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Abstract: Path planning in the multi-robot system refers 

to calculating a set of actions for each robot, which will 

move each robot to its goal without conflicting with 

other robots. Lately, the research topic has received 

significant attention for its extensive applications, such 

as airport ground, drone swarms, and automatic 

warehouses. Despite these available research results, 

most of the existing investigations are concerned with 

the cases of robots with a fixed movement speed without 

considering uncertainty. Therefore, in this work, we 

study the problem of path-planning in the multi-robot 

automatic warehouse context, which considers the 

time-varying and uncertain robots' movement speed. 

Specifically, the path-planning module searches a path 

with as few conflicts as possible for a single agent by 

calculating traffic cost based on customarily distributed 

conflict probability and combining it with the classic A* 

algorithm. However, this probability-based method 

cannot eliminate all conflicts, and speed's uncertainty 

will constantly cause new conflicts. As a supplement, we 

propose the other two modules. The conflict detection 

and re-planning module chooses objects requiring 

re-planning paths from the agents involved in different 

types of conflicts periodically by our designed rules. 

Also, at each step, the scheduling module fills up the 

agent's preserved queue and decides who has a higher 

priority when the same element is assigned to two agents 

simultaneously. Finally, we compare the proposed 

algorithm with other algorithms from academia and 

industry, and the results show that the proposed method 

is validated as the best performance. 

Keywords: Uncertain system; Automatic warehouse; 

Multi-robot; Automated mobile robot; Path planning 

1  Introduction 

Path planning in the multi-robot system refers to 

calculate a set of actions for each robot, which will 

move each of the robots to its goal without conflicting 

with other robots. Lately, the research topic is received a 

great deal of attention for its extensive applications, such 

as airport ground [1], drone swarms [2], and automatic 

warehouses [3]. Despite these available research results, 

most of the existing investigations are concerned with 

the cases of robots with a fixed movement speed without 

considering uncertainty. In fact, there exist a variety of 

uncertainties in the real automatic warehouse, for 

instance, imprecise self-location, imperfect modeling of 

the surroundings, and the uncertain movements of other 

robots in the shared workplace. These uncertainties are 

manifested as the time-varying and uncertainty of speed 

in path planning. Therefore, in this work, we focus on 

the path planning for multi-robot with time-varying 

movement speed in the context of automatic 

warehouses. 

Early studies on path planning focus only on single 

robot cases. The problem can be analyzed in a great 

number of ways, for instance, linear programming [4], 

satisfiability [5], and answer set programming [6]. Next, 

graph search algorithms (e.g., A* [7] and Jump Point 

Search [8]) are employed to calculate the minimal cost 

paths between the start vertex and the destination vertex 

on the graph. The algorithms of single-robot path 

planning provide a foundation for the analysis of path 

planning in multi-robot systems.  

The issue of planning collision-free paths for more than 

one robot presents another layer of difficulty. In a 

general way, analyzing jointly for multi-robot requires 

calculating in a state space with the dimension 

increasing linearly with the number of robots. This 

means that the quantity of the state space is exponential 

in the number of robots. The literature of this direction 

can be divided into two groups for review, i.e., 

centralized and decentralized algorithms. For the 

centralized algorithm, a global search over the 

joint-space of all robots' movements is performed, and it 

outputs a joint-plan containing all robots' paths from 

their initial positions to their goal positions. Several 

representative centralized planning algorithms are 

summarized as follows: Paper [9] studies 

implementation of dimensional expansion for robot 
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configuration spaces which can be denoted as a graph. 

Also, the conflict-based search algorithm is presented in 

[10]. The algorithm consists of two levels. At the high 

level, the search is carried out by a conflict tree based on 

conflicts between individual robots. At the low level, 

searches for single robot are performed. These 

algorithms provide guarantees of optimality and 

completeness but are considered as time-consuming. In 

the real-world multi-robot automatic warehouse, rather 

than spending significant amounts of resources 

calculating for optimal paths, it is instead preferable to 

plan valid, collision-free paths quickly, even if 

sub-optimal, and given additional time, to iteratively 

refine the paths.   

As expected, distributing the computational cost among 

the robots can help to reduce the problem's 

computational complexity. Indeed, the state number of a 

decentralized algorithm can be made independent of its 

scale in principle [11]. Furthermore, decentralized 

algorithms are more robust to uncertainties and failures, 

compared to centralized algorithms. Therefore, they can 

be employed in the scenario where centralized 

algorithms are difficult to be used. For the related work 

of decentralized methods for path planning, some papers 

formulate the problem as reactive control or local 

coordination problems (see, for instance, [12], [13]). 

These algorithms scale with the size of robots but lack 

optimality and completeness guarantee. For the recent 

literature of decentralized methods, in [14], a 

decentralized multi-robot path-finding algorithm that 

can provide theoretical completeness and optimality 

guarantees is offered. a lifelong multi-agent path-finding 

problem is studied in [15], where robots are assigned 

with new goal locations constantly. The work considers 

the certainty caused by engaging the new task to robots 

constantly. Besides, paper [16] presents a multi-agent 

planning framework for a class of anytime planners that 

quickly generate valid paths with suboptimality 

estimates and generate optimal paths given sufficient 

time. However, unfortunately, these algorithms usually 

assume that robots can only move to a neighboring 

location or wait at their current location for each time 

step, and do not consider the uncertainty and 

time-dependent speed. Therefore, these algorithms 

cannot offer a guarantee to be implemented in real 

multi-robot environments. 

We propose a decentralized algorithm considering 

time-vary and uncertain movement time in the automatic 

warehouse context to solve the above problem 

concerning path planning in multi-robot automatic 

warehouses. The major contribution of this work can be 

summarized as follows: 1) We formulate a real problem 

from industry, i.e., path finding for multi-robot with 

time-vary and uncertain movement speed in automatic 

warehouses context, into a mathematical model. 2) We 

propose an effective algorithm for path planning in a 

dynamic and uncertain surrounding, which consists of 

path-finding module, conflict detection and re-planning 

module, and scheduling module. 3) Under the 

framework of A* algorithm, we proposed the 

path-finding module, where the conflicts between robots 

is considered by using a normal distribution function to 

map the cost value. Under such arrangement, a great 

number of conflicts can be avoided when planning the 

path for each robot. 4) We design a conflict detection 

and re-planning module to handle the conflict existing in 

the planned path by re-plan robots' path. Besides, the 

scheduling module is used to settle part of conflicts by 

controlling the robots' movement. 

The rest of the paper is organized as follows: The 

studied problem is formalized in Section 2. Then, in 

Section 3, we present the proposed algorithm. Section 4 

demonstrates the results of the proposed algorithm in 

comparison to other algorithms. Finally, Section 5 sums 

up the paper and provides future work. 

2  Problem formulation 

2.1 Symbol definition 

As shown in Fig. 1, considering a path planning problem 

in a grid world with grid (𝑥, 𝑦), we have a directed 

graph 𝐺 = (𝑉, 𝐸).  

 

Figure 1 Definition of robot’s direction 

Vertex set 𝑉 consists of grids and edge set 𝐸 describes 

the connectivity (relation of connection between 

vertexes). If vertex 𝑉𝑖 and 𝑉𝑗 connect directly, we have 

𝑒(𝑖, 𝑗)  ∈ 𝐸. Remind that every grid connects with itself, 

so we also have 𝑒(𝑖, 𝑖) ∈ 𝐸. 

There are 𝑚 robots (denote as robot 𝑟𝑖, 𝑖 = 1,2, … , 𝑚) 

in the automatic warehouse. For robot 𝑟𝑖, in time step 𝑡, 

a direction variable 𝑑𝑖(𝑡) , 𝑑𝑖(𝑡) ∈ {1,2,3,4} , is 

provided. The meaning of the value is showed in Fig. 1. 

We define the relation between the direction and the 

action grids as follows: 

We assume the coordinate of current position 𝑔1 ∈ 𝑉 is 

(𝑥1, 𝑦1) and the coordinate of next position 𝑔2 ∈ 𝑉 is 

(𝑥2, 𝑦2). If 𝑥1 = 𝑥2 and 𝑦2 − 𝑦1 = −1, we have 𝑔2 −
𝑔1 = 1. If 𝑥1 = 𝑥2  and 𝑦2 − 𝑦2 = 1 , we have 𝑔2 −
𝑔1 = 3. If 𝑥2 − 𝑥1 = 1 and 𝑦2 =  𝑦1 , we have 𝑔2 −
𝑔1 = 2. If 𝑥2 − 𝑥1 = −1 and 𝑦1 = 𝑦2, we have 𝑔2 −
𝑔1 = 4. 

A preserved queue 𝑞𝑖(𝑡), 𝑞𝑖(𝑡) ∈ 𝑉𝑁, is also provided 

to show the grids obtained right now and the grids to be 

occupied in the future by the robot 𝑟𝑖. The maximum 
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length of 𝑞𝑖(𝑡) is 𝑁, 𝑁 > 2. The blank space in 𝑞𝑖(𝑡) 

is filled with placeholder #. The efficient length of 

preserved queue is 𝑛𝑖 ≤  𝑁, ignoring the placeholder #. 

Robot has a phase variable 𝑝ℎ𝑖(𝑡) ∈ 𝑅, 𝑝ℎ𝑖(𝑡) ≥ 0, to 

show the movement procedure from current position to 

the next. The phase variable is initialized to 0 when the 

movement starts. It is accumulated in every timestamp 

until it reaches 1 or more than 1, which means the 

movement has finished. When movement finishes, the 

first element in 𝑞𝑖(𝑡) will be removed to show that the 

occupation of this grid has finished. When 𝑛𝑖 ≥  1, the 

robot will move strictly under the order of the grids in 

𝑞𝑖(𝑡). When 𝑛𝑖 = 1, the robot will stay. When the robot 

wants to change direction, it needs to stay for 𝑊 

timestamps to change the direction and then move 

towards the next grid. Variable 𝑤𝑖(𝑡) ∈ 𝑍, 0 ≤ 𝑤𝑖(𝑡) ≤
𝑊 is used to show the remained timestamps that the 

robot needs to stay. Every robot has a start position 𝑆𝑖 ∈
𝑉, a start direction 𝐷𝑆𝑖 ∈ {1, 2, 3, 4}, a target position 

𝐺𝑖 ∈ 𝑉 and target direction 𝐷𝐺𝑖 ∈  {1,2,3,4}. 

2.2 State space 

In time step 𝑡 , state 𝑠𝑖(𝑡) =
[𝑑𝑖(𝑡), 𝑞𝑖(𝑡), 𝑝ℎ𝑖(𝑡), 𝑤𝑖(𝑡), (𝐺𝑖 , 𝐷𝐺𝑖)]  of robot 𝑟𝑖 

consists of five parts: the direction of robot 𝑑𝑖(𝑡) ∈
{1,2,3,4}, the occupied grid set 𝑞𝑖(𝑡) ∈ 𝑉𝑁, the moving 

procedure set 𝑝ℎ𝑖(𝑡) ∈ 𝑅, 𝑝ℎ𝑖(𝑡)  ≥ 0, the variable that 

means the remained timestamps for robot to stay 

𝑤𝑖(𝑡) ∈ 𝑍, 0 ≤ 𝑤𝑖(𝑡) ≤ 𝑊, the grid of target position 

and its direction (𝐺𝑖 , 𝐷𝐺𝑖), 𝐺𝑖 ∈ 𝑉, 𝐷𝐺𝑖 ∈ {1, 2, 3, 4}. 

In time step 𝑡 , the united state space of 𝑚  robots 

𝑠(𝑡) = [𝑑(𝑡), 𝑞(𝑡), 𝑝ℎ(𝑡), 𝑤(𝑡), (𝐺, 𝐷𝐺)]  also consists 

of five parts: the direction of 𝑚  robots 𝑑(𝑡)  ∈
{1, 2, 3, 4}𝑚 the occupied grid set of 𝑚 robots 𝑞𝑖(𝑡)  ∈
 𝑉𝑁 ×𝑚 , the moving procedure of 𝑚  robots 𝑝ℎ(𝑡) ∈
𝑅𝑚 , 𝑝ℎ𝑖(𝑡) ≥ 0 , 𝑖 =  1,2, . . . , 𝑚 , the variables that 

means the remained timestamps for 𝑚 robots to stay 

𝑤(𝑡) ∈ 𝑍𝑚 , 0 ≤ 𝑤𝑖(𝑡) ≤ 𝑊 , 𝑖 = 1,2, … , 𝑚 , the grid 

set of target positions of 𝑚 robots (𝐺, 𝐷𝐺), 𝐺 ∈ 𝑉𝑚, 

𝐷𝐺 ∈ {1, 2, 3, 4}𝑚.  

2.3 Action space 

In time step 𝑡, as long as the number of actual elements 

𝑛𝑖  (the efficient length) in preserved queue 𝑞𝑖(𝑡) of 

robot 𝑟𝑖 is less than 𝑁, the algorithm could choose to 

append 𝑛̃𝑖  elements to the 𝑞𝑖(𝑡) . We define action 

𝑎𝑖(𝑡) ∈ 𝑉𝑁 as the queue 𝑞𝑖(𝑡) of robot 𝑟𝑖 in time step 

𝑡 which is after being appended (The blanks in 𝑞𝑖(𝑡) 

are filled in with the placeholder #). 

2.4 State transition 

The state transition describes the behavior of simulation 

environment. The united state 𝑠(𝑡 + 1)  in time step 

𝑡 + 1 is determined by the united state 𝑠(𝑡) and united 

action 𝑎(𝑡) in time step 𝑡. Robot 𝑟𝑖 needs to initialize 

state 𝑠𝑖(0)  when moving at the start position. We 

assume the robot has the direction 𝑑𝑖(0) = 𝐷𝑆𝑖 . The 

first element 𝑞𝑖(0)  in preserved queue is 𝑆𝑖  with 

placeholder # filling in other blanks, in other words, 

𝑞𝑖
1(0) = 𝑆𝑖 , 𝑞𝑖

𝑙(0) = # , 𝑙 = 2,3, … , 𝑁 . The moving 

procedure phase and timestamp for staying are 

initialized to 0 , 𝑝ℎ𝑖(0) = 0 , 𝑤𝑖(0) = 0 . In every 

timestamp, we decide whether the robot needs to change 

its direction. If there is only one actual element or the 

robot direction 𝑑𝑖(𝑡)  is the same with the action 

direction [𝑎𝑖
2(𝑡)  − 𝑎𝑖

1(𝑡)] in preserved queue, then the 

robot will not change its direction. Otherwise, the robot 

needs to change its direction to the action direction and 

set the timestamp for staying 𝑤𝑖(𝑡)  =  𝑊. 

After performing operation according to the direction, if 

𝑤𝑖(𝑡) > 0, the robot needs to stay. Robot has 𝑞𝑖(𝑡 +
 1) = 𝑎𝑖(𝑡) , 𝑝ℎ𝑖(𝑡 + 1) = 0 , 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 1 . 

If 𝑤𝑖(𝑡) = 0, then moving procedure phase is update at 

first, 𝑝ℎ𝑖(𝑡 + 1) = 𝑝ℎ𝑖(𝑡) + 𝑣𝑖 , 𝑣𝑖 =  
𝑓𝑖−1

𝑁−1
× 𝑣. 𝑣 is a 

fixed velocity given by the simulation system. 𝑓𝑖 means 

the number of elements before the first turning position 

in action, including the turning position itself. Remind 

that when there is only one actual element in action, 

𝑓𝑖 = 1. If 𝑓𝑖 = 1, it means there is only one actual 

element in preserved queue. Agent will stay because of 

𝑣𝑖 = 0; If 𝑓𝑖 > 1, 𝑣𝑖 > 0. Agent will move. If 𝑝ℎ𝑖(𝑡 +
 1) ≥ 1, it means action has finished. Then the first 

element in preserved queue needs to be deleted. If 

𝑝ℎ𝑖(𝑡 + 1) < 1 , agent needs to stay until 𝑝ℎ𝑖  is 

accumulated to no less than 1 . In conclusion, we 

enumerate the transition steps of agent 𝑟𝑖 in time step 𝑡 

as follows: 

1) If 𝑛𝑖 + 𝑛̃𝑖 = 1  or 𝑛𝑖 + 𝑛̃𝑖 >  1 , 𝑑𝑖(𝑡) = 𝑎𝑖
2(𝑡)  −

 𝑎𝑖
1(𝑡), we have 𝑑𝑖(𝑡 + 1) = 𝑑𝑖(𝑡). Otherwise, the robot 

needs to change direction and wait/stay. We have 𝑑𝑖(𝑡 +
1) = 𝑎𝑖

2(𝑡) − 𝑎𝑖
1(𝑡), 𝑤𝑖(𝑡)  =  𝑊. 

2) a) If 𝑤𝑖(𝑡) > 0 , we have 𝑞𝑖(𝑡 + 1) = 𝑎𝑖(𝑡) , 

𝑝ℎ𝑖(𝑡 + 1) = 0, 𝑤(𝑡 + 1) = 𝑤𝑖(𝑡) − 1. b) If 𝑤𝑖(𝑡) =
0 , we update moving procedure phase at first, 

𝑝ℎ𝑖(𝑡 + 1) = 𝑝ℎ𝑖(𝑡) + 𝑣𝑖 , 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 1 , 

𝑣𝑖 =
𝑓𝑖−1

𝑁−1
× 𝑣 . Then, if 𝑝ℎ𝑖(𝑡 + 1) < 1 , we have 

𝑞𝑖(𝑡 + 1) = 𝑎𝑖(𝑡), 𝑤𝑖(𝑡 + 1) = 0. If 𝑝ℎ𝑖(𝑡 +  1) ≥ 1, 

we have 𝑞𝑖
𝑙(𝑡 + 1) = 𝑎𝑖

𝑙+1(𝑡 + 1) = 𝑎𝑖
𝑙+1(𝑡) , 𝑙 =

 1,2, . . . , 𝑛𝑖 + 𝑛̃𝑖 − 1, 𝑝ℎ𝑖(𝑡 + 1) = 0, 𝑤𝑖(𝑡 +  1) = 0. 

2.5 Problem description 

We assume the time for all robots from their start 

positions to their target positions, i.e., make-span, is 𝑇. 

The target of the algorithm is to find a path dynamically 

which consumes the least time for every robot as well as 

avoiding any kind of collision. 

min 𝑇                                      (1) 

s.t. 𝑎𝑖
𝑙(𝑡) = 𝑞𝑖

𝑙(𝑡), 1 ≤ 𝑙 ≤ 𝑛𝑖 , 𝑖 = 1,2, … , 𝑚        (2) 

      𝑎𝑖
𝑙(𝑡) ≠ 𝑞𝑗

𝑘(𝑡), 1 ≤ 𝑙 ≤ 𝑛𝑖 + 𝑛̃𝑖, 

                      1 ≤ 𝑘 ≤ 𝑛𝑖 + 𝑛̃𝑖, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑚  (3) 

      𝑎𝑖
𝑙(𝑡) ≠ 𝑞𝑖

𝑘(𝑡), 1 ≤ 𝑙 < 𝑘 < 𝑛𝑖 + 𝑛̃𝑖 , 𝑖 = 1,2, … , 𝑚(4) 

      𝑒[𝑎𝑖
𝑙(𝑡), 𝑎𝑖

𝑙+1(𝑡)] ∈ 𝐸, 1 ≤ 𝑙 ≤ 𝑛𝑖 + 𝑛̃𝑖 − 1, 
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                        𝑖 = 1,2, … , 𝑚                     (5) 

       𝑛𝑖 + 𝑛̃𝑖 ≤ 𝑁, 𝑖 = 1,2, … , 𝑚                  (6) 

where Equation (2) means elements in the preserved 

queue must exist in the first part of the action vector. 

Equation (3) and (4) mean the elements in all action 

tensors should not be shown up in more than one path, 

except the placeholder # . Equation (5) means the 

elements in each action vector must constitute a path. 

Equation (6) means the sum of appended elements and 

existed elements should be no more than the length of 

the preserved queue. 

3  Algorithm  

In this section, we provide an algorithm to solve the 

problem formulated in Section 2. It consists of three 

modules, i.e., path-finding module, conflict detection 

and re-planning module, and scheduling module. 

Specifically, the path-planning module searches a path 

with as few conflicts as possible for a single agent by 

calculating traffic cost based on normally distributed 

conflict probability and combining it with the classic A* 

algorithm. However, this probability-based method 

cannot eliminate all conflicts and the uncertainty of 

speed will cause new conflicts constantly. As a 

supplement, the other two modules are proposed. The 

conflict detection and re-planning module chooses 

objects that requiring re-planning paths from the agents 

involved in different types of conflicts periodically by 

our designed rules. Also at each step, the scheduling 

module fills up the agent's preserved queue and decides 

who has a higher priority when the same element is 

assigned to two agents simultaneously. 

3.1 Path-finding module 

Under the framework of the A* algorithm, we propose 

the following method to find robots' paths. Compared 

with the A* algorithm, the major difference of the 

proposed method is the calculation of cost function. 

Intuitively, the conflict may occur when two robots 

arrive at the same position in a close time step, and 

potential conflicts can be predicted by analyzing the 

arrival time of each robot at each node. However, it is 

very difficult to estimate the arrival time for each robot 

because its speed is uncertain and its wait time alongside 

the path is hard to predict since our method is 

decentralized. Hence, in this work, the distance from a 

robot to a node is employed to approximate the elapsed 

time via the route. Let 𝑑𝑖𝑠𝑖  and 𝑑𝑖𝑠𝑗  represent the 

distance between the current location of robot 𝑟𝑖 and 

robot 𝑟𝑗 to the conflict node, respectively. The closer 

|𝑑𝑖𝑠𝑖 − 𝑑𝑖𝑠𝑗| is to 0, the closer conflict probability is to 

1, and conflicting probability will gradually decrease as 

|𝑑𝑖𝑠𝑖 − 𝑑𝑖𝑠𝑗| increase. Considering this fact, we adopt 

the normal distribution function to map the cost function, 

and the calculation equation of cost function is offered 

as follows: 

         𝑓(𝑉) = 𝑔(𝑉) + ℎ(𝑉) + 𝑡traf(𝑉)         (7) 

where, 𝑔(𝑉) represents the actual cost of an optimal 

path from 𝑞𝑖(𝑡)  to 𝑉  and ℎ(𝑉)  denotes the actual 

cost of an optimal path from 𝑉 to a preferred goal node 

of 𝑉  (see [7]). Besides, the calculation method of 

𝑡traf(𝑉) is offered as follows: 

𝑡traf(𝑉) = ∑ [∑ 𝜁𝑖𝑒−
(

𝑠−𝑑𝑗
𝜎 )

2

2
𝑚𝑖
𝑗=1 𝑐1

−
𝑠+𝑑𝑖

2 ] 𝑐2
𝑚𝑖 + 𝑐3𝛽3

𝑖=1  (8) 

where, 𝑚𝑖, 𝑖 = 1,2,3, refers to the number of opposite 

conflicts, following conflicts, and crossing conflicts 

occurring in the planned path, respectively. 𝜁𝑖  denotes 

the base cost for different type of conflicts, 𝑠 is the 

distance between the current node and 𝑉, 𝑑𝑗 represents 

the distance between the current node and to the conflict 

node, 𝛽, 𝛽 ∈ {0,1}, denotes the robot undergo a turn 

(𝛽 = 1) or not (𝛽 = 0) in the last time step, 𝑐1, 𝑐2, and 

𝑐3 denote the constants. 

It should be noted that the definition and calculation 

method of the conflicts, i.e., calculating 𝑚𝑖, is provided 

in Section 3.2. 

3.2 Conflict detection and re-planning module 

The primary goal of path-finding solvers is to find paths 

that can be executed without collisions. To achieve this, 

we need to detect the potential conflict between robots 

and settle them by re-planning conflicting paths. First, 

we list the definition and judgment method of 

considered conflicts as follows: 

⚫ Opposite Conflict. There is an opposite conflict 

between robot 𝑟𝑖 and robot 𝑟𝑗 if and only if both 

the robots are planned to occupy the same vertex at 

the same time step or traverse the same edge in 

opposite direction.  

⚫ Following Conflict. There is a following conflict 

between robot 𝑟𝑖 and robot 𝑟𝑗 if and only if they 

occupy the same vertex in the same direction.  

⚫ Crossing Conflict. There is a crossing conflict 

between robot 𝑟𝑖  and robot 𝑟𝑗  when both the 

robots occupy the same vertex with their movement 

directions perpendicular to each other. 

Fig. 2 illustrates the conflicts defined above, where the 

circles denote the robots, and the arrows represent 

robots' movement direction. 

   
(a)              (b) 
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(c) 
Figure 2 An illustration of considered conflicts (a) opposite 

conflict (b) following conflict (c) crossing conflict 

We define four user-specified parameters, namely time 

horizon 𝜏 , threshold value for settling conflicts 𝜙 , 

following conflict weight 𝛿fol , and crossing conflict 

weight 𝛿cross. Next, according to the conflicts defined 

above, we provide the following steps to determine the 

robots needed to be re-planed. 

Step 1. According to the judgment method offered above, 

the algorithm detects all the conflicts between robots in 

the system within a time horizon of 𝜏 time steps. 

Step 2. The algorithm re-plans the robot's path with the 

maximum number of opposite conflicts, and the 

procedure is repeated until there do not exist opposite 

conflicts in the planned paths for all robots. 

Step 3. We calculate weighted conflict value 𝛾𝑖 , 𝑖 =
1,2, … , 𝑚, for all robots in the system as follows: 

𝛾𝑖 = 𝛿fol𝑛fol,𝑖 + 𝛿cross𝑛cross,𝑖         (9) 

where, 𝑛fol,𝑖  and 𝑛cross,𝑖  refer to the number of 

following conflicts and crossing conflicts existing in the 

robot 𝑟𝑖’s path, respectively. 

Then, the weighted conflict value of the system can be 

calculated by 

𝛾 = max(𝛾1, 𝛾2, … , 𝛾𝑚).        (10) 

Step 4. If 𝛾 > 𝜙, go to Step 5. Otherwise, the procedure 

ends.  

Step 5. We re-plan the robot's path with maximum 𝛾𝑖, 

and return to Step 3. 

It should be noted that the algorithm treats the robot that 

has reached the target position as a static obstacle. Under 

such an arrangement, the conflict between robots and a 

robot having reached the target position need not be 

detected. 

3.3 Scheduling model 

According to the action space described in Section 2.3, 

the algorithm needs to append elements to the preserved 

queue when 𝑛𝑖 < 𝑁. However, some conflicts may arise 

when more than one robot append the same node. To 

resolve the conflicts, we offer the following scheduling 

module, which offers a strategy to determine which 

robot is added the conflicting node to its queue. 

Then, we assume that both robot 𝑟𝑖  and robot 𝑟𝑗 

append the same node, i.e., 𝑞𝑖
𝑘(𝑡) = 𝑞𝑗

𝑔
(𝑡) . We 

summarize the framework of the scheduling module as 

Algorithm 1. By using the algorithm, we can resolve the 

conflict by assigning the conflicting node to either of the 

robots. Two rules are used to schedule the robots when 

the algorithm does not effective (see line 19 of 

Algorithm 1).  

Then, we offer three examples to further explain the 

scheduling module, as one can see from Fig. 3, where 

the star represents the target position of robot 𝑟𝑗.  

 

    

(a)                      (b) 

 

(c) 
Figure 3 Examples for explaining the scheduling module. (a) 

Case I (b) Case II (c) Case III 

In case I, considering that 𝑞𝑖
𝑔

≠ 𝐺𝑖 , 𝑞𝑗
𝑔

≠ 𝐺𝑗 , 

𝑞𝑖
𝑘+1(𝑡) = 𝑞𝑗

𝑔−1
(𝑡), and 𝑞𝑖

𝑘−1 ≠ 𝑞𝑗
𝑔+1

(𝑡), the algorithm 

assigns the conflicting node to robot 𝑟𝑗. Moreover, in 

case II, we have that 𝑞𝑖
𝑘(𝑡) ≠ 𝐺𝑖 , 𝑞𝑗

𝑔
(𝑡) ≠ 𝐺𝑗 , 

𝑞𝑖
𝑘+1(𝑡) ≠ 𝑞𝑗

𝑔−1
(𝑡) , and 𝑞𝑖

𝑘−1 ≠ 𝑞𝑗
𝑔+1

(𝑡) . In this 

extreme case, the algorithm does not effective to assign 

the conflicting node, and two rules are adopted to settle 

the problem. Finally, for case III, it can be found that 

𝑞𝑗
𝑔

(𝑡) = 𝐺𝑗  and 𝑞𝑖
𝑘+1(𝑡) ≠ 𝑞𝑗

𝑔−1
(𝑡) . Clear, according 

to the algorithm assigns the conflicting node to robot 𝑟𝑖. 
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Remark 1: Parameter 𝑐1  and 𝑐2  are the two major 

parameters in our algorithm, and they can be adjusted 

according to the size of the directed graph and the 

number of agents, respectively. The other parameters, 

i.e., 𝜉1 , 𝜉2 , 𝜉3 , 𝜎, 𝑐3 , 𝑁, 𝛿fol , 𝛿cross, 𝜏, and 𝜙, are 

majorly chosen based on the hardware property of robots 

and they can be fixed in a certain warehouse.  

4  Experiments 

To demonstrate the superiority of the proposed algorithm, 

we carried out some comparison experiments. 

Specifically, we use a 30 × 30  grid world with 80 

robots to simulate the multi-robot automatic warehouses 

as shown in Fig. 4, where the circle with a number 

denotes the robot and the square with a number 

represents the destination of the corresponding robot.  

 

Figure 4 Multi-robot automatic warehouse simulation 

environments 

Quantitative comparisons with another three algorithms 

were carried out, and the description of these algorithms 

for comparison is offered as follows: 

1) Proposed Algorithm with Different Cost Calculation 

(ADCC). Its framework is as same as the proposed 

algorithm. The only difference is the cost 

calculation method, which is provided as follows: 

𝑓cost = 𝑐1 ×
𝑛

𝑛max
             (11) 

where 𝑐1  signified a constant, 𝑛  denotes how 

many times node 𝑛 will be visited by all robots, 

and 𝑛max  represents the maximum visit times 

among all nodes. 

2) Cooperative A* (CA*) [17]-Based Algorithm. The 

algorithm is based on a prioritized-based polity. 

Specificity, within a time horizon of 𝜏 time step, 

each robot is randomly assigned a priority and 

computes, in priority order, the shortest path that 

does not collide with the paths of robots with higher 

priorities. In the algorithm, the path-finding process 

is divided into several single-agent searches, which 

are performed in three-dimension space-time. It 

considers the planned routes of other agents. A 

waiting move is covered in one agent’s route to 

make it stay stationary. The states along the route 

are put into a reservation table after each agent’s 

path is obtained. Entries in the reservation table are 

considered impassable and are avoided during 

searching by subsequent agents. 

3) Priority-Based Search (PBS) [18]-Based Algorithm. 

The high level of the algorithm is similar to 

conflict-based search. The major differences are that 

the priority of node is represented by an adjacency 

matrix, and the child node inherits the priority of the 

parent node. Besides, the low level of the algorithm 

is similar to the cooperative A* algorithm. It carries 

a depth-first search on the high level to dynamically 

construct a priority ordering and thus sets a priority 

tree. Specifically, when occurs a collision, the 

algorithm chooses which agent can be offered a 

higher priority. It backtracks and explores other 

branches if and only if no solution is in the current 

branch. Therefore, it built a single partial priority 

ordering until it finds no collisions in the calculated 

path. 

In addition, we offer the parameter section of the 

proposed method for the experiment as follows: 

𝜉1 = 4, 𝜉2 = 1, 𝜉3 = 2, 𝜎 = 4, 

𝑐1 = 1.05, 𝑐2 = 1.5, 𝑐3 = 2, 𝑁 = 4,  

𝛿fol = 1, 𝛿cross = 2, 𝜏 = 12, 𝜙 = 3. 

Then, we evaluated the performance of these algorithms 

in terms of make-span. Considering the uncertainty of 

these algorithms, for each algorithm, we carried out 15 

times for different 𝑣 . The experiment results are 

summarized as box plots as shown in Fig. 5, and the 

average value of each case is offered in Table I, where 

“PA”, “ADCC”, “CA*”, and “PBS” denote the proposed 

algorithm, proposed algorithm with different cost 

calculation, cooperative A*-based algorithm, and 

priority-based search-based algorithm, respectively. 

Table II Average value of make-span for different cases 

 𝒗 = 𝟏 𝒗 ∈ 

[𝟎. 𝟓, 𝟏] 
𝒗 ∈ 

[𝟎, 𝟏] 
𝒗 = 

𝟎. 𝟓 

𝒗 ∈ 

[𝟎, 𝟎. 𝟓] 

PA 135.8 194.6 265.8 235.1 454.6 

ADCC 147.4 205.2 270.8 241.1 472.3 

CA* 287.1 461.7 691.7 644.3 1244.3 

PBS 282.0 458.8 692.5 649.7 1288.4 

As one can see from the figures and table, the proposed 

algorithm receives the best performance. Speed variation 

is a major concern of robot dynamics in our warehouse. 

Robots under different states can have different speeds 

(loaded robots are of max speed 0.5  and unloaded 

robots are of max speed 1). Therefore, we performed our 

experiment under different speed setting. As is shown in 

Fig. 5, the make-span of our proposed algorithm 

outperforms other algorithms under all speed settings 

and the variation of its make-span stays at a fixed range. 
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As one can see from Table 1, in terms of make-span, the 

proposed algorithm receives the best performance for all 

the cases. By comparing the first row with the second 

row, we can see that the proposed cost calculation 

method can further improve the performance. At the 

same time, it can be seen from the first, third, and fourth 

row, the proposed path-finding framework shows great 

improvement, even if using the traditional cost function.

 
(a)                             (b)                             (c) 

 
(d)                           (e) 

Figure 5 Comparisons of the three algorithms in terms of make-span for different 𝑣 (a) 𝑣 = 1 (b) 𝑣 ∈ [0.5,1] (c) 𝑣 ∈ [0,1] (d) 

𝑣 = 0.5 (e) 𝑣 ∈ [0,0.5] 

5  Conclusions and future work 

In this work, we propose an algorithm for path planning 

in the context of automatic warehouses having 

multi-robot with time-vary and uncertain movement 

speed. Specifically, we first formulate the actual problem 

in multi-robot automatic warehouses. Then, we propose 

an algorithm to plan the paths, which consists of three 

modules, i.e., path-finding module, conflict detection 

and re-planning module, and scheduling module. The 

comparison experiments show that the proposed 

algorithm receives the best performance.  

To further expand the study, we summarize the topics 

that can be investigated in the future as follows:  

1) Employing some learning approaches (e.g., 

reinforcement learning and deep learning) to 

discover more advanced cooperative strategies and 

thereby obtain team-wide benefits with broader 

definitions. 

2) Deploying incremental search techniques to reuse 

search effort from previous searches.  

3) Exploring how to enable robots to plan their paths 

so that they do not have to frequently change their 

directions rapidly for avoiding obstacles for robots 

not good at quick turns.  

4) Carrying out the proposed algorithm to a real 

automatic warehouse to further validate it. 
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