkataraman. 2017.

Personalized job recommendation system at

linkedin: Practical challenges and lessons learned.

In Proceedings of the Eleventh ACM Conference

on Recommender Systems(pp. 346-347). ACM.

Fabien Abel, A Benczúr, D Kohlsdorf, M Larson

and Róbert Pálovics. 2016. Recsys challenge

2016: Job recommendations. In Proceedings of the

10th ACM Conference on Recommender

Systems (pp. 425-426). ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen Greg S.

Corrado and Jeff Dean. 2013. Distributed

representations of words and phrases and their

compositionality. In Advances in neural

information processing systems (pp. 3111-3119).

Quoc Le and Tomas Mikolov. 2014. Distributed

representations of sentences and documents.

In International conference on machine

learning (pp. 1188-1196).

Dávid Zibriczky. 2016. A combination of simple

models by forward predictor selection for job

recommendation. In Proceedings of the

Recommender Systems Challenge (p. 9). ACM.

Maksims Volkovs, Guang Wei Yu and Tomi

Poutanen. 2017. Content-based neighbor models

for cold start in recommender systems.

In Proceedings of the Recommender Systems

Challenge 2017 (p. 7). ACM.

Kuan Liu, Xing Shi, Anoop Kumar, Linhong Zhu and

Prem Natarajan. 2016. Temporal learning and

sequence modeling for a job recommender system.

In Proceedings of the Recommender Systems

Challenge (p. 7). ACM.

Chen Zhu, Hengshu Zhu, Hui Xiong, Chao Ma, Fang

Xie, Pengliang Ding and Pan Li. 2018. Person-Job

Fit: Adapting the Right Talent for the Right Job

with Joint Representation Learning. ACM

Transactions on Management Information

Systems (TMIS), 9(3), 12.

Chuan Qin, Hengshu Zhu, Tong Xu, Chen Zhu, Liang

Jiang, Enhong Chen and Hui Xiong. 2018.

Enhancing person-job fit for talent recruitment:

An ability-aware neural network approach. In The

41st International ACM SIGIR Conference on

Research & Development in Information

Retrieval (pp. 25-34). ACM.

