
*Corresponding author: Yawen Li (warmly0716@126.com).

Adaptive Dual Channel Convolution Hypergraph

Representation Learning for Technological Intellectual

Property

Yuxin Liu1, Yawen Li2*, Yingxia Shao1, Zeli Guan1

1Beijing Key Laboratory of Intelligent Communication Software and Multimedia, School of Computer Science

(National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876
2School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876

Abstract: In the age of big data, the demand for hidden

information mining in technological intellectual property

is increasing in discrete countries. Definitely, a

considerable number of graph learning algorithms for

technological intellectual property have been proposed.

The goal is to model the technological intellectual

property entities and their relationships through the graph

structure and use the neural network algorithm to extract

the hidden structure information in the graph. However,

most of the existing graph learning algorithms merely

focus on the information mining of binary relations in

technological intellectual property, ignoring the higher-

order information hidden in non-binary relations.

Therefore, a hypergraph neural network model based on

dual channel convolution is proposed. For the hypergraph

constructed from technological intellectual property data,

the hypergraph channel and the line expanded graph

channel of the hypergraph are used to learn the

hypergraph, and the attention mechanism is introduced to

adaptively fuse the output representations of the two

channels. The proposed model outperforms the existing

approaches on a variety of datasets.

Keywords: Graph Convolution; Hypergraph; Line

Expansion; Attention; Representation Fusion

1 Introduction

Technological intellectual property data is generally

composed of complex information like creative entities,

resource entities, inter-entity relationships, and entity

attributes[33]. Mainstream models usually need to map

data into a vector space that is convenient for

calculation[20][23],[27], filter and fuse data in the limited

space[39]-[43], and cannot ignore the correlation

information of the data itself. The purpose of this paper is

to propose a hypergraph learning algorithm to represent

the hypergraph modeled the complex information about

technological intellectual property data for further

analysis and mining.

In terms of the modelling technological intellectual

property data, existing methods include a homogeneous

[30],[32] and a heterogeneous graph [25][26],[31].

However, homogeneous and heterogeneous graphs

merely model binary relationships, which are not able to

model non-binary relationships in technological

intellectual property data. Consequently, graph learning

algorithms based on a homogenous graph and a

heterogeneous graph are unable to represent nonlinear

higher-order correlation among technological intellectual

property entities. Some researchers have proposed to use

multi-agent to learn multiple features and solve the above

problems through feature fusion [12-15], but this method

requires a lot of artificial construction work. Instead,

hypergraph [29] has been used as a modeling method of

non-binary relations due to its structural characteristics,

such as the research [10], [46] on natural language

processing, the research [12],[34]-[36] on

recommendation systems, the research [11],[45] on image

classification, and the research on various social networks

[38],[44]. Accordingly, using hypergraph to model the

entities and relationships of technological intellectual

property data is able to fully express its complexity.

For hypergraph learning, traditional algorithms are

typically separated into two categories: one is based on

incidence matrix decomposition, and the other is based on

hypergraph expansion [28],[37], which converts

hypergraphs into weighted simple graphs. Neither the

performance nor the efficiency of traditional methods can

be compared with neural networks, so this paper mainly

discusses hypergraph neural network algorithms. The

neural network algorithms include hypergraph neural

networks based on hypergraph expansion and hypergraph

neural networks based on non-hypergraph expansion.

Methods [1][3] based on hypergraph expansion

commonly use simple graph learning methods such as the

Graph Convolution Network (GCN) to represent the

converted simple weighted graph from the hypergraph.

However, it would cause the loss of some information for

the same reason that it simplifies the hypergraph into a

simple weighted graph. The methods [5][7] based on non-

hypergraph expansion are to carry out hypergraph

learning through hypergraph convolution neural networks

or hypergraph attention neural networks. Some of these

methods are merely appropriate for learning k-uniform

graphs with k hypernodes on each hyperedge but not for

the technological intellectual property data that

hypergraph structure is a k-uniform graph. The others [8]

integrate the features of hypergraph and simple graph

expanded from hypergraph. Nevertheless, the method of

fusion is the average of the representation of two graphs.

In view of the problems with the above methods, we

propose an adaptive dual-channel hypergraph node

representation algorithm based on hypergraph

convolution and line expansion (LE) of the hypergraph.

Furthermore, it uses the node classification task to verify

the method. Firstly, we construct a hypergraph based on

some technological intellectual property data by taking

the author as the hyperedge and his publications as the

hypernodes. Secondly, using the method proposed by [3]

expands the hypergraph to a weighted simple graph.

Thirdly, the hypergraph and the graph of LE pass through

the hypergraph convolution channel and the graph

convolution channel, respectively. Finally, the final node

representation is obtained by using the attention

mechanism to adaptively fuse the two representations of

dual channels. Furthermore, we use the node

classification task to determine the effect of node

representation.

The main contributions of this paper are as follows:

1) We propose an adaptive hypergraph dual channel

convolution node representation learning method

(ADHCN). The hypergraph line expansion convolution

channel and the hypergraph convolution channel are used

to represent nodes, so as to avoid the information loss in

the simple graph, which is line expanded from the

hypergraph.

2) We introduce the attention mechanism to fuse the

representations of the two channels to avoid the deviation

caused by direct averaging or splicing.

3) The experimental results demonstrate that ADHCN

exceeds the compared models in terms of accuracy, F1,

and recall. Moreover, the experiment shows that the effect

of the model is significantly improved after introducing

the attention mechanism for adaptive fusion.

2 Related Work

A hypergraph G =< V, E, W > is a generalized graph,

where V = {v1, v2, … , v𝑛} is the set of hypernodes, E =
{e1, e2, … , e𝑚} is the set of hyperedges, and W =
{w1, w2, … , w𝑚} is the weights set on each hyperedge. In

particular, each hyperedge e𝑖 connects more than two

hypernodes. Moreover, the incidence matrix of the

hypergraph is H = {h𝑖𝑗|1 ≤ i ≤ n, 1 ≤ j ≤ m} , where

h𝑖𝑗 only takes 0 or 1. In particular, there are more than

two 1 in the column of H, which means one hyperedge

connects several vertices.

For the methods in hypergraph neural networks based on

expansion, Yadati et al. [1] proposed the hyperGCN model,

whose principle is to use the GCN training graph

transformed from the hypergraph through the spectral

theory and introduce the mediator to prevent the loss of

the hypergraph’s information. Bandyopadhyay [2]

simplified the hypergraph into a normal graph named

“line graph” by taking the hyperedge as the vertex and the

Jaccard similarity between the hyperedges as the weight,

and then trained the graph with GCN. Yang et al. [3]

proposed the line expansion (LE) of hypergraphs to

transform the hypergraph into a weighted simple graph

G𝑙 = (𝑉𝑙 , 𝐸𝑙). The 𝑉𝑙 is the node set which is composed

of hyperedge-hypernode pairs {(v, e)|v ∈ V, e ∈ E}

from the original hypergraph. The edge of the edge set 𝐸𝑙

connects two pairs if both pairs have a common

hypernode or hyperedge. The adjacency matrix of the

weighted graph A𝑙 ∈ {0, w𝑒 , w𝑣}|𝑉𝑙|×|𝑉𝑙| shown in Eq.1

is defined by the pairwise relation u ∈ V𝑙 and v ∈ V𝑙.

𝐴𝑙(𝑢, 𝑣) {
𝑤𝑒 𝑢 = (𝑣ℎ , 𝑒ℎ), 𝑣 = (𝑣ℎ

′ , 𝑒ℎ
′), 𝑣ℎ = 𝑣ℎ

′

𝑤𝑣 𝑢 = (𝑣ℎ, 𝑒ℎ), 𝑣 = (𝑣ℎ
′ , 𝑒ℎ

′), 𝑒ℎ = 𝑒ℎ
′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

The above algorithms reduce the hypergraph learning

problem with simple graph learning, which brings

problems of hypergraph information loss. For the

methods in hypergraph neural networks based on non-

expansion, Feng et al. [5] proposed a hypergraph

convolution neural network by extending graph

convolution to hypergraph. And the proposed method is

used to learn the hypergraph constructed by k-nearest

neighbor (KNN). Owing to KNN being the method of

constructing hypergraphs, this model is merely

appropriate for k-uniform hypergraphs. In order to

address the issue that the hypergraph structure in [5]

changes as a result of the alteration in node representation.

Jiang et al. [6] proposed a dynamic hypergraph neural

network (DHGNN) that contains dynamic hypergraph

reconstruction that reconstructs the hypergraph at each

layer and dynamic graph convolution that gathers the

information of nodes and edges. However, the method is

incapable of solving the k-uniform graph problem. Bai et

al. [7] proposed a hypergraph convolution theory from

another perspective, which is consistent with the

hypergraph convolution proposed by [5]. Besides, it

introduced hypergraph attention to enhance the

expression ability. Xia et al. [8] proposed a dual channel

hypergraph convolution network to solve the problem of

session-based recommendation. In particular, the model

uses hypergraph convolution and line graph convolution

to learn hypergraph and fuse the learning result. In spite

of that, there are still some problems in the model, such

as information loss in the line graph channel and the

simplicity of the fusion method. Yu et al. [9] proposed a

multi-channel hypergraph convolutional network for

social recommendation. The model builds three

hypergraphs and uses three hypergraph convolutions to

represent these graphs. However, the method can’t be

used in the technological intellectual property dataset.

3 ADHCN: Adaptive Dual Channel

Hypergraph Convolution Network

Figure 1 shows the model structure proposed in this paper.

It mainly includes the hypergraph construction and the

line expansion (HCLE) module, the dual channel

convolution (DHC) module, the adaptive representation

fusion (ARF) module, and the model verification module.

Firstly, the dataset is constructed into a hypergraph H and

a line-expanded simple graph G𝑙 through the HCLE

module. Moreover, the initial representation of the two

graphs is also the output of the module. Secondly, the

output of the HCLE module is the input of the DHC

module. Thirdly, the ARF module fuses the outputs of the

two channels to obtain the final representation. Finally,

the representation is input to a classifier to distinguish the

hypernode and supervise the model training.

3.1 HCLE: Hypergraph Construction and Line

Expansion

ADHCN constructs entities and relationships in

technological intellectual property data as hypergraphs

Gℎ =< 𝑉, 𝐸 > , in which publications are viewed as

hypernodes 𝑉 and authors as hyperedges 𝐸 . The

incidence matrix H ∈ {0,1}|𝑉|×|𝐸| with H(a, p𝑎) = 1 is

defined by the relationship between an author a and his

publications P𝑎 = {𝑝1, 𝑝2, … , 𝑝𝑡} . The weights of all

hyperedges of the hypergraph are set to 1. And the initial

representations Xℎ of the publications are the text

embeddings of their abstracts.

ADHCN adopts the line expansion of the hypergraph as

the input of another convolution channel. The line

expansion method of the hypergraph of technological

intellectual property data is to treat the author-publication

pair as nodes to obtain a weighted simple graph G𝑙 = {<
𝑝, 𝑎 > |𝑝 ∈ 𝑉, 𝑎 ∈ 𝐸}. And, there is one edge between the

into two pairs if either two authors create the same

publication or one author creates two publications. As

suggested by [3], the weights w𝑒 and w𝑣 of the

adjacency matrix A𝑙 are both 1. In order to obtain the

initial input X𝑙 of the line expansion convolution

channel, the initial input of the hypergraph convolution

channel Xℎ is converted according to the hypernode

projection matrixP𝑣 proposed in [3]. The construction of

the hypernode projection matrix is shown in Eq.2.

𝑃𝑣(𝑣𝑙 , 𝑣) = {
1 𝑣𝑙 = (𝑣, 𝑒), ∃𝑒 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Afterwards, the initial inputsX𝑙 = 𝑃𝑣 ∗ 𝑋ℎ , 𝑋ℎ and the

adjacency matrix A𝑙 and incidence matrix H are

respectively input to the two channels to train the model.

3.2 DHC: Dual Channel Convolution Module

The dual channel convolution module is divided into two

channels of convolution, one is line expansion (LE)

convolution and the other is hypergraph convolution.

ADHCN adopts the convolution form proposed by GCN

as the single-layer calculation method of the LE

convolution channel, and in order to reduce the

complexity of the model, the number of layers is set to 1.

Accordingly, the output of the LE convolution channel is

Z�̃�.

Z�̃� = σ(D−
1

2A�̃�D−
1

2X𝑙Θ𝑙) (3)

where σ(∙) is the nonlinear activation function, D−
1

2 ∈
𝑅|𝑉𝑙|×|𝑉𝑙| is the expanded graph node degree matrix,

A�̃� = A𝑙 + 2I ∈ R|𝑉𝑙|×|𝑉𝑙| is the adjacency matrix with

the adjustment by adding two-orders of self-loop, X𝑙 ∈

R|𝑉𝑙|×𝑑 is the LE channel initial input, Θ𝑙 ∈ R𝑑×ℎ is

the channel parameters to be learned.

After the node representation Z�̃� of the LE graph is

obtained by graph convolution, it needs to be mapped

back to the hypergraph to obtain the output Z𝑙 of the

LE convolution channel. The construction of hypernode

projection matrix is shown in Eq.4.

P𝑣
′ = {

1

𝜎(𝑒)

∑
1

𝜎(𝑒)

 𝑣𝑙 = (𝑣, 𝑒), ∃𝑒 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

where 𝜎(𝑒) is the degree of the hyperedge 𝑒 , 𝐸 is

the hyperedge set. Therefore, Z𝑙 = 𝑃𝑣
′ ∗ 𝑍�̃� is the

output of the LE convolution channel.

ADHCN adopts the hypergraph convolution form

proposed in HGNN [5] as the single-layer calculation rule

Figure 1 ADHCN model structure

of the hypergraph convolution channel. In order to

prevent overfitting problems caused by too complex

models, the proposed hypergraph convolution channel

sets the number of layers to 1. Accordingly, the output of

the hypergraph convolution channel is Zℎ.

Zℎ = σ(D𝑣

−
1

2HWD𝑒
−1H𝑇D𝑣

−
1

2XℎΘℎ) (5)

where σ(∙) is the nonlinear activation function, H ∈
R|𝑉|×|𝐸| is the hypergraph incidence matrix, W ∈

R|𝐸|×|𝐸| is the hyperegde weight matrix, D𝑣

−
1

2 ∈ 𝑅|𝑉|×|𝑉|

is the hypernode degree matrix, D𝑒
−1 ∈ 𝑅|𝐸|×|𝐸| is the

hyperedge degree matrix, Xℎ ∈ R|𝑉|×𝑑 is the hyperedge

initial input, Θℎ ∈ R𝑑×ℎ is the parameters to be learned.

Because the hypergraph weight is set to 1 in this paper,

Eq.4 can be simplified to Eq.6.

Zℎ = σ(D𝑣

−
1

2HD𝑒
−1H𝑇D𝑣

−
1

2XℎΘℎ) (6)

3.3 ARF: Adaptive Representation Fusion Module

The adaptive representation fusion module is mainly used

to fuse the node representations learned by the two

channels. The main principle is adaptive fusion through

attention. Figure 2 shows the structure of this module.

Figure 2 Adaptive Representation Fusion Module

After obtaining the output representations of the two

channels, averaging them to obtain the common

representation Z𝑐, then stacking the three representations

together and inputting them to the attention module to

obtain the weight W = [ω1, ω2, ω3] . The weight

calculation process is shown in Eq.7.

W = [ω1, ω2, ω3] = Attention([Z𝑙 , Zℎ , Z𝑐]) (7)

where Attention(·) is the attention function and Z𝑐 =
Z𝑙+Zℎ

2
 . Finally, use the calculated weight to sum the

three representations to obtain the final fusion feature

Z𝑜𝑢𝑡.

Z𝑜𝑢𝑡 = 𝜔1 ∗ 𝑍𝑙 + 𝜔2 ∗ 𝑍ℎ + 𝜔3 ∗ 𝑍𝑐 (8)

3.4 Loss Function

We use hypernode classification as a task to guide model

training and verify model performance. The fused

features are classified by a linear classifier and softmax to

obtain the classification output z.

z = softmax(W𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∗ Z𝑜𝑢𝑡 + b𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) (9)

where W𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∈ 𝑅ℎ×𝑐 is the weights of the classifier

model, b𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 is the bias of the classifier model, z

is the classifier output.

The classification loss is computed using the cross

entropy loss function, as is typical for most models. The

calculation of classification loss is shown in Eq.10.

L𝑐 = −
1

𝑛
∑[𝑦𝑙𝑛𝑧 + (1 − 𝑦)ln (1 − 𝑧)] (10)

where 𝑦 is the hypernode’s label, 𝑧 is the output of the

classifier.

4 Experiments

4.1 Experimental Settings

We evaluate the quality of ADHCN representation on four

datasets through the node classification task. The four

datasets are Dblp [17], Citeseer [18], Cora [19], and

patentDB. The first three are the commonly used

benchmark datasets, while the latter is a self-built dataset

in this paper. The self-built dataset named patentDB built

by this paper consists of Chinese patents and their

applicants and inventors, in which the applicants are the

hypernodes of the hypergraph and the patents are the

hyperedges of the hypergraph. All patent abstracts owned

by the applicants constitute the description of the

applicants and are transformed into the representations of

the applicants. The applicant categories are companies

and individuals.

Table I shows the attributes of these datasets, including

Table I The attributes of different datasets

Dataset |V| |E| density classes

Cora 12998 6250 4.145 10

Citeseer 1498 1107 3.178 6

Dblp 41302 22363 4.452 6

PatentDB 68275 20715 3.690 2

the number of hypernodes |V|, the number of hyperedges

|E| , the density of the hyperedges, and the number of

categories.

To optimize the model, we utilize the Adam optimizer. In

addition, we chose 0.001 and 0.0005 for the initial

learning rate and decay. In terms of model structure, we

set the layers of the hypergraph convolution channel and

graph convolution channel to 1. Moreover, we set the

dropout to 0.5 to avoid overfitting and reduce running

time.

For the evaluation indicators, we use the commonly used

classification accuracy, macro-F1, and recall. In this study,

accuracy, macro-F1, and recall are denoted by the letters

Acc, F1, and R, respectively.

In terms of comparison algorithms, we use the following

hypergraph learning algorithms:

 HyperGCN [1]: In order to reduce the information

loss caused by the transformation of a hypergraph

into a simple weighted graph and accelerate the

training process. Yadati et al. proposed the

mediation mechanism, and the accelerated

computing mechanism respectively. The existence

of these two mechanisms makes the model have

multiple forms. No accelerated computation or

mediation are employed in 1-HyperGCN. The

version of Fast-HyperGCN employs accelerated

computing rather than mediation. Mediations are

employed in HyperGCN* but not accelerated

computing.

 LE-GCN [3]: Yang et al. proposed a method named

hypergraph line expansion (LE) to transform the

hypergraph into a simple weighted graph. In this

paper, in order to generate a representation of the

hypernodes as a comparison of ADHCN outputs, we

utilize GCN to learn the simple graph transferred

from a hypergraph via line expansion.

 HGNN [5]: Feng et al. proposed a hypergraph

construction module based on Euclidean distance

algorithm KNN and a hypergraph convolution

module based on the hypergraph spectral theory. The

hypergraph construction module is not relevant for

this article because the hypergraph has already been

built. Rather, we directly utilize the hypergraph

convolution module to learn the constructed

hypergraph.

4.2 ADHCN Validation

We utilized the methodology specified in the

experimental design for comparison trials to confirm the

efficacy of ADHCN. The experimental results are shown

in Table II.

The performance of the proposed model in multiple

datasets (such as Citeseer, Dblp, and patentDB) is better

than that of the comparison algorithm, among which Dblp

has the most obvious effect, and the accuracy is improved

by 1.4% - 8.4% compared with other models. However,

in terms of the Cora dataset, our model is inferior to LE-

GCN, especially in recall and F1.

ADHCN obtains the higher-order information of the

expanded hypergraph from the LE channel and adaptively

fuses it with the convolution channel representation of the

hypergraph. This avoids the loss of some information in

the expanded hypergraph and the offset caused by

weighted fusion, so it has better performance.

4.3 Adaptive Representation Fusion Module

Validation

In order to verify the effectiveness of the adaptive fusion

module, we compare the performance of ADHCN and the

model that obtains the fused feature by Z𝑐 = 𝑍ℎ + 𝛼𝑍𝑙.

Furthermore, the weight ratio 𝛼 is set to 0.1, 0.3, 0.5, 0.7

and 0.9 respectively. Table III displays the experiment's

findings across four datasets.

We adopted the adaptive representation fusion performed

better than the model with the fusion method of weighted

summation. Consequently, the adaptive representation

fusion module can adaptively adjust the fusion of the two

channels to obtain better model performance.

4.4 Different Adaptive Fusion

In this paper, we introduce the attention mechanism to

achieve adaptive fusion. The process of fusion is shown

in Eq.7 and Eq.8. Eq.7 takes the output Z𝑙 of the LE

convolution channel, the output Zℎ of hypergraph

Table II Comparison of ADHCN and other models

Model Cora Citeseer

Acc R F1 Acc R F1

1-hyperGCN 0.601 0.386 0.391 0.679 0.637 0.635

fast-hyperGCN 0.626 0.423 0.449 0.675 0.636 0.635

hyperGCN 0.635 0.442 0.471 0.681 0.638 0.637

LE-GCN 0.646 0.464 0.503 0.702 0.649 0.643

HGNN 0.639 0.451 0.494 0.680 0.639 0.634

ADHCN(our) 0.646 0.443 0.487 0.706 0.650 0.647

 Dblp PatentDB

Acc R F1 Acc R F1
1-hyperGCN 0.789 0.783 0.778 0.798 0.500 0.462

fast-hyperGCN 0.815 0.806 0.805 0.803 0.498 0.465

hyperGCN 0.822 0.811 0.813 0.815 0.501 0.465

LE-GCN 0.859 0.851 0.853 0.849 0.509 0.501

HGNN 0.830 0.820 0.823 0.845 0.506 0.501

ADHCN(our) 0.873 0.862 0.867 0.852 0.513 0.503

Table III Ablation Experiment on Cora and Citeseer

Model Cora Citeseer

Acc R F1 Acc R F1

α=0.1 0.345 0.117 0.099 0.582 0.535 0.547

α=0.3 0.337 0.110 0.096 0.551 0.497 0.506
α=0.5 0.345 0.118 0.103 0.549 0.495 0.504

α=0.7 0.344 0.116 0.099 0.571 0.522 0.534

α=0.9 0.356 0.126 0.111 0.571 0.522 0.633

ADHCN(our) 0.646 0.443 0.487 0.706 0.650 0.647

 Dblp PatentDB

Acc R F1 Acc R F1

α=0.1 0.715 0.698 0.702 0.837 0.508 0.496

α=0.3 0.720 0.704 0.708 0.845 0.508 0.490

α=0.5 0.722 0.706 0.711 0.851 0.507 0.486

α=0.7 0.722 0.707 0.711 0.849 0.507 0.486
α=0.9 0.719 0.704 0.707 0.845 0.506 0.487

ADHCN(our) 0.873 0.862 0.867 0.852 0.513 0.503

convolution channel and the average representation Z𝑐

between them as the input of the attention mechanism to

obtain the corresponding weights. Eq.8 sums the dot

products of the obtained weights and their corresponding

representations. In order to prove the effectiveness of this

method, we set up experiments to compare our model

with two methods. One is the adaptive fusion method

directly using Z𝑙 and Zℎ without Z𝑐 , the other is the

adaptive fusion model proposed in [24], which the

difference from ADHCN is the calculation method of Z𝑐.

The Eq.11 defines the calculation method of Z𝑐:

 Z𝑐 =
𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑍ℎ)+𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑍ℎ)

2
 (11)

where 𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑥) is the function defined by W𝑐 ∗
x + b𝑐. The W𝑐 and b𝑐 are the parameters to be trained.

The experimental results are shown in Figure 3. In the

figure, “ADHCN-Comm” represents the first comparison

method, and “ADHCN+ComConv” represents the second

comparison method.

 (a) Results on Cora (b) Results on Citeseer

(c) Results on Dblp (d) Results on PatentDB

Figure 3 Comparison results of different adaptive fusion

The data in Figure 3 shows that the adaptive fusion

method in ADHCN can achieve better performance on

each dataset than those of the other two methods.

Explicitly, the experimental results are most obvious on

the Dblp dataset, where accuracy, F1 and recall are 0.2%,

0.1% and 0.2% higher than the second best, respectively.

The method only fuses the outputs of the two convolution

channels, which will lose the common information of the

two channels. Another method using common

convolution can avoid the loss of public information, but

it increases the complexity of the model, thus resulting in

poor model effect. ADHCN simplifies the model by

replacing the common convolution part with the average

of the two outputs, thus achieving better experimental

results on all datasets.

5 Conclusions

In order to make full use of the high-order information in

the technological intellectual property data, we used

hypergraph to model the technological intellectual

property entities and their relationships, and proposed an

adaptive dual channel hypergraph convolution model to

learn the constructed hypergraph, in which dual channels

are used to prevent information loss caused by

hypergraph expansion, and an attention mechanism is

introduced to realize adaptive fusion between the two

channels. Experimental results demonstrate that the

suggested approach outperforms other comparable

algorithms, and the proposed adaptive fusion mechanism

improves the performance of the model.

Acknowledgements

This work was supported by the National Natural Science

Foundation of China (No.62192784, No.62172056).

References

[1] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav,

Vikram Nitin, Anand Louis, and Partha Talukdar.

HyperGCN: Hypergraph Convolutional Networks for

Semi-Supervised Classification[C]. The 33rd Annual

Conference on Neural Information Processing Systems,

NeurIPS 2019. p 1509–1520, 2019.

[2] Sambaran Bandyopadhyay, Kishalay Das, and Narasimha

Murty M. Line Hypergraph Convolution Network:

Applying Graph Convolution for Hypergraphs[J]. arXiv

preprint arXiv: 2002.03392, 2020.

[3] Chaoqi Yang, Ruijie Wang, Shuochao Yao, and

Abdelzaher Tarek. Hypergraph Learning with Line

Expansion[J]. arXiv preprint arXiv: 2005.04843, 2020.

[4] Zeyu Liang, Junping Du, and Chaoyang Li. Abstractive

social media text summarization using selective

reinforced Seq2Seq attention model. Neurocomputing,

410 (2020): 432-440.

[5] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji,

and Yue Gao. Hypergraph Neural Networks[C]. The 33rd

AAAI Conference on Artificial Intelligence, AAAI 2019.

p 3558-3565, 2019.

[6] Jianwen Jiang, Yuxuan Wei, Yifeng Feng, Jingxuan Cao,

and Yue Gao. Dynamic Hypergraph Neural Networks[C].

The 28th International Joint Conference on Artificial

Intelligence, IJCAI 2019. p 2635-2641, 2019.

[7] Song Bai, Feihu Zhang, and Philip H.S. Torr. Hypergraph

Convolution and Hypergraph Attention[J]. Pattern

Recognition. 2021, 110: 107637.

[8] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang,

Lizhen Cui, and Zhang Xiangliang. Self-Supervised

Hypergraph Convolutional Networks for Session-based

Recommendation[C]. The 35th AAAI Conference on

Artificial Intelligence, AAAI 2021. p 4503-4511, 2021.

[9] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang,

Nguyen Hung, and Zhang Xiangliang. Self-Supervised

Multi-Channel Hypergraph Convolutional Network for

Social Recommendation[C]. The Web Conference 2021

Proceedings of the World Wide Web Conference, WWW

2021. p 413-424, 2021.

[10] Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,

and Huan Liu. Be More with Less: Hypergraph Attention

Networks for Inductive Text Classification[C]. 2020

Conference on Empirical Methods in Natural Language

Processing, EMNLP 2020. p 4927-4936, 2020.

[11] Xiangping Wu, Qingcai Chen, Wei Li, Yulun Xiao, and

Baotian Hu. AdaHGNN: Adaptive Hypergraph Neural

Networks for Multi-Label Image Classification[C]. MM

'20: The 28th ACM International Conference on

Multimedia. ACM, 2020. p 284-293, 2020.

[12] Junwei Zhang, Min Gao, Junliang Yu, Lei Guo, Jundong

Li, and Hongzhi Yin. Double-Scale Self-Supervised

Hypergraph Learning for Group Recommendation[C].

The 30th ACM International Conference on Information

and Knowledge Management, CIKM 2021. p 2557-2567,

2021.

[13] Deyuan Meng, Yingmin Jia, and Junping Du. Robust

iterative learning protocols for finite-time consensus of

multi-agent systems with interval uncertain topologies.

International Journal of Systems Science, 2015, 46(5):

857-871.

[14] Deyuan Meng, Yingmin Jia, and Junping Du. Consensus

seeking via iterative learning for multi-agent systems with

switching topologies and communication time-delays.

International Journal of Robust and Nonlinear Control,

2016, 26(17): 3772-3790.

[15] Peng Lin, Yingmin Jia, Junping Du, Fashan Yu. Average

consensus for networks of continuous-time agents with

delayed information and jointly-connected topologies.

2009 American Control Conference, 2009: 3884-3889.

[16] Deyuan Meng, Yingmin Jia, Junping Du, and Fashan Yu,

Tracking Algorithms for Multiagent Systems, In IEEE

Transactions on Neural Networks and Learning Systems,

2013, 24(10): 1660-1676.

[17] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and

Zhong Su. ArnetMiner: Extraction and Mining of

Academic Social Networks[C]. In Proceedings of the

Fourteenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (SIGKDD'2008).

p 990-998, 2008.

[18] Bhattacharya Indrajit, and Lise Getoor. Collective entity

resolution in relational data[J]. Acm Transactions on

Knowledge Discovery from Data. 1(1):5, 2007.

[19] Sen Prithviraj, Namata Galileo, Mustafa Bilgic, Lise

Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective

classification in network data[J] AI magazine, 29(3):93,

2008.

[20] Wenling Li, Yingmin Jia, Junping Du. Distributed

consensus extended Kalman filter: a variance-constrained

approach. IET Control Theory & Applications, 11(3): 382-

389, 2017.

[21] Yawen Li, Isabella Yunfei Zeng, Ziheng Niu, Jiahao Shi,

Ziyang Wang and Zeli Guan, Predicting vehicle fuel

consumption based on multi-view deep neural network,

Neurocomputing, 502:140-147, 2022.

[22] Wenling Li, Yingmin Jia, and Junping Du. Distributed

extended Kalman filter with nonlinear consensus estimate.

Journal of the Franklin Institute, 2017, 354(17): 7983-

7995.

[23] Wenling Li, Yingmin Jia, and Junping Du. Tobit Kalman

filter with time-correlated multiplicative measurement

noise. IET Control Theory & Applications, 2016, 11(1):

122-128.

[24] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi,

and Jian Pei. AM-GCN: Adaptive Multi-channel Graph

Convolutional Networks[C]. Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. p 1243-1253, 2020.

[25] Chuan Shi, Xiaotian Han, Li Song, Xiao Wang, Senzhang

Wang, Junping Du, and S. Yu Philip. Deep collaborative

filtering with multi-aspect information in heterogeneous

networks[J]. IEEE Transactions on Knowledge and Data

Engineering, 33(4): 1413-1425, 2019.

[26] Jizhou Huang, Haifeng Wang, Yibo Sun, Miao Fan,

Zhengjie Huang, Chunyuan Yuan, Yawen Li. HGAMN:

Heterogeneous Graph Attention Matching Network for

Multilingual POI Retrieval at Baidu Maps. Proceedings of

the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining. 3032-3040, 2021.

[27] Wenling Li, Jian Sun, Yingmin Jia, Junping Du, and

Xiaoyan Fu. Variance-constrained state estimation for

nonlinear complex networks with uncertain coupling

strength. Digital Signal Processing, 2017, 67: 107-115.

[28] T.-H. Hubert Chan, and Zhibin Liang. Generalizing the

Hypergraph Laplacian via a Diffusion Process with

Mediators[J]. Theoretical Computer Science, 2020.

[29] Jian Liu, Yuhu Cheng, Xuesong Wang, Xiaoluo Cui, Kong

Yi and Junping Du. Low rank subspace clustering via

discrete constraint and hypergraph regularization for

tumor molecular pattern discovery[J]. IEEE/ACM

transactions on computational biology and bioinformatics,

2018, 15(5): 1500-1512.

[30] Zeyu Liang, Junping Du, Yingxia Shao, and Houye Ji.

Gated graph neural attention networks for abstractive

summarization[J]. Neurocomputing, 2021, 431: 128-136.

[31] Wanqiu Cui, Junping Du, Dawei Wang, Feifei Kou, and

Zhe Xue. MVGAN: Multi-View Graph Attention Network

for Social Event Detection[J]. ACM Transactions on

Intelligent Systems and Technology (TIST), 2021, 12(3):

1-24.

[32] Zhe Xue, Junping Du, Changwei Zheng, Jie Song, Wenqi

Ren, and Meiyu Liang. Clustering-Induced Adaptive

Structure Enhancing Network for Incomplete Multi-View

Data[C]. 2021 International Joint Conference on Artificial

Intelligence. IJCAI. 2021: 3235-3241.

[33] Ang Li, Junping Du, Feifei Kou, Zhe Xue, Xin Xu,

Mingying Xu, Yang Jiang. Scientific and Technological

Information Oriented Semantics-adversarial and Media-

adversarial Cross-media Retrieval. arXiv preprint

arXiv:2203.08615, 2022.

[34] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan

Tang, and Yue Gao. Dual Channel Hypergraph

Collaborative Filtering[C] KDD ‘20: The 26th ACM

SIGKDD Conference on Knowledge Discovery and Data

Mining. ACM, 2020. p 2020-2029, 2020.

[35] Shitao Xiao, Yingxia Shao, Yawen Li, Hongzhi Yin,

Yanyan Shen, Bin Cui. LECF: recommendation via

learnable edge collaborative filtering. Science China

Information Sciences, 65(1):1-15, 2022.

[36] Jianghai Lv, Yawen Li, Junping Du, Lei Shi. E-Product

Recommendation Algorithm Based on Knowledge Graph

and Collaborative Filtering. Chinese Intelligent Systems

Conference, 38-47, 2020.

[37] Sheng Huang, Ahmed Elgammal, and DanYang. On The

Effect of Hyperedge Weights On Hypergraph Learning[J].

Image and Vision Computing. p 89-101, 2017.

[38] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-

Mauroux. Revisiting User Mobility and Social

Relationships in LBSNs: A Hypergraph Embedding

Approach[C] The World Wide Web Conference. 2019. p

2147–2157, 2019.

[39] Feifei Kou, Junping Du, Congxian Yang, Yansong Shi,

Wanqiu Cui, Meiyu Liang, and Yue Geng. Hashtag

recommendation based on multi-features of microblogs.

Journal of Computer Science and Technology, 2018, 33(4):

711-726.

[40] Xinlei Wei, Junping Du, Meiyu Liang, and Lingfei Ye.

Boosting deep attribute learning via support vector

regression for fast moving crowd counting. Pattern

Recognition Letters, 2019, 119: 12-23.

[41] Qingping Li, Junping Du, Fuzhao Song, Chao Wang,

Honggang Liu, Cheng Lu. Region-based multi-focus

image fusion using the local spatial frequency. 2013 25th

Chinese control and decision conference (CCDC), 2013:

3792-3796.

[42] Mingxing Li, Yinmin Jia, and Junping Du. LPV control

with decoupling performance of 4WS vehicles under

velocity-varying motion. IEEE Transactions on Control

Systems Technology 2014, 22(5): 1708-1724.

[43] Liang Xu, Junping Du, Qingping Li. Image fusion based

on nonsubsampled contourlet transform and saliency-

motivated pulse coupled neural networks. Mathematical

Problems in Engineering, 2013.

[44] Yuanshen Guan, Xiangguo Sun, and Yongjiao Sun. Sparse

relation prediction based on hypergraph neural networks

in online social networks[J]. World Wide Web, 2021: 1-25.

[45] Fulin Luo, Liangpei Zhang, Xiaocheng Zhou, Tan Guo,

Yanxiang Cheng, and Tailang Yin. Sparse-adaptive

hypergraph discriminant analysis for hyperspectral image

classification[J]. IEEE Geoscience and Remote Sensing

Letters, 2019, 17(6): 1082-1086.

[46] Qin Wan, Luona Wei, Xinhai Chen, and Jie Liu A region-

based hypergraph network for joint entity-relation

extraction[J]. Knowledge-Based Systems, 2021, 228:

107298.

