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Abstract: In the age of big data, the demand for hidden 

information mining in technological intellectual property 

is increasing in discrete countries. Definitely, a 

considerable number of graph learning algorithms for 

technological intellectual property have been proposed. 

The goal is to model the technological intellectual 

property entities and their relationships through the graph 

structure and use the neural network algorithm to extract 

the hidden structure information in the graph. However, 

most of the existing graph learning algorithms merely 

focus on the information mining of binary relations in 

technological intellectual property, ignoring the higher-

order information hidden in non-binary relations. 

Therefore, a hypergraph neural network model based on 

dual channel convolution is proposed. For the hypergraph 

constructed from technological intellectual property data, 

the hypergraph channel and the line expanded graph 

channel of the hypergraph are used to learn the 

hypergraph, and the attention mechanism is introduced to 

adaptively fuse the output representations of the two 

channels. The proposed model outperforms the existing 

approaches on a variety of datasets. 

Keywords: Graph Convolution; Hypergraph; Line 

Expansion; Attention; Representation Fusion 

1 Introduction 

Technological intellectual property data is generally 

composed of complex information like creative entities, 

resource entities, inter-entity relationships, and entity 

attributes[33]. Mainstream models usually need to map 

data into a vector space that is convenient for 

calculation[20][23],[27], filter and fuse data in the limited 

space[39]-[43], and cannot ignore the correlation 

information of the data itself. The purpose of this paper is 

to propose a hypergraph learning algorithm to represent 

the hypergraph modeled the complex information about 

technological intellectual property data for further 

analysis and mining. 

In terms of the modelling technological intellectual 

property data, existing methods include a homogeneous 

[30],[32] and a heterogeneous graph [25][26],[31]. 

However, homogeneous and heterogeneous graphs 

merely model binary relationships, which are not able to 

model non-binary relationships in technological 

intellectual property data. Consequently, graph learning 

algorithms based on a homogenous graph and a 

heterogeneous graph are unable to represent nonlinear 

higher-order correlation among technological intellectual 

property entities. Some researchers have proposed to use 

multi-agent to learn multiple features and solve the above 

problems through feature fusion [12-15], but this method 

requires a lot of artificial construction work. Instead, 

hypergraph [29] has been used as a modeling method of 

non-binary relations due to its structural characteristics, 

such as the research [10], [46] on natural language 

processing, the research [12],[34]-[36] on 

recommendation systems, the research [11],[45] on image 

classification, and the research on various social networks 

[38],[44]. Accordingly, using hypergraph to model the 

entities and relationships of technological intellectual 

property data is able to fully express its complexity. 

For hypergraph learning, traditional algorithms are 

typically separated into two categories: one is based on 

incidence matrix decomposition, and the other is based on 

hypergraph expansion [28],[37], which converts 

hypergraphs into weighted simple graphs. Neither the 

performance nor the efficiency of traditional methods can 

be compared with neural networks, so this paper mainly 

discusses hypergraph neural network algorithms. The 

neural network algorithms include hypergraph neural 

networks based on hypergraph expansion and hypergraph 

neural networks based on non-hypergraph expansion. 

Methods [1][3] based on hypergraph expansion 

commonly use simple graph learning methods such as the 

Graph Convolution Network (GCN) to represent the 

converted simple weighted graph from the hypergraph. 

However, it would cause the loss of some information for 

the same reason that it simplifies the hypergraph into a 

simple weighted graph. The methods [5][7] based on non-

hypergraph expansion are to carry out hypergraph 

learning through hypergraph convolution neural networks 

or hypergraph attention neural networks. Some of these 

methods are merely appropriate for learning k-uniform 

graphs with k hypernodes on each hyperedge but not for 

the technological intellectual property data that 

hypergraph structure is a k-uniform graph. The others [8] 

integrate the features of hypergraph and simple graph 

expanded from hypergraph. Nevertheless, the method of 

fusion is the average of the representation of two graphs. 

In view of the problems with the above methods, we 

propose an adaptive dual-channel hypergraph node 



 

representation algorithm based on hypergraph 

convolution and line expansion (LE) of the hypergraph. 

Furthermore, it uses the node classification task to verify 

the method. Firstly, we construct a hypergraph based on 

some technological intellectual property data by taking 

the author as the hyperedge and his publications as the 

hypernodes. Secondly, using the method proposed by [3] 

expands the hypergraph to a weighted simple graph. 

Thirdly, the hypergraph and the graph of LE pass through 

the hypergraph convolution channel and the graph 

convolution channel, respectively. Finally, the final node 

representation is obtained by using the attention 

mechanism to adaptively fuse the two representations of 

dual channels. Furthermore, we use the node 

classification task to determine the effect of node 

representation. 

The main contributions of this paper are as follows: 

1) We propose an adaptive hypergraph dual channel 

convolution node representation learning method 

(ADHCN). The hypergraph line expansion convolution 

channel and the hypergraph convolution channel are used 

to represent nodes, so as to avoid the information loss in 

the simple graph, which is line expanded from the 

hypergraph. 

2) We introduce the attention mechanism to fuse the 

representations of the two channels to avoid the deviation 

caused by direct averaging or splicing.  

3) The experimental results demonstrate that ADHCN 

exceeds the compared models in terms of accuracy, F1, 

and recall. Moreover, the experiment shows that the effect 

of the model is significantly improved after introducing 

the attention mechanism for adaptive fusion. 

2 Related Work 

A hypergraph G =< V, E, W >  is a generalized graph, 

where V = {v1, v2, … , v𝑛} is the set of hypernodes, E =
{e1, e2, … , e𝑚}  is the set of hyperedges, and W =
{w1, w2, … , w𝑚} is the weights set on each hyperedge. In 

particular, each hyperedge e𝑖   connects more than two 

hypernodes. Moreover, the incidence matrix of the 

hypergraph is H = {h𝑖𝑗|1 ≤ i ≤ n, 1 ≤ j ≤ m} , where 

h𝑖𝑗 only takes 0 or 1. In particular, there are more than 

two 1 in the column of H, which means one hyperedge 

connects several vertices. 

For the methods in hypergraph neural networks based on 

expansion, Yadati et al. [1] proposed the hyperGCN model, 

whose principle is to use the GCN training graph 

transformed from the hypergraph through the spectral 

theory and introduce the mediator to prevent the loss of 

the hypergraph’s information. Bandyopadhyay [2] 

simplified the hypergraph into a normal graph named 

“line graph” by taking the hyperedge as the vertex and the 

Jaccard similarity between the hyperedges as the weight, 

and then trained the graph with GCN. Yang et al. [3] 

proposed the line expansion (LE) of hypergraphs to 

transform the hypergraph into a weighted simple graph 

G𝑙 = (𝑉𝑙 , 𝐸𝑙). The 𝑉𝑙 is the node set which is composed 

of hyperedge-hypernode pairs {(v, e)|v ∈ V, e ∈ E} 

from the original hypergraph. The edge of the edge set 𝐸𝑙  

connects two pairs if both pairs have a common 

hypernode or hyperedge. The adjacency matrix of the 

weighted graph A𝑙 ∈ {0, w𝑒 , w𝑣}|𝑉𝑙|×|𝑉𝑙|  shown in Eq.1 

is defined by the pairwise relation u ∈ V𝑙 and v ∈ V𝑙. 

𝐴𝑙(𝑢, 𝑣) {
𝑤𝑒  𝑢 = (𝑣ℎ , 𝑒ℎ), 𝑣 = (𝑣ℎ

′ , 𝑒ℎ
′ ), 𝑣ℎ = 𝑣ℎ

′

𝑤𝑣 𝑢 = (𝑣ℎ, 𝑒ℎ), 𝑣 = (𝑣ℎ
′ , 𝑒ℎ

′ ), 𝑒ℎ = 𝑒ℎ
′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 (1) 

The above algorithms reduce the hypergraph learning 

problem with simple graph learning, which brings 

problems of hypergraph information loss. For the 

methods in hypergraph neural networks based on non-

expansion, Feng et al. [5] proposed a hypergraph 

convolution neural network by extending graph 

convolution to hypergraph. And the proposed method is 

used to learn the hypergraph constructed by k-nearest 

neighbor (KNN). Owing to KNN being the method of 

constructing hypergraphs, this model is merely 

appropriate for k-uniform hypergraphs. In order to 

address the issue that the hypergraph structure in [5] 

changes as a result of the alteration in node representation. 

Jiang et al. [6] proposed a dynamic hypergraph neural 

network (DHGNN) that contains dynamic hypergraph 

reconstruction that reconstructs the hypergraph at each 

layer and dynamic graph convolution that gathers the 

information of nodes and edges. However, the method is 

incapable of solving the k-uniform graph problem. Bai et 

al. [7] proposed a hypergraph convolution theory from 

another perspective, which is consistent with the 

hypergraph convolution proposed by [5]. Besides, it 

introduced hypergraph attention to enhance the 

expression ability. Xia et al. [8] proposed a dual channel 

hypergraph convolution network to solve the problem of 

session-based recommendation. In particular, the model 

uses hypergraph convolution and line graph convolution 

to learn hypergraph and fuse the learning result. In spite 

of that, there are still some problems in the model, such 

as information loss in the line graph channel and the 

simplicity of the fusion method. Yu et al. [9] proposed a 

multi-channel hypergraph convolutional network for 

social recommendation. The model builds three 

hypergraphs and uses three hypergraph convolutions to 

represent these graphs. However, the method can’t be 

used in the technological intellectual property dataset. 

3 ADHCN: Adaptive Dual Channel 

Hypergraph Convolution Network  

Figure 1 shows the model structure proposed in this paper. 

It mainly includes the hypergraph construction and the 

line expansion (HCLE) module, the dual channel 

convolution (DHC) module, the adaptive representation 

fusion (ARF) module, and the model verification module. 

Firstly, the dataset is constructed into a hypergraph H and 

a line-expanded simple graph G𝑙  through the HCLE 

module. Moreover, the initial representation of the two 



 

graphs is also the output of the module. Secondly, the 

output of the HCLE module is the input of the DHC 

module. Thirdly, the ARF module fuses the outputs of the 

two channels to obtain the final representation. Finally, 

the representation is input to a classifier to distinguish the 

hypernode and supervise the model training. 

3.1 HCLE: Hypergraph Construction and Line 

Expansion 

ADHCN constructs entities and relationships in 

technological intellectual property data as hypergraphs 

Gℎ =< 𝑉, 𝐸 > , in which publications are viewed as 

hypernodes 𝑉  and authors as hyperedges 𝐸 . The 

incidence matrix H ∈ {0,1}|𝑉|×|𝐸| with H(a, p𝑎) = 1 is 

defined by the relationship between an author a and his 

publications P𝑎 = {𝑝1, 𝑝2, … , 𝑝𝑡} . The weights of all 

hyperedges of the hypergraph are set to 1. And the initial 

representations Xℎ of the publications are the text 

embeddings of their abstracts. 

ADHCN adopts the line expansion of the hypergraph as 

the input of another convolution channel. The line 

expansion method of the hypergraph of technological 

intellectual property data is to treat the author-publication 

pair as nodes to obtain a weighted simple graph G𝑙 = {<
𝑝, 𝑎 > |𝑝 ∈ 𝑉, 𝑎 ∈ 𝐸}. And, there is one edge between the 

into two pairs if either two authors create the same 

publication or one author creates two publications. As 

suggested by [3], the weights w𝑒  and w𝑣  of the 

adjacency matrix A𝑙  are both 1. In order to obtain the 

initial input X𝑙   of the line expansion convolution 

channel, the initial input of the hypergraph convolution 

channel Xℎ is converted according to the hypernode 

projection matrixP𝑣 proposed in [3]. The construction of 

the hypernode projection matrix is shown in Eq.2. 

𝑃𝑣(𝑣𝑙 , 𝑣) = {
1 𝑣𝑙 = (𝑣, 𝑒), ∃𝑒 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
      (2) 

Afterwards, the initial inputsX𝑙 = 𝑃𝑣 ∗ 𝑋ℎ , 𝑋ℎ  and the 

adjacency matrix A𝑙  and incidence matrix H  are 

respectively input to the two channels to train the model. 

3.2 DHC: Dual Channel Convolution Module 

The dual channel convolution module is divided into two 

channels of convolution, one is line expansion (LE) 

convolution and the other is hypergraph convolution. 

ADHCN adopts the convolution form proposed by GCN 

as the single-layer calculation method of the LE 

convolution channel, and in order to reduce the 

complexity of the model, the number of layers is set to 1. 

Accordingly, the output of the LE convolution channel is 

Z�̃�. 

Z�̃� = σ(D−
1

2A�̃�D−
1

2X𝑙Θ𝑙)          (3) 

where σ(∙) is the nonlinear activation function, D−
1

2 ∈
𝑅|𝑉𝑙|×|𝑉𝑙| is the expanded graph node degree matrix, 

A�̃� = A𝑙 + 2I ∈ R|𝑉𝑙|×|𝑉𝑙| is the adjacency matrix with 

the adjustment by adding two-orders of self-loop, X𝑙 ∈

R|𝑉𝑙|×𝑑 is the LE channel initial input, Θ𝑙 ∈ R𝑑×ℎ is 

the channel parameters to be learned.  

After the node representation Z�̃�  of the LE graph is 

obtained by graph convolution, it needs to be mapped 

back to the hypergraph to obtain the output Z𝑙 of the 

LE convolution channel. The construction of hypernode 

projection matrix is shown in Eq.4. 

P𝑣
′ = {

   

1

𝜎(𝑒)

∑
1

𝜎(𝑒)

     𝑣𝑙 = (𝑣, 𝑒), ∃𝑒 ∈ 𝐸

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (4) 

where 𝜎(𝑒)  is the degree of the hyperedge 𝑒 , 𝐸  is 

the hyperedge set. Therefore, Z𝑙 = 𝑃𝑣
′ ∗ 𝑍�̃�  is the 

output of the LE convolution channel. 

ADHCN adopts the hypergraph convolution form 

proposed in HGNN [5] as the single-layer calculation rule 

 

Figure 1 ADHCN model structure 



 

of the hypergraph convolution channel. In order to 

prevent overfitting problems caused by too complex 

models, the proposed hypergraph convolution channel 

sets the number of layers to 1. Accordingly, the output of 

the hypergraph convolution channel is Zℎ. 

Zℎ = σ(D𝑣

−
1

2HWD𝑒
−1H𝑇D𝑣

−
1

2XℎΘℎ)     (5) 

where σ(∙)  is the nonlinear activation function, H ∈
R|𝑉|×|𝐸|  is the hypergraph incidence matrix, W ∈

R|𝐸|×|𝐸| is the hyperegde weight matrix, D𝑣

−
1

2 ∈ 𝑅|𝑉|×|𝑉| 

is the hypernode degree matrix, D𝑒
−1 ∈ 𝑅|𝐸|×|𝐸|  is the 

hyperedge degree matrix, Xℎ ∈ R|𝑉|×𝑑 is the hyperedge 

initial input, Θℎ ∈ R𝑑×ℎ is the parameters to be learned. 

Because the hypergraph weight is set to 1 in this paper, 

Eq.4 can be simplified to Eq.6. 

Zℎ = σ(D𝑣

−
1

2HD𝑒
−1H𝑇D𝑣

−
1

2XℎΘℎ)       (6) 

3.3 ARF: Adaptive Representation Fusion Module 

The adaptive representation fusion module is mainly used 

to fuse the node representations learned by the two 

channels. The main principle is adaptive fusion through 

attention. Figure 2 shows the structure of this module. 

 

Figure 2 Adaptive Representation Fusion Module 

After obtaining the output representations of the two 

channels, averaging them to obtain the common 

representation Z𝑐, then stacking the three representations 

together and inputting them to the attention module to 

obtain the weight W = [ω1, ω2, ω3] . The weight 

calculation process is shown in Eq.7. 

W = [ω1, ω2, ω3] = Attention([Z𝑙 , Zℎ , Z𝑐])   (7) 

where Attention(·) is the attention function and Z𝑐 =
Z𝑙+Zℎ

2
 . Finally, use the calculated weight to sum the 

three representations to obtain the final fusion feature 

Z𝑜𝑢𝑡. 

Z𝑜𝑢𝑡 = 𝜔1 ∗ 𝑍𝑙 + 𝜔2 ∗ 𝑍ℎ + 𝜔3 ∗ 𝑍𝑐       (8) 

3.4 Loss Function 

We use hypernode classification as a task to guide model 

training and verify model performance. The fused 

features are classified by a linear classifier and softmax to 

obtain the classification output z. 

z = softmax(W𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∗ Z𝑜𝑢𝑡 + b𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟)   (9) 

where W𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∈ 𝑅ℎ×𝑐 is the weights of the classifier 

model, b𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  is the bias of the classifier model, z 

is the classifier output. 

The classification loss is computed using the cross 

entropy loss function, as is typical for most models. The 

calculation of classification loss is shown in Eq.10. 

L𝑐 = −
1

𝑛
∑[𝑦𝑙𝑛𝑧 + (1 − 𝑦)ln (1 − 𝑧)]    (10) 

where 𝑦 is the hypernode’s label, 𝑧 is the output of the 

classifier. 

 

4 Experiments 

4.1 Experimental Settings 

We evaluate the quality of ADHCN representation on four 

datasets through the node classification task. The four 

datasets are Dblp [17], Citeseer [18], Cora [19], and 

patentDB. The first three are the commonly used 

benchmark datasets, while the latter is a self-built dataset 

in this paper. The self-built dataset named patentDB built 

by this paper consists of Chinese patents and their 

applicants and inventors, in which the applicants are the 

hypernodes of the hypergraph and the patents are the 

hyperedges of the hypergraph. All patent abstracts owned 

by the applicants constitute the description of the 

applicants and are transformed into the representations of 

the applicants. The applicant categories are companies 

and individuals. 

Table I shows the attributes of these datasets, including 

Table I The attributes of different datasets 

Dataset |V| |E| density classes 

Cora 12998 6250 4.145 10 

Citeseer 1498 1107 3.178 6 

Dblp 41302 22363 4.452 6 

PatentDB 68275 20715 3.690 2 

 



 

the number of hypernodes |V|, the number of hyperedges 

|E| , the density of the hyperedges, and the number of 

categories. 

To optimize the model, we utilize the Adam optimizer. In 

addition, we chose 0.001 and 0.0005 for the initial 

learning rate and decay. In terms of model structure, we 

set the layers of the hypergraph convolution channel and 

graph convolution channel to 1. Moreover, we set the 

dropout to 0.5 to avoid overfitting and reduce running 

time. 

For the evaluation indicators, we use the commonly used 

classification accuracy, macro-F1, and recall. In this study, 

accuracy, macro-F1, and recall are denoted by the letters 

Acc, F1, and R, respectively. 

In terms of comparison algorithms, we use the following 

hypergraph learning algorithms: 

 HyperGCN [1]: In order to reduce the information 

loss caused by the transformation of a hypergraph 

into a simple weighted graph and accelerate the 

training process. Yadati et al. proposed the 

mediation mechanism, and the accelerated 

computing mechanism respectively. The existence 

of these two mechanisms makes the model have 

multiple forms. No accelerated computation or 

mediation are employed in 1-HyperGCN. The 

version of Fast-HyperGCN employs accelerated 

computing rather than mediation. Mediations are 

employed in HyperGCN* but not accelerated 

computing. 

 LE-GCN [3]: Yang et al. proposed a method named 

hypergraph line expansion (LE) to transform the 

hypergraph into a simple weighted graph. In this 

paper, in order to generate a representation of the 

hypernodes as a comparison of ADHCN outputs, we 

utilize GCN to learn the simple graph transferred 

from a hypergraph via line expansion. 

 HGNN [5]: Feng et al. proposed a hypergraph 

construction module based on Euclidean distance 

algorithm KNN and a hypergraph convolution 

module based on the hypergraph spectral theory. The 

hypergraph construction module is not relevant for 

this article because the hypergraph has already been 

built. Rather, we directly utilize the hypergraph 

convolution module to learn the constructed 

hypergraph. 

4.2 ADHCN Validation 

We utilized the methodology specified in the 

experimental design for comparison trials to confirm the 

efficacy of ADHCN. The experimental results are shown 

in Table II. 

The performance of the proposed model in multiple 

datasets (such as Citeseer, Dblp, and patentDB) is better 

than that of the comparison algorithm, among which Dblp 

has the most obvious effect, and the accuracy is improved 

by 1.4% - 8.4% compared with other models. However, 

in terms of the Cora dataset, our model is inferior to LE-

GCN, especially in recall and F1. 

ADHCN obtains the higher-order information of the 

expanded hypergraph from the LE channel and adaptively 

fuses it with the convolution channel representation of the 

hypergraph. This avoids the loss of some information in 

the expanded hypergraph and the offset caused by 

weighted fusion, so it has better performance. 

4.3 Adaptive Representation Fusion Module 

Validation 

In order to verify the effectiveness of the adaptive fusion 

module, we compare the performance of ADHCN and the 

model that obtains the fused feature by Z𝑐 = 𝑍ℎ + 𝛼𝑍𝑙. 

Furthermore, the weight ratio 𝛼 is set to 0.1, 0.3, 0.5, 0.7 

and 0.9 respectively. Table III displays the experiment's 

findings across four datasets. 

We adopted the adaptive representation fusion performed 

better than the model with the fusion method of weighted 

summation. Consequently, the adaptive representation 

fusion module can adaptively adjust the fusion of the two 

channels to obtain better model performance. 

4.4 Different Adaptive Fusion 

In this paper, we introduce the attention mechanism to 

achieve adaptive fusion. The process of fusion is shown 

in Eq.7 and Eq.8. Eq.7 takes the output Z𝑙  of the LE 

convolution channel, the output Zℎ  of hypergraph 

Table II Comparison of ADHCN and other models 

Model Cora Citeseer 

Acc R F1 Acc R F1 

1-hyperGCN 0.601 0.386 0.391 0.679 0.637 0.635 

fast-hyperGCN 0.626 0.423 0.449 0.675 0.636 0.635 

hyperGCN 0.635 0.442 0.471 0.681 0.638 0.637 

LE-GCN 0.646 0.464 0.503 0.702 0.649 0.643 

HGNN 0.639 0.451 0.494 0.680 0.639 0.634 

ADHCN(our) 0.646 0.443 0.487 0.706 0.650 0.647 

       

 Dblp PatentDB 

Acc R F1 Acc R F1 
1-hyperGCN 0.789 0.783 0.778 0.798 0.500 0.462 

fast-hyperGCN 0.815 0.806 0.805 0.803 0.498 0.465 

hyperGCN 0.822 0.811 0.813 0.815 0.501 0.465 

LE-GCN 0.859 0.851 0.853 0.849 0.509 0.501 

HGNN 0.830 0.820 0.823 0.845 0.506 0.501 

ADHCN(our) 0.873 0.862 0.867 0.852 0.513 0.503 

 

Table III Ablation Experiment on Cora and Citeseer 

Model Cora Citeseer 

Acc R F1 Acc R F1 

α=0.1 0.345 0.117 0.099 0.582 0.535 0.547 

α=0.3 0.337 0.110 0.096 0.551 0.497 0.506 
α=0.5 0.345 0.118 0.103 0.549 0.495 0.504 

α=0.7 0.344 0.116 0.099 0.571 0.522 0.534 

α=0.9 0.356 0.126 0.111 0.571 0.522 0.633 

ADHCN(our) 0.646 0.443 0.487 0.706 0.650 0.647 

       

 Dblp PatentDB 

Acc R F1 Acc R F1 

α=0.1 0.715 0.698 0.702 0.837 0.508 0.496 

α=0.3 0.720 0.704 0.708 0.845 0.508 0.490 

α=0.5 0.722 0.706 0.711 0.851 0.507 0.486 

α=0.7 0.722 0.707 0.711 0.849 0.507 0.486 
α=0.9 0.719 0.704 0.707 0.845 0.506 0.487 

ADHCN(our) 0.873 0.862 0.867 0.852 0.513 0.503 

 



 

convolution channel and the average representation Z𝑐 

between them as the input of the attention mechanism to 

obtain the corresponding weights. Eq.8 sums the dot 

products of the obtained weights and their corresponding 

representations. In order to prove the effectiveness of this 

method, we set up experiments to compare our model 

with two methods. One is the adaptive fusion method 

directly using Z𝑙  and Zℎ  without Z𝑐 , the other is the 

adaptive fusion model proposed in [24], which the 

difference from ADHCN is the calculation method of Z𝑐. 

The Eq.11 defines the calculation method of Z𝑐: 

     Z𝑐 =
𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑍ℎ)+𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑍ℎ)

2
         (11) 

where 𝑐𝑜𝑚𝑚𝐶𝑜𝑛𝑣(𝑥) is the function defined by W𝑐 ∗
x + b𝑐. The W𝑐 and b𝑐 are the parameters to be trained. 

The experimental results are shown in Figure 3. In the 

figure, “ADHCN-Comm” represents the first comparison 

method, and “ADHCN+ComConv” represents the second 

comparison method. 

 

 (a) Results on Cora        (b) Results on Citeseer 

 

(c) Results on Dblp         (d) Results on PatentDB 

Figure 3 Comparison results of different adaptive fusion 

The data in Figure 3 shows that the adaptive fusion 

method in ADHCN can achieve better performance on 

each dataset than those of the other two methods. 

Explicitly, the experimental results are most obvious on 

the Dblp dataset, where accuracy, F1 and recall are 0.2%, 

0.1% and 0.2% higher than the second best, respectively. 

The method only fuses the outputs of the two convolution 

channels, which will lose the common information of the 

two channels. Another method using common 

convolution can avoid the loss of public information, but 

it increases the complexity of the model, thus resulting in 

poor model effect. ADHCN simplifies the model by 

replacing the common convolution part with the average 

of the two outputs, thus achieving better experimental 

results on all datasets. 

5 Conclusions 

In order to make full use of the high-order information in 

the technological intellectual property data, we used 

hypergraph to model the technological intellectual 

property entities and their relationships, and proposed an 

adaptive dual channel hypergraph convolution model to 

learn the constructed hypergraph, in which dual channels 

are used to prevent information loss caused by 

hypergraph expansion, and an attention mechanism is 

introduced to realize adaptive fusion between the two 

channels. Experimental results demonstrate that the 

suggested approach outperforms other comparable 

algorithms, and the proposed adaptive fusion mechanism 

improves the performance of the model. 
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