
Proceedings of CCIS2022

Path Planning Considering Time-Varying and Uncertain

Movement Speed in Multi-Robot Automatic Warehouses:

Problem Formulation and Algorithm

Jingchuan Chen1, Wei Chen2, Jing Li2, Xiguang Wei2, Wenzhe Tan2, Zuo-Jun Max Shen3,4,5,

Hongbo Li2

1Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
2Geekplus Technology Co., Ltd., Beijing 100102, China

3Faculty of Engineering, The University of Hong Kong, Hong Kong, China
4Faculty of Business and Economics, The University of Hong Kong, Hong Kong, China
5College of Engineering, University of California Berkeley, Berkeley CA 94720, USA.

jingchuan.chen@connect.hku.hk, wei.chen@geekplus.com, jing.li@geekplus.com, xiwang.wei@geekplus.com,

wenzhe.tan@geekplus.com, maxshen@hku.hk, jason.li@geekplus.com

Abstract: Path planning in the multi-robot system refers

to calculating a set of actions for each robot, which will

move each robot to its goal without conflicting with

other robots. Lately, the research topic has received

significant attention for its extensive applications, such

as airport ground, drone swarms, and automatic

warehouses. Despite these available research results,

most of the existing investigations are concerned with

the cases of robots with a fixed movement speed without

considering uncertainty. Therefore, in this work, we

study the problem of path-planning in the multi-robot

automatic warehouse context, which considers the

time-varying and uncertain robots' movement speed.

Specifically, the path-planning module searches a path

with as few conflicts as possible for a single agent by

calculating traffic cost based on customarily distributed

conflict probability and combining it with the classic A*

algorithm. However, this probability-based method

cannot eliminate all conflicts, and speed's uncertainty

will constantly cause new conflicts. As a supplement, we

propose the other two modules. The conflict detection

and re-planning module chooses objects requiring

re-planning paths from the agents involved in different

types of conflicts periodically by our designed rules.

Also, at each step, the scheduling module fills up the

agent's preserved queue and decides who has a higher

priority when the same element is assigned to two agents

simultaneously. Finally, we compare the proposed

algorithm with other algorithms from academia and

industry, and the results show that the proposed method

is validated as the best performance.

Keywords: Uncertain system; Automatic warehouse;

Multi-robot; Automated mobile robot; Path planning

1 Introduction

Path planning in the multi-robot system refers to

calculate a set of actions for each robot, which will

move each of the robots to its goal without conflicting

with other robots. Lately, the research topic is received a

great deal of attention for its extensive applications, such

as airport ground [1], drone swarms [2], and automatic

warehouses [3]. Despite these available research results,

most of the existing investigations are concerned with

the cases of robots with a fixed movement speed without

considering uncertainty. In fact, there exist a variety of

uncertainties in the real automatic warehouse, for

instance, imprecise self-location, imperfect modeling of

the surroundings, and the uncertain movements of other

robots in the shared workplace. These uncertainties are

manifested as the time-varying and uncertainty of speed

in path planning. Therefore, in this work, we focus on

the path planning for multi-robot with time-varying

movement speed in the context of automatic

warehouses.

Early studies on path planning focus only on single

robot cases. The problem can be analyzed in a great

number of ways, for instance, linear programming [4],

satisfiability [5], and answer set programming [6]. Next,

graph search algorithms (e.g., A* [7] and Jump Point

Search [8]) are employed to calculate the minimal cost

paths between the start vertex and the destination vertex

on the graph. The algorithms of single-robot path

planning provide a foundation for the analysis of path

planning in multi-robot systems.

The issue of planning collision-free paths for more than

one robot presents another layer of difficulty. In a

general way, analyzing jointly for multi-robot requires

calculating in a state space with the dimension

increasing linearly with the number of robots. This

means that the quantity of the state space is exponential

in the number of robots. The literature of this direction

can be divided into two groups for review, i.e.,

centralized and decentralized algorithms. For the

centralized algorithm, a global search over the

joint-space of all robots' movements is performed, and it

outputs a joint-plan containing all robots' paths from

their initial positions to their goal positions. Several

representative centralized planning algorithms are

summarized as follows: Paper [9] studies

implementation of dimensional expansion for robot

mailto:wei.chen@geekplus.com
mailto:jing.li@geekplus.com
mailto:xiwang.wei@geekplus.com
mailto:wenzhe.tan@geekplus.com
mailto:maxshen@hku.hk

Proceedings of CCIS2022

configuration spaces which can be denoted as a graph.

Also, the conflict-based search algorithm is presented in

[10]. The algorithm consists of two levels. At the high

level, the search is carried out by a conflict tree based on

conflicts between individual robots. At the low level,

searches for single robot are performed. These

algorithms provide guarantees of optimality and

completeness but are considered as time-consuming. In

the real-world multi-robot automatic warehouse, rather

than spending significant amounts of resources

calculating for optimal paths, it is instead preferable to

plan valid, collision-free paths quickly, even if

sub-optimal, and given additional time, to iteratively

refine the paths.

As expected, distributing the computational cost among

the robots can help to reduce the problem's

computational complexity. Indeed, the state number of a

decentralized algorithm can be made independent of its

scale in principle [11]. Furthermore, decentralized

algorithms are more robust to uncertainties and failures,

compared to centralized algorithms. Therefore, they can

be employed in the scenario where centralized

algorithms are difficult to be used. For the related work

of decentralized methods for path planning, some papers

formulate the problem as reactive control or local

coordination problems (see, for instance, [12], [13]).

These algorithms scale with the size of robots but lack

optimality and completeness guarantee. For the recent

literature of decentralized methods, in [14], a

decentralized multi-robot path-finding algorithm that

can provide theoretical completeness and optimality

guarantees is offered. a lifelong multi-agent path-finding

problem is studied in [15], where robots are assigned

with new goal locations constantly. The work considers

the certainty caused by engaging the new task to robots

constantly. Besides, paper [16] presents a multi-agent

planning framework for a class of anytime planners that

quickly generate valid paths with suboptimality

estimates and generate optimal paths given sufficient

time. However, unfortunately, these algorithms usually

assume that robots can only move to a neighboring

location or wait at their current location for each time

step, and do not consider the uncertainty and

time-dependent speed. Therefore, these algorithms

cannot offer a guarantee to be implemented in real

multi-robot environments.

We propose a decentralized algorithm considering

time-vary and uncertain movement time in the automatic

warehouse context to solve the above problem

concerning path planning in multi-robot automatic

warehouses. The major contribution of this work can be

summarized as follows: 1) We formulate a real problem

from industry, i.e., path finding for multi-robot with

time-vary and uncertain movement speed in automatic

warehouses context, into a mathematical model. 2) We

propose an effective algorithm for path planning in a

dynamic and uncertain surrounding, which consists of

path-finding module, conflict detection and re-planning

module, and scheduling module. 3) Under the

framework of A* algorithm, we proposed the

path-finding module, where the conflicts between robots

is considered by using a normal distribution function to

map the cost value. Under such arrangement, a great

number of conflicts can be avoided when planning the

path for each robot. 4) We design a conflict detection

and re-planning module to handle the conflict existing in

the planned path by re-plan robots' path. Besides, the

scheduling module is used to settle part of conflicts by

controlling the robots' movement.

The rest of the paper is organized as follows: The

studied problem is formalized in Section 2. Then, in

Section 3, we present the proposed algorithm. Section 4

demonstrates the results of the proposed algorithm in

comparison to other algorithms. Finally, Section 5 sums

up the paper and provides future work.

2 Problem formulation

2.1 Symbol definition

As shown in Fig. 1, considering a path planning problem

in a grid world with grid (𝑥, 𝑦), we have a directed

graph 𝐺 = (𝑉, 𝐸).

Figure 1 Definition of robot’s direction

Vertex set 𝑉 consists of grids and edge set 𝐸 describes

the connectivity (relation of connection between

vertexes). If vertex 𝑉𝑖 and 𝑉𝑗 connect directly, we have

𝑒(𝑖, 𝑗) ∈ 𝐸. Remind that every grid connects with itself,

so we also have 𝑒(𝑖, 𝑖) ∈ 𝐸.

There are 𝑚 robots (denote as robot 𝑟𝑖, 𝑖 = 1,2, … , 𝑚)

in the automatic warehouse. For robot 𝑟𝑖, in time step 𝑡,

a direction variable 𝑑𝑖(𝑡) , 𝑑𝑖(𝑡) ∈ {1,2,3,4} , is

provided. The meaning of the value is showed in Fig. 1.

We define the relation between the direction and the

action grids as follows:

We assume the coordinate of current position 𝑔1 ∈ 𝑉 is

(𝑥1, 𝑦1) and the coordinate of next position 𝑔2 ∈ 𝑉 is

(𝑥2, 𝑦2). If 𝑥1 = 𝑥2 and 𝑦2 − 𝑦1 = −1, we have 𝑔2 −
𝑔1 = 1. If 𝑥1 = 𝑥2 and 𝑦2 − 𝑦2 = 1 , we have 𝑔2 −
𝑔1 = 3. If 𝑥2 − 𝑥1 = 1 and 𝑦2 = 𝑦1 , we have 𝑔2 −
𝑔1 = 2. If 𝑥2 − 𝑥1 = −1 and 𝑦1 = 𝑦2, we have 𝑔2 −
𝑔1 = 4.

A preserved queue 𝑞𝑖(𝑡), 𝑞𝑖(𝑡) ∈ 𝑉𝑁, is also provided

to show the grids obtained right now and the grids to be

occupied in the future by the robot 𝑟𝑖. The maximum

Proceedings of CCIS2022

length of 𝑞𝑖(𝑡) is 𝑁, 𝑁 > 2. The blank space in 𝑞𝑖(𝑡)

is filled with placeholder #. The efficient length of

preserved queue is 𝑛𝑖 ≤ 𝑁, ignoring the placeholder #.

Robot has a phase variable 𝑝ℎ𝑖(𝑡) ∈ 𝑅, 𝑝ℎ𝑖(𝑡) ≥ 0, to

show the movement procedure from current position to

the next. The phase variable is initialized to 0 when the

movement starts. It is accumulated in every timestamp

until it reaches 1 or more than 1, which means the

movement has finished. When movement finishes, the

first element in 𝑞𝑖(𝑡) will be removed to show that the

occupation of this grid has finished. When 𝑛𝑖 ≥ 1, the

robot will move strictly under the order of the grids in

𝑞𝑖(𝑡). When 𝑛𝑖 = 1, the robot will stay. When the robot

wants to change direction, it needs to stay for 𝑊

timestamps to change the direction and then move

towards the next grid. Variable 𝑤𝑖(𝑡) ∈ 𝑍, 0 ≤ 𝑤𝑖(𝑡) ≤
𝑊 is used to show the remained timestamps that the

robot needs to stay. Every robot has a start position 𝑆𝑖 ∈
𝑉, a start direction 𝐷𝑆𝑖 ∈ {1, 2, 3, 4}, a target position

𝐺𝑖 ∈ 𝑉 and target direction 𝐷𝐺𝑖 ∈ {1,2,3,4}.

2.2 State space

In time step 𝑡 , state 𝑠𝑖(𝑡) =
[𝑑𝑖(𝑡), 𝑞𝑖(𝑡), 𝑝ℎ𝑖(𝑡), 𝑤𝑖(𝑡), (𝐺𝑖 , 𝐷𝐺𝑖)] of robot 𝑟𝑖

consists of five parts: the direction of robot 𝑑𝑖(𝑡) ∈
{1,2,3,4}, the occupied grid set 𝑞𝑖(𝑡) ∈ 𝑉𝑁, the moving

procedure set 𝑝ℎ𝑖(𝑡) ∈ 𝑅, 𝑝ℎ𝑖(𝑡) ≥ 0, the variable that

means the remained timestamps for robot to stay

𝑤𝑖(𝑡) ∈ 𝑍, 0 ≤ 𝑤𝑖(𝑡) ≤ 𝑊, the grid of target position

and its direction (𝐺𝑖 , 𝐷𝐺𝑖), 𝐺𝑖 ∈ 𝑉, 𝐷𝐺𝑖 ∈ {1, 2, 3, 4}.

In time step 𝑡 , the united state space of 𝑚 robots

𝑠(𝑡) = [𝑑(𝑡), 𝑞(𝑡), 𝑝ℎ(𝑡), 𝑤(𝑡), (𝐺, 𝐷𝐺)] also consists

of five parts: the direction of 𝑚 robots 𝑑(𝑡) ∈
{1, 2, 3, 4}𝑚 the occupied grid set of 𝑚 robots 𝑞𝑖(𝑡) ∈
 𝑉𝑁 ×𝑚 , the moving procedure of 𝑚 robots 𝑝ℎ(𝑡) ∈
𝑅𝑚 , 𝑝ℎ𝑖(𝑡) ≥ 0 , 𝑖 = 1,2, . . . , 𝑚 , the variables that

means the remained timestamps for 𝑚 robots to stay

𝑤(𝑡) ∈ 𝑍𝑚 , 0 ≤ 𝑤𝑖(𝑡) ≤ 𝑊 , 𝑖 = 1,2, … , 𝑚 , the grid

set of target positions of 𝑚 robots (𝐺, 𝐷𝐺), 𝐺 ∈ 𝑉𝑚,

𝐷𝐺 ∈ {1, 2, 3, 4}𝑚.

2.3 Action space

In time step 𝑡, as long as the number of actual elements

𝑛𝑖 (the efficient length) in preserved queue 𝑞𝑖(𝑡) of

robot 𝑟𝑖 is less than 𝑁, the algorithm could choose to

append 𝑛̃𝑖 elements to the 𝑞𝑖(𝑡) . We define action

𝑎𝑖(𝑡) ∈ 𝑉𝑁 as the queue 𝑞𝑖(𝑡) of robot 𝑟𝑖 in time step

𝑡 which is after being appended (The blanks in 𝑞𝑖(𝑡)

are filled in with the placeholder #).

2.4 State transition

The state transition describes the behavior of simulation

environment. The united state 𝑠(𝑡 + 1) in time step

𝑡 + 1 is determined by the united state 𝑠(𝑡) and united

action 𝑎(𝑡) in time step 𝑡. Robot 𝑟𝑖 needs to initialize

state 𝑠𝑖(0) when moving at the start position. We

assume the robot has the direction 𝑑𝑖(0) = 𝐷𝑆𝑖 . The

first element 𝑞𝑖(0) in preserved queue is 𝑆𝑖 with

placeholder # filling in other blanks, in other words,

𝑞𝑖
1(0) = 𝑆𝑖 , 𝑞𝑖

𝑙(0) = # , 𝑙 = 2,3, … , 𝑁 . The moving

procedure phase and timestamp for staying are

initialized to 0 , 𝑝ℎ𝑖(0) = 0 , 𝑤𝑖(0) = 0 . In every

timestamp, we decide whether the robot needs to change

its direction. If there is only one actual element or the

robot direction 𝑑𝑖(𝑡) is the same with the action

direction [𝑎𝑖
2(𝑡) − 𝑎𝑖

1(𝑡)] in preserved queue, then the

robot will not change its direction. Otherwise, the robot

needs to change its direction to the action direction and

set the timestamp for staying 𝑤𝑖(𝑡) = 𝑊.

After performing operation according to the direction, if

𝑤𝑖(𝑡) > 0, the robot needs to stay. Robot has 𝑞𝑖(𝑡 +
 1) = 𝑎𝑖(𝑡) , 𝑝ℎ𝑖(𝑡 + 1) = 0 , 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 1 .

If 𝑤𝑖(𝑡) = 0, then moving procedure phase is update at

first, 𝑝ℎ𝑖(𝑡 + 1) = 𝑝ℎ𝑖(𝑡) + 𝑣𝑖 , 𝑣𝑖 =
𝑓𝑖−1

𝑁−1
× 𝑣. 𝑣 is a

fixed velocity given by the simulation system. 𝑓𝑖 means

the number of elements before the first turning position

in action, including the turning position itself. Remind

that when there is only one actual element in action,

𝑓𝑖 = 1. If 𝑓𝑖 = 1, it means there is only one actual

element in preserved queue. Agent will stay because of

𝑣𝑖 = 0; If 𝑓𝑖 > 1, 𝑣𝑖 > 0. Agent will move. If 𝑝ℎ𝑖(𝑡 +
 1) ≥ 1, it means action has finished. Then the first

element in preserved queue needs to be deleted. If

𝑝ℎ𝑖(𝑡 + 1) < 1 , agent needs to stay until 𝑝ℎ𝑖 is

accumulated to no less than 1 . In conclusion, we

enumerate the transition steps of agent 𝑟𝑖 in time step 𝑡

as follows:

1) If 𝑛𝑖 + 𝑛̃𝑖 = 1 or 𝑛𝑖 + 𝑛̃𝑖 > 1 , 𝑑𝑖(𝑡) = 𝑎𝑖
2(𝑡) −

 𝑎𝑖
1(𝑡), we have 𝑑𝑖(𝑡 + 1) = 𝑑𝑖(𝑡). Otherwise, the robot

needs to change direction and wait/stay. We have 𝑑𝑖(𝑡 +
1) = 𝑎𝑖

2(𝑡) − 𝑎𝑖
1(𝑡), 𝑤𝑖(𝑡) = 𝑊.

2) a) If 𝑤𝑖(𝑡) > 0 , we have 𝑞𝑖(𝑡 + 1) = 𝑎𝑖(𝑡) ,

𝑝ℎ𝑖(𝑡 + 1) = 0, 𝑤(𝑡 + 1) = 𝑤𝑖(𝑡) − 1. b) If 𝑤𝑖(𝑡) =
0 , we update moving procedure phase at first,

𝑝ℎ𝑖(𝑡 + 1) = 𝑝ℎ𝑖(𝑡) + 𝑣𝑖 , 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 1 ,

𝑣𝑖 =
𝑓𝑖−1

𝑁−1
× 𝑣 . Then, if 𝑝ℎ𝑖(𝑡 + 1) < 1 , we have

𝑞𝑖(𝑡 + 1) = 𝑎𝑖(𝑡), 𝑤𝑖(𝑡 + 1) = 0. If 𝑝ℎ𝑖(𝑡 + 1) ≥ 1,

we have 𝑞𝑖
𝑙(𝑡 + 1) = 𝑎𝑖

𝑙+1(𝑡 + 1) = 𝑎𝑖
𝑙+1(𝑡) , 𝑙 =

 1,2, . . . , 𝑛𝑖 + 𝑛̃𝑖 − 1, 𝑝ℎ𝑖(𝑡 + 1) = 0, 𝑤𝑖(𝑡 + 1) = 0.

2.5 Problem description

We assume the time for all robots from their start

positions to their target positions, i.e., make-span, is 𝑇.

The target of the algorithm is to find a path dynamically

which consumes the least time for every robot as well as

avoiding any kind of collision.

min 𝑇 (1)

s.t. 𝑎𝑖
𝑙(𝑡) = 𝑞𝑖

𝑙(𝑡), 1 ≤ 𝑙 ≤ 𝑛𝑖 , 𝑖 = 1,2, … , 𝑚 (2)

 𝑎𝑖
𝑙(𝑡) ≠ 𝑞𝑗

𝑘(𝑡), 1 ≤ 𝑙 ≤ 𝑛𝑖 + 𝑛̃𝑖,

 1 ≤ 𝑘 ≤ 𝑛𝑖 + 𝑛̃𝑖, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑚 (3)

 𝑎𝑖
𝑙(𝑡) ≠ 𝑞𝑖

𝑘(𝑡), 1 ≤ 𝑙 < 𝑘 < 𝑛𝑖 + 𝑛̃𝑖 , 𝑖 = 1,2, … , 𝑚(4)

 𝑒[𝑎𝑖
𝑙(𝑡), 𝑎𝑖

𝑙+1(𝑡)] ∈ 𝐸, 1 ≤ 𝑙 ≤ 𝑛𝑖 + 𝑛̃𝑖 − 1,

Proceedings of CCIS2022

 𝑖 = 1,2, … , 𝑚 (5)

 𝑛𝑖 + 𝑛̃𝑖 ≤ 𝑁, 𝑖 = 1,2, … , 𝑚 (6)

where Equation (2) means elements in the preserved

queue must exist in the first part of the action vector.

Equation (3) and (4) mean the elements in all action

tensors should not be shown up in more than one path,

except the placeholder # . Equation (5) means the

elements in each action vector must constitute a path.

Equation (6) means the sum of appended elements and

existed elements should be no more than the length of

the preserved queue.

3 Algorithm

In this section, we provide an algorithm to solve the

problem formulated in Section 2. It consists of three

modules, i.e., path-finding module, conflict detection

and re-planning module, and scheduling module.

Specifically, the path-planning module searches a path

with as few conflicts as possible for a single agent by

calculating traffic cost based on normally distributed

conflict probability and combining it with the classic A*

algorithm. However, this probability-based method

cannot eliminate all conflicts and the uncertainty of

speed will cause new conflicts constantly. As a

supplement, the other two modules are proposed. The

conflict detection and re-planning module chooses

objects that requiring re-planning paths from the agents

involved in different types of conflicts periodically by

our designed rules. Also at each step, the scheduling

module fills up the agent's preserved queue and decides

who has a higher priority when the same element is

assigned to two agents simultaneously.

3.1 Path-finding module

Under the framework of the A* algorithm, we propose

the following method to find robots' paths. Compared

with the A* algorithm, the major difference of the

proposed method is the calculation of cost function.

Intuitively, the conflict may occur when two robots

arrive at the same position in a close time step, and

potential conflicts can be predicted by analyzing the

arrival time of each robot at each node. However, it is

very difficult to estimate the arrival time for each robot

because its speed is uncertain and its wait time alongside

the path is hard to predict since our method is

decentralized. Hence, in this work, the distance from a

robot to a node is employed to approximate the elapsed

time via the route. Let 𝑑𝑖𝑠𝑖 and 𝑑𝑖𝑠𝑗 represent the

distance between the current location of robot 𝑟𝑖 and

robot 𝑟𝑗 to the conflict node, respectively. The closer

|𝑑𝑖𝑠𝑖 − 𝑑𝑖𝑠𝑗| is to 0, the closer conflict probability is to

1, and conflicting probability will gradually decrease as

|𝑑𝑖𝑠𝑖 − 𝑑𝑖𝑠𝑗| increase. Considering this fact, we adopt

the normal distribution function to map the cost function,

and the calculation equation of cost function is offered

as follows:

 𝑓(𝑉) = 𝑔(𝑉) + ℎ(𝑉) + 𝑡traf(𝑉) (7)

where, 𝑔(𝑉) represents the actual cost of an optimal

path from 𝑞𝑖(𝑡) to 𝑉 and ℎ(𝑉) denotes the actual

cost of an optimal path from 𝑉 to a preferred goal node

of 𝑉 (see [7]). Besides, the calculation method of

𝑡traf(𝑉) is offered as follows:

𝑡traf(𝑉) = ∑ [∑ 𝜁𝑖𝑒−
(

𝑠−𝑑𝑗
𝜎)

2

2
𝑚𝑖
𝑗=1 𝑐1

−
𝑠+𝑑𝑖

2] 𝑐2
𝑚𝑖 + 𝑐3𝛽3

𝑖=1 (8)

where, 𝑚𝑖, 𝑖 = 1,2,3, refers to the number of opposite

conflicts, following conflicts, and crossing conflicts

occurring in the planned path, respectively. 𝜁𝑖 denotes

the base cost for different type of conflicts, 𝑠 is the

distance between the current node and 𝑉, 𝑑𝑗 represents

the distance between the current node and to the conflict

node, 𝛽, 𝛽 ∈ {0,1}, denotes the robot undergo a turn

(𝛽 = 1) or not (𝛽 = 0) in the last time step, 𝑐1, 𝑐2, and

𝑐3 denote the constants.

It should be noted that the definition and calculation

method of the conflicts, i.e., calculating 𝑚𝑖, is provided

in Section 3.2.

3.2 Conflict detection and re-planning module

The primary goal of path-finding solvers is to find paths

that can be executed without collisions. To achieve this,

we need to detect the potential conflict between robots

and settle them by re-planning conflicting paths. First,

we list the definition and judgment method of

considered conflicts as follows:

⚫ Opposite Conflict. There is an opposite conflict

between robot 𝑟𝑖 and robot 𝑟𝑗 if and only if both

the robots are planned to occupy the same vertex at

the same time step or traverse the same edge in

opposite direction.

⚫ Following Conflict. There is a following conflict

between robot 𝑟𝑖 and robot 𝑟𝑗 if and only if they

occupy the same vertex in the same direction.

⚫ Crossing Conflict. There is a crossing conflict

between robot 𝑟𝑖 and robot 𝑟𝑗 when both the

robots occupy the same vertex with their movement

directions perpendicular to each other.

Fig. 2 illustrates the conflicts defined above, where the

circles denote the robots, and the arrows represent

robots' movement direction.

(a) (b)

Proceedings of CCIS2022

(c)
Figure 2 An illustration of considered conflicts (a) opposite

conflict (b) following conflict (c) crossing conflict

We define four user-specified parameters, namely time

horizon 𝜏 , threshold value for settling conflicts 𝜙 ,

following conflict weight 𝛿fol , and crossing conflict

weight 𝛿cross. Next, according to the conflicts defined

above, we provide the following steps to determine the

robots needed to be re-planed.

Step 1. According to the judgment method offered above,

the algorithm detects all the conflicts between robots in

the system within a time horizon of 𝜏 time steps.

Step 2. The algorithm re-plans the robot's path with the

maximum number of opposite conflicts, and the

procedure is repeated until there do not exist opposite

conflicts in the planned paths for all robots.

Step 3. We calculate weighted conflict value 𝛾𝑖 , 𝑖 =
1,2, … , 𝑚, for all robots in the system as follows:

𝛾𝑖 = 𝛿fol𝑛fol,𝑖 + 𝛿cross𝑛cross,𝑖 (9)

where, 𝑛fol,𝑖 and 𝑛cross,𝑖 refer to the number of

following conflicts and crossing conflicts existing in the

robot 𝑟𝑖’s path, respectively.

Then, the weighted conflict value of the system can be

calculated by

𝛾 = max(𝛾1, 𝛾2, … , 𝛾𝑚). (10)

Step 4. If 𝛾 > 𝜙, go to Step 5. Otherwise, the procedure

ends.

Step 5. We re-plan the robot's path with maximum 𝛾𝑖,

and return to Step 3.

It should be noted that the algorithm treats the robot that

has reached the target position as a static obstacle. Under

such an arrangement, the conflict between robots and a

robot having reached the target position need not be

detected.

3.3 Scheduling model

According to the action space described in Section 2.3,

the algorithm needs to append elements to the preserved

queue when 𝑛𝑖 < 𝑁. However, some conflicts may arise

when more than one robot append the same node. To

resolve the conflicts, we offer the following scheduling

module, which offers a strategy to determine which

robot is added the conflicting node to its queue.

Then, we assume that both robot 𝑟𝑖 and robot 𝑟𝑗

append the same node, i.e., 𝑞𝑖
𝑘(𝑡) = 𝑞𝑗

𝑔
(𝑡) . We

summarize the framework of the scheduling module as

Algorithm 1. By using the algorithm, we can resolve the

conflict by assigning the conflicting node to either of the

robots. Two rules are used to schedule the robots when

the algorithm does not effective (see line 19 of

Algorithm 1).

Then, we offer three examples to further explain the

scheduling module, as one can see from Fig. 3, where

the star represents the target position of robot 𝑟𝑗.

(a) (b)

(c)
Figure 3 Examples for explaining the scheduling module. (a)

Case I (b) Case II (c) Case III

In case I, considering that 𝑞𝑖
𝑔

≠ 𝐺𝑖 , 𝑞𝑗
𝑔

≠ 𝐺𝑗 ,

𝑞𝑖
𝑘+1(𝑡) = 𝑞𝑗

𝑔−1
(𝑡), and 𝑞𝑖

𝑘−1 ≠ 𝑞𝑗
𝑔+1

(𝑡), the algorithm

assigns the conflicting node to robot 𝑟𝑗. Moreover, in

case II, we have that 𝑞𝑖
𝑘(𝑡) ≠ 𝐺𝑖 , 𝑞𝑗

𝑔
(𝑡) ≠ 𝐺𝑗 ,

𝑞𝑖
𝑘+1(𝑡) ≠ 𝑞𝑗

𝑔−1
(𝑡) , and 𝑞𝑖

𝑘−1 ≠ 𝑞𝑗
𝑔+1

(𝑡) . In this

extreme case, the algorithm does not effective to assign

the conflicting node, and two rules are adopted to settle

the problem. Finally, for case III, it can be found that

𝑞𝑗
𝑔

(𝑡) = 𝐺𝑗 and 𝑞𝑖
𝑘+1(𝑡) ≠ 𝑞𝑗

𝑔−1
(𝑡) . Clear, according

to the algorithm assigns the conflicting node to robot 𝑟𝑖.

Proceedings of CCIS2022

Remark 1: Parameter 𝑐1 and 𝑐2 are the two major

parameters in our algorithm, and they can be adjusted

according to the size of the directed graph and the

number of agents, respectively. The other parameters,

i.e., 𝜉1 , 𝜉2 , 𝜉3 , 𝜎, 𝑐3 , 𝑁, 𝛿fol , 𝛿cross, 𝜏, and 𝜙, are

majorly chosen based on the hardware property of robots

and they can be fixed in a certain warehouse.

4 Experiments

To demonstrate the superiority of the proposed algorithm,

we carried out some comparison experiments.

Specifically, we use a 30 × 30 grid world with 80

robots to simulate the multi-robot automatic warehouses

as shown in Fig. 4, where the circle with a number

denotes the robot and the square with a number

represents the destination of the corresponding robot.

Figure 4 Multi-robot automatic warehouse simulation

environments

Quantitative comparisons with another three algorithms

were carried out, and the description of these algorithms

for comparison is offered as follows:

1) Proposed Algorithm with Different Cost Calculation

(ADCC). Its framework is as same as the proposed

algorithm. The only difference is the cost

calculation method, which is provided as follows:

𝑓cost = 𝑐1 ×
𝑛

𝑛max
 (11)

where 𝑐1 signified a constant, 𝑛 denotes how

many times node 𝑛 will be visited by all robots,

and 𝑛max represents the maximum visit times

among all nodes.

2) Cooperative A* (CA*) [17]-Based Algorithm. The

algorithm is based on a prioritized-based polity.

Specificity, within a time horizon of 𝜏 time step,

each robot is randomly assigned a priority and

computes, in priority order, the shortest path that

does not collide with the paths of robots with higher

priorities. In the algorithm, the path-finding process

is divided into several single-agent searches, which

are performed in three-dimension space-time. It

considers the planned routes of other agents. A

waiting move is covered in one agent’s route to

make it stay stationary. The states along the route

are put into a reservation table after each agent’s

path is obtained. Entries in the reservation table are

considered impassable and are avoided during

searching by subsequent agents.

3) Priority-Based Search (PBS) [18]-Based Algorithm.

The high level of the algorithm is similar to

conflict-based search. The major differences are that

the priority of node is represented by an adjacency

matrix, and the child node inherits the priority of the

parent node. Besides, the low level of the algorithm

is similar to the cooperative A* algorithm. It carries

a depth-first search on the high level to dynamically

construct a priority ordering and thus sets a priority

tree. Specifically, when occurs a collision, the

algorithm chooses which agent can be offered a

higher priority. It backtracks and explores other

branches if and only if no solution is in the current

branch. Therefore, it built a single partial priority

ordering until it finds no collisions in the calculated

path.

In addition, we offer the parameter section of the

proposed method for the experiment as follows:

𝜉1 = 4, 𝜉2 = 1, 𝜉3 = 2, 𝜎 = 4,

𝑐1 = 1.05, 𝑐2 = 1.5, 𝑐3 = 2, 𝑁 = 4,

𝛿fol = 1, 𝛿cross = 2, 𝜏 = 12, 𝜙 = 3.

Then, we evaluated the performance of these algorithms

in terms of make-span. Considering the uncertainty of

these algorithms, for each algorithm, we carried out 15

times for different 𝑣 . The experiment results are

summarized as box plots as shown in Fig. 5, and the

average value of each case is offered in Table I, where

“PA”, “ADCC”, “CA*”, and “PBS” denote the proposed

algorithm, proposed algorithm with different cost

calculation, cooperative A*-based algorithm, and

priority-based search-based algorithm, respectively.

Table II Average value of make-span for different cases

 𝒗 = 𝟏 𝒗 ∈

[𝟎. 𝟓, 𝟏]
𝒗 ∈

[𝟎, 𝟏]
𝒗 =

𝟎. 𝟓

𝒗 ∈

[𝟎, 𝟎. 𝟓]

PA 135.8 194.6 265.8 235.1 454.6

ADCC 147.4 205.2 270.8 241.1 472.3

CA* 287.1 461.7 691.7 644.3 1244.3

PBS 282.0 458.8 692.5 649.7 1288.4

As one can see from the figures and table, the proposed

algorithm receives the best performance. Speed variation

is a major concern of robot dynamics in our warehouse.

Robots under different states can have different speeds

(loaded robots are of max speed 0.5 and unloaded

robots are of max speed 1). Therefore, we performed our

experiment under different speed setting. As is shown in

Fig. 5, the make-span of our proposed algorithm

outperforms other algorithms under all speed settings

and the variation of its make-span stays at a fixed range.

Proceedings of CCIS2022

As one can see from Table 1, in terms of make-span, the

proposed algorithm receives the best performance for all

the cases. By comparing the first row with the second

row, we can see that the proposed cost calculation

method can further improve the performance. At the

same time, it can be seen from the first, third, and fourth

row, the proposed path-finding framework shows great

improvement, even if using the traditional cost function.

(a) (b) (c)

(d) (e)

Figure 5 Comparisons of the three algorithms in terms of make-span for different 𝑣 (a) 𝑣 = 1 (b) 𝑣 ∈ [0.5,1] (c) 𝑣 ∈ [0,1] (d)

𝑣 = 0.5 (e) 𝑣 ∈ [0,0.5]

5 Conclusions and future work

In this work, we propose an algorithm for path planning

in the context of automatic warehouses having

multi-robot with time-vary and uncertain movement

speed. Specifically, we first formulate the actual problem

in multi-robot automatic warehouses. Then, we propose

an algorithm to plan the paths, which consists of three

modules, i.e., path-finding module, conflict detection

and re-planning module, and scheduling module. The

comparison experiments show that the proposed

algorithm receives the best performance.

To further expand the study, we summarize the topics

that can be investigated in the future as follows:

1) Employing some learning approaches (e.g.,

reinforcement learning and deep learning) to

discover more advanced cooperative strategies and

thereby obtain team-wide benefits with broader

definitions.

2) Deploying incremental search techniques to reuse

search effort from previous searches.

3) Exploring how to enable robots to plan their paths

so that they do not have to frequently change their

directions rapidly for avoiding obstacles for robots

not good at quick turns.

4) Carrying out the proposed algorithm to a real

automatic warehouse to further validate it.

References

[1] K. Fines, A. Sharpanskykh, and M. Vert, “Agent-based

distributed planning and coordination for resilient airport

surface movement operations,” Aerospace, vol. 7, no. 4,

p. 48, 2020.

[2] A. Tahir, J. B¨oling, M.-H. Haghbayan, H. T. Toivonen,

and J. Plosila, “Swarms of unmanned aerial vehicles - a

survey,” Journal of Industrial Information Integration,

vol. 16, pp. 100–106, 2019.

[3] K. Sharma and R. Doriya, “Coordination of multi-robot

path planning for warehouse application using smart

approach for identifying destinations,” Intelligent Service

Robotics, vol. 14, no. 2, p. 313–325, 2021.

[4] J. Berger, A. Boukhtouta, A. Benmoussa, and O. Kettani,

“A new mixed-integer linear programming model for

rescue path planning in uncertain adversarial

environment,” Computers & Operations Research, vol.

39, no. 12, pp. 3420–3430, 2012.

[5] W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R.

Wang, and P. Gao, “Motion planning with satisfiability

modulo theories,” in IEEE International Conference on

Robotics and Automation. USA: IEEE, 2014, pp. 113–

118.

[6] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W.

Yeoh, “Generalized target assignment and path finding

using answer set programming,” in International

Symposium on Combinatorial Search. USA: AAAI, 2019,

pp. 194–195.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis

for the heuristic determination of minimum cost paths,”

IEEE Transactions on Systems Science and Cybernetics,

vol. 4, no. 2, pp. 100–107, 1968.

[8] D. Harabor and A. Grastien, “Online graph pruning for

Proceedings of CCIS2022

pathfinding on grid maps,” in Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence.

USA: AAAI Press, 2011, pp. 1114–1119.

[9] G. Wagner and H. Choset, “M*: A complete multirobot

path planning algorithm with performance bounds,” in

IEEE/RSJ International Conference on Intelligent Robots

and Systems. USA: IEEE, 2011, pp. 3260–3267.

[10] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,

“Conflict-based search for optimal multi-agent

pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66,

2015.

[11] V. Lumelsky and K. Harinarayan, “Decentralized motion

planning for multiple mobile robots: The cocktail party

model,” Autonomous Robots, vol. 4, no. 3, p. 121–135,

1997.

[12] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager,

“Fast, on-line collision avoidance for dynamic vehicles

using buffered voronoi cells,” IEEE Robotics and

Automation Letters, vol. 2, no. 2, pp. 1047–1054, 2017.

[13] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier

certificates for collisions-free multirobot systems,” IEEE

Transactions on Robotics, vol. 33, no. 3, pp. 661–674,

2017.

[14] H. Wang and M. Rubenstein, “Walk, stop, count, and

swap: Decentralized multi-agent path finding with

theoretical guarantees,” IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 1119–1126, 2020.

[15] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. Satish Kumar,

and S. Koenig, “Lifelong multi-agent path finding in

large-scale warehouses,” in Proceedings of the

International Joint Conference on Autonomous Agents

and Multiagent Systems. IFAAMAS, 2020, pp. 1898–

1900.

[16] K. Vedder and J. Biswas, “X*: Anytime multi-agent path

finding for sparse domains using window-based iterative

repairs,” Artificial Intelligence, vol. 291, p. 103417,

2021.

[17] D. Silver, “Cooperative pathfinding,” in Artificial

Intelligence and Interactive Digital Entertainment

Conference. USA: AAAI, 2005, pp. 117–122.

[18] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig,

“Searching with consistent prioritization for multi-agent

path finding,” in AAAI Conference on Artificial

Intelligence. USA: AAAI, 2019, pp. 7643–7650.

